1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
17 #include "disas/disas.h"
29 #define ELF_OSABI ELFOSABI_SYSV
31 /* from personality.h */
34 * Flags for bug emulation.
36 * These occupy the top three bytes.
39 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO
= 0x0100000,
43 ADDR_COMPAT_LAYOUT
= 0x0200000,
44 READ_IMPLIES_EXEC
= 0x0400000,
45 ADDR_LIMIT_32BIT
= 0x0800000,
46 SHORT_INODE
= 0x1000000,
47 WHOLE_SECONDS
= 0x2000000,
48 STICKY_TIMEOUTS
= 0x4000000,
49 ADDR_LIMIT_3GB
= 0x8000000,
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
60 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
61 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
62 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
63 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
65 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
66 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
67 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
69 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
70 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
72 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
73 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
74 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
75 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
77 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
78 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
79 PER_OSF4
= 0x000f, /* OSF/1 v4 */
85 * Return the base personality without flags.
87 #define personality(pers) (pers & PER_MASK)
89 /* this flag is uneffective under linux too, should be deleted */
91 #define MAP_DENYWRITE 0
94 /* should probably go in elf.h */
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
102 #define ELF_DATA ELFDATA2LSB
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t
;
107 #define tswapreg(ptr) tswap64(ptr)
109 typedef abi_ulong target_elf_greg_t
;
110 #define tswapreg(ptr) tswapal(ptr)
114 typedef abi_ushort target_uid_t
;
115 typedef abi_ushort target_gid_t
;
117 typedef abi_uint target_uid_t
;
118 typedef abi_uint target_gid_t
;
120 typedef abi_int target_pid_t
;
124 #define ELF_PLATFORM get_elf_platform()
126 static const char *get_elf_platform(void)
128 static char elf_platform
[] = "i386";
129 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
133 elf_platform
[1] = '0' + family
;
137 #define ELF_HWCAP get_elf_hwcap()
139 static uint32_t get_elf_hwcap(void)
141 X86CPU
*cpu
= X86_CPU(thread_cpu
);
143 return cpu
->env
.features
[FEAT_1_EDX
];
147 #define ELF_START_MMAP 0x2aaaaab000ULL
149 #define ELF_CLASS ELFCLASS64
150 #define ELF_ARCH EM_X86_64
152 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
155 regs
->rsp
= infop
->start_stack
;
156 regs
->rip
= infop
->entry
;
160 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
167 * See linux kernel: arch/x86/include/asm/elf.h
169 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
171 (*regs
)[0] = env
->regs
[15];
172 (*regs
)[1] = env
->regs
[14];
173 (*regs
)[2] = env
->regs
[13];
174 (*regs
)[3] = env
->regs
[12];
175 (*regs
)[4] = env
->regs
[R_EBP
];
176 (*regs
)[5] = env
->regs
[R_EBX
];
177 (*regs
)[6] = env
->regs
[11];
178 (*regs
)[7] = env
->regs
[10];
179 (*regs
)[8] = env
->regs
[9];
180 (*regs
)[9] = env
->regs
[8];
181 (*regs
)[10] = env
->regs
[R_EAX
];
182 (*regs
)[11] = env
->regs
[R_ECX
];
183 (*regs
)[12] = env
->regs
[R_EDX
];
184 (*regs
)[13] = env
->regs
[R_ESI
];
185 (*regs
)[14] = env
->regs
[R_EDI
];
186 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
187 (*regs
)[16] = env
->eip
;
188 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
189 (*regs
)[18] = env
->eflags
;
190 (*regs
)[19] = env
->regs
[R_ESP
];
191 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
192 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
193 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
194 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
195 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
196 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
197 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
202 #define ELF_START_MMAP 0x80000000
205 * This is used to ensure we don't load something for the wrong architecture.
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 * These are used to set parameters in the core dumps.
212 #define ELF_CLASS ELFCLASS32
213 #define ELF_ARCH EM_386
215 static inline void init_thread(struct target_pt_regs
*regs
,
216 struct image_info
*infop
)
218 regs
->esp
= infop
->start_stack
;
219 regs
->eip
= infop
->entry
;
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
227 A value of 0 tells we have no such handler. */
232 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
239 * See linux kernel: arch/x86/include/asm/elf.h
241 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
243 (*regs
)[0] = env
->regs
[R_EBX
];
244 (*regs
)[1] = env
->regs
[R_ECX
];
245 (*regs
)[2] = env
->regs
[R_EDX
];
246 (*regs
)[3] = env
->regs
[R_ESI
];
247 (*regs
)[4] = env
->regs
[R_EDI
];
248 (*regs
)[5] = env
->regs
[R_EBP
];
249 (*regs
)[6] = env
->regs
[R_EAX
];
250 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
251 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
252 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
253 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
254 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
255 (*regs
)[12] = env
->eip
;
256 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
257 (*regs
)[14] = env
->eflags
;
258 (*regs
)[15] = env
->regs
[R_ESP
];
259 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE 4096
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
273 #define ELF_START_MMAP 0x80000000
275 #define ELF_ARCH EM_ARM
276 #define ELF_CLASS ELFCLASS32
278 static inline void init_thread(struct target_pt_regs
*regs
,
279 struct image_info
*infop
)
281 abi_long stack
= infop
->start_stack
;
282 memset(regs
, 0, sizeof(*regs
));
284 regs
->ARM_cpsr
= 0x10;
285 if (infop
->entry
& 1)
286 regs
->ARM_cpsr
|= CPSR_T
;
287 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
288 regs
->ARM_sp
= infop
->start_stack
;
289 /* FIXME - what to for failure of get_user()? */
290 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
291 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
292 /* XXX: it seems that r0 is zeroed after ! */
294 /* For uClinux PIC binaries. */
295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296 regs
->ARM_r10
= infop
->start_data
;
300 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
302 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
304 (*regs
)[0] = tswapreg(env
->regs
[0]);
305 (*regs
)[1] = tswapreg(env
->regs
[1]);
306 (*regs
)[2] = tswapreg(env
->regs
[2]);
307 (*regs
)[3] = tswapreg(env
->regs
[3]);
308 (*regs
)[4] = tswapreg(env
->regs
[4]);
309 (*regs
)[5] = tswapreg(env
->regs
[5]);
310 (*regs
)[6] = tswapreg(env
->regs
[6]);
311 (*regs
)[7] = tswapreg(env
->regs
[7]);
312 (*regs
)[8] = tswapreg(env
->regs
[8]);
313 (*regs
)[9] = tswapreg(env
->regs
[9]);
314 (*regs
)[10] = tswapreg(env
->regs
[10]);
315 (*regs
)[11] = tswapreg(env
->regs
[11]);
316 (*regs
)[12] = tswapreg(env
->regs
[12]);
317 (*regs
)[13] = tswapreg(env
->regs
[13]);
318 (*regs
)[14] = tswapreg(env
->regs
[14]);
319 (*regs
)[15] = tswapreg(env
->regs
[15]);
321 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
322 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
325 #define USE_ELF_CORE_DUMP
326 #define ELF_EXEC_PAGESIZE 4096
330 ARM_HWCAP_ARM_SWP
= 1 << 0,
331 ARM_HWCAP_ARM_HALF
= 1 << 1,
332 ARM_HWCAP_ARM_THUMB
= 1 << 2,
333 ARM_HWCAP_ARM_26BIT
= 1 << 3,
334 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
335 ARM_HWCAP_ARM_FPA
= 1 << 5,
336 ARM_HWCAP_ARM_VFP
= 1 << 6,
337 ARM_HWCAP_ARM_EDSP
= 1 << 7,
338 ARM_HWCAP_ARM_JAVA
= 1 << 8,
339 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
340 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
341 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
342 ARM_HWCAP_ARM_NEON
= 1 << 12,
343 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
344 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
345 ARM_HWCAP_ARM_TLS
= 1 << 15,
346 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
347 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
348 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
349 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
350 ARM_HWCAP_ARM_LPAE
= 1 << 20,
351 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
355 ARM_HWCAP2_ARM_AES
= 1 << 0,
356 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
357 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
358 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
359 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
362 /* The commpage only exists for 32 bit kernels */
364 #define TARGET_HAS_VALIDATE_GUEST_SPACE
365 /* Return 1 if the proposed guest space is suitable for the guest.
366 * Return 0 if the proposed guest space isn't suitable, but another
367 * address space should be tried.
368 * Return -1 if there is no way the proposed guest space can be
369 * valid regardless of the base.
370 * The guest code may leave a page mapped and populate it if the
371 * address is suitable.
373 static int validate_guest_space(unsigned long guest_base
,
374 unsigned long guest_size
)
376 unsigned long real_start
, test_page_addr
;
378 /* We need to check that we can force a fault on access to the
379 * commpage at 0xffff0fxx
381 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
383 /* If the commpage lies within the already allocated guest space,
384 * then there is no way we can allocate it.
386 if (test_page_addr
>= guest_base
387 && test_page_addr
<= (guest_base
+ guest_size
)) {
391 /* Note it needs to be writeable to let us initialise it */
392 real_start
= (unsigned long)
393 mmap((void *)test_page_addr
, qemu_host_page_size
,
394 PROT_READ
| PROT_WRITE
,
395 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
397 /* If we can't map it then try another address */
398 if (real_start
== -1ul) {
402 if (real_start
!= test_page_addr
) {
403 /* OS didn't put the page where we asked - unmap and reject */
404 munmap((void *)real_start
, qemu_host_page_size
);
408 /* Leave the page mapped
409 * Populate it (mmap should have left it all 0'd)
412 /* Kernel helper versions */
413 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
415 /* Now it's populated make it RO */
416 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
417 perror("Protecting guest commpage");
421 return 1; /* All good */
424 #define ELF_HWCAP get_elf_hwcap()
425 #define ELF_HWCAP2 get_elf_hwcap2()
427 static uint32_t get_elf_hwcap(void)
429 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
432 hwcaps
|= ARM_HWCAP_ARM_SWP
;
433 hwcaps
|= ARM_HWCAP_ARM_HALF
;
434 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
435 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
437 /* probe for the extra features */
438 #define GET_FEATURE(feat, hwcap) \
439 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
440 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
441 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
442 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
443 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
444 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
445 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
446 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
447 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
448 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
449 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
450 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
451 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
452 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
453 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
454 * to our VFP_FP16 feature bit.
456 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
457 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
462 static uint32_t get_elf_hwcap2(void)
464 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
467 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
468 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
469 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
470 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
471 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
478 /* 64 bit ARM definitions */
479 #define ELF_START_MMAP 0x80000000
481 #define ELF_ARCH EM_AARCH64
482 #define ELF_CLASS ELFCLASS64
483 #define ELF_PLATFORM "aarch64"
485 static inline void init_thread(struct target_pt_regs
*regs
,
486 struct image_info
*infop
)
488 abi_long stack
= infop
->start_stack
;
489 memset(regs
, 0, sizeof(*regs
));
491 regs
->pc
= infop
->entry
& ~0x3ULL
;
496 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
498 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
499 const CPUARMState
*env
)
503 for (i
= 0; i
< 32; i
++) {
504 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
506 (*regs
)[32] = tswapreg(env
->pc
);
507 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
510 #define USE_ELF_CORE_DUMP
511 #define ELF_EXEC_PAGESIZE 4096
514 ARM_HWCAP_A64_FP
= 1 << 0,
515 ARM_HWCAP_A64_ASIMD
= 1 << 1,
516 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
517 ARM_HWCAP_A64_AES
= 1 << 3,
518 ARM_HWCAP_A64_PMULL
= 1 << 4,
519 ARM_HWCAP_A64_SHA1
= 1 << 5,
520 ARM_HWCAP_A64_SHA2
= 1 << 6,
521 ARM_HWCAP_A64_CRC32
= 1 << 7,
524 #define ELF_HWCAP get_elf_hwcap()
526 static uint32_t get_elf_hwcap(void)
528 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
531 hwcaps
|= ARM_HWCAP_A64_FP
;
532 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
534 /* probe for the extra features */
535 #define GET_FEATURE(feat, hwcap) \
536 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
537 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
538 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
539 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
540 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
541 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
547 #endif /* not TARGET_AARCH64 */
548 #endif /* TARGET_ARM */
550 #ifdef TARGET_UNICORE32
552 #define ELF_START_MMAP 0x80000000
554 #define ELF_CLASS ELFCLASS32
555 #define ELF_DATA ELFDATA2LSB
556 #define ELF_ARCH EM_UNICORE32
558 static inline void init_thread(struct target_pt_regs
*regs
,
559 struct image_info
*infop
)
561 abi_long stack
= infop
->start_stack
;
562 memset(regs
, 0, sizeof(*regs
));
563 regs
->UC32_REG_asr
= 0x10;
564 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
565 regs
->UC32_REG_sp
= infop
->start_stack
;
566 /* FIXME - what to for failure of get_user()? */
567 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
568 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
569 /* XXX: it seems that r0 is zeroed after ! */
570 regs
->UC32_REG_00
= 0;
574 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
576 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
578 (*regs
)[0] = env
->regs
[0];
579 (*regs
)[1] = env
->regs
[1];
580 (*regs
)[2] = env
->regs
[2];
581 (*regs
)[3] = env
->regs
[3];
582 (*regs
)[4] = env
->regs
[4];
583 (*regs
)[5] = env
->regs
[5];
584 (*regs
)[6] = env
->regs
[6];
585 (*regs
)[7] = env
->regs
[7];
586 (*regs
)[8] = env
->regs
[8];
587 (*regs
)[9] = env
->regs
[9];
588 (*regs
)[10] = env
->regs
[10];
589 (*regs
)[11] = env
->regs
[11];
590 (*regs
)[12] = env
->regs
[12];
591 (*regs
)[13] = env
->regs
[13];
592 (*regs
)[14] = env
->regs
[14];
593 (*regs
)[15] = env
->regs
[15];
594 (*regs
)[16] = env
->regs
[16];
595 (*regs
)[17] = env
->regs
[17];
596 (*regs
)[18] = env
->regs
[18];
597 (*regs
)[19] = env
->regs
[19];
598 (*regs
)[20] = env
->regs
[20];
599 (*regs
)[21] = env
->regs
[21];
600 (*regs
)[22] = env
->regs
[22];
601 (*regs
)[23] = env
->regs
[23];
602 (*regs
)[24] = env
->regs
[24];
603 (*regs
)[25] = env
->regs
[25];
604 (*regs
)[26] = env
->regs
[26];
605 (*regs
)[27] = env
->regs
[27];
606 (*regs
)[28] = env
->regs
[28];
607 (*regs
)[29] = env
->regs
[29];
608 (*regs
)[30] = env
->regs
[30];
609 (*regs
)[31] = env
->regs
[31];
611 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
612 (*regs
)[33] = env
->regs
[0]; /* XXX */
615 #define USE_ELF_CORE_DUMP
616 #define ELF_EXEC_PAGESIZE 4096
618 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
623 #ifdef TARGET_SPARC64
625 #define ELF_START_MMAP 0x80000000
626 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
627 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
634 #define ELF_CLASS ELFCLASS64
635 #define ELF_ARCH EM_SPARCV9
637 #define STACK_BIAS 2047
639 static inline void init_thread(struct target_pt_regs
*regs
,
640 struct image_info
*infop
)
645 regs
->pc
= infop
->entry
;
646 regs
->npc
= regs
->pc
+ 4;
649 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
651 if (personality(infop
->personality
) == PER_LINUX32
)
652 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
654 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
659 #define ELF_START_MMAP 0x80000000
660 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661 | HWCAP_SPARC_MULDIV)
663 #define ELF_CLASS ELFCLASS32
664 #define ELF_ARCH EM_SPARC
666 static inline void init_thread(struct target_pt_regs
*regs
,
667 struct image_info
*infop
)
670 regs
->pc
= infop
->entry
;
671 regs
->npc
= regs
->pc
+ 4;
673 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
681 #define ELF_MACHINE PPC_ELF_MACHINE
682 #define ELF_START_MMAP 0x80000000
684 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
686 #define elf_check_arch(x) ( (x) == EM_PPC64 )
688 #define ELF_CLASS ELFCLASS64
692 #define ELF_CLASS ELFCLASS32
696 #define ELF_ARCH EM_PPC
698 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
699 See arch/powerpc/include/asm/cputable.h. */
701 QEMU_PPC_FEATURE_32
= 0x80000000,
702 QEMU_PPC_FEATURE_64
= 0x40000000,
703 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
704 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
705 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
706 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
707 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
708 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
709 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
710 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
711 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
712 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
713 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
714 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
715 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
716 QEMU_PPC_FEATURE_CELL
= 0x00010000,
717 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
718 QEMU_PPC_FEATURE_SMT
= 0x00004000,
719 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
720 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
721 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
722 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
723 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
724 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
725 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
726 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
728 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
729 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
731 /* Feature definitions in AT_HWCAP2. */
732 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
733 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
734 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
735 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
736 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
737 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
740 #define ELF_HWCAP get_elf_hwcap()
742 static uint32_t get_elf_hwcap(void)
744 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
745 uint32_t features
= 0;
747 /* We don't have to be terribly complete here; the high points are
748 Altivec/FP/SPE support. Anything else is just a bonus. */
749 #define GET_FEATURE(flag, feature) \
750 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
751 #define GET_FEATURE2(flag, feature) \
752 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
753 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
754 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
755 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
756 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
757 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
758 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
759 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
760 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
761 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
762 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
763 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
764 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
765 QEMU_PPC_FEATURE_ARCH_2_06
);
772 #define ELF_HWCAP2 get_elf_hwcap2()
774 static uint32_t get_elf_hwcap2(void)
776 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
777 uint32_t features
= 0;
779 #define GET_FEATURE(flag, feature) \
780 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
781 #define GET_FEATURE2(flag, feature) \
782 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
784 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
785 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
786 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
787 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
796 * The requirements here are:
797 * - keep the final alignment of sp (sp & 0xf)
798 * - make sure the 32-bit value at the first 16 byte aligned position of
799 * AUXV is greater than 16 for glibc compatibility.
800 * AT_IGNOREPPC is used for that.
801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
804 #define DLINFO_ARCH_ITEMS 5
805 #define ARCH_DLINFO \
807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
808 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
809 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
810 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
812 * Now handle glibc compatibility. \
814 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
815 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
818 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
820 _regs
->gpr
[1] = infop
->start_stack
;
821 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
822 if (get_ppc64_abi(infop
) < 2) {
824 get_user_u64(val
, infop
->entry
+ 8);
825 _regs
->gpr
[2] = val
+ infop
->load_bias
;
826 get_user_u64(val
, infop
->entry
);
827 infop
->entry
= val
+ infop
->load_bias
;
829 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
832 _regs
->nip
= infop
->entry
;
835 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
837 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
839 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
842 target_ulong ccr
= 0;
844 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
845 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
848 (*regs
)[32] = tswapreg(env
->nip
);
849 (*regs
)[33] = tswapreg(env
->msr
);
850 (*regs
)[35] = tswapreg(env
->ctr
);
851 (*regs
)[36] = tswapreg(env
->lr
);
852 (*regs
)[37] = tswapreg(env
->xer
);
854 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
855 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
857 (*regs
)[38] = tswapreg(ccr
);
860 #define USE_ELF_CORE_DUMP
861 #define ELF_EXEC_PAGESIZE 4096
867 #define ELF_START_MMAP 0x80000000
870 #define ELF_CLASS ELFCLASS64
872 #define ELF_CLASS ELFCLASS32
874 #define ELF_ARCH EM_MIPS
876 static inline void init_thread(struct target_pt_regs
*regs
,
877 struct image_info
*infop
)
879 regs
->cp0_status
= 2 << CP0St_KSU
;
880 regs
->cp0_epc
= infop
->entry
;
881 regs
->regs
[29] = infop
->start_stack
;
884 /* See linux kernel: arch/mips/include/asm/elf.h. */
886 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
888 /* See linux kernel: arch/mips/include/asm/reg.h. */
895 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
896 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
897 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
898 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
899 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
900 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
901 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
902 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
906 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
910 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
913 (*regs
)[TARGET_EF_R0
] = 0;
915 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
916 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
919 (*regs
)[TARGET_EF_R26
] = 0;
920 (*regs
)[TARGET_EF_R27
] = 0;
921 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
922 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
923 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
924 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
925 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
926 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
929 #define USE_ELF_CORE_DUMP
930 #define ELF_EXEC_PAGESIZE 4096
932 #endif /* TARGET_MIPS */
934 #ifdef TARGET_MICROBLAZE
936 #define ELF_START_MMAP 0x80000000
938 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
940 #define ELF_CLASS ELFCLASS32
941 #define ELF_ARCH EM_MICROBLAZE
943 static inline void init_thread(struct target_pt_regs
*regs
,
944 struct image_info
*infop
)
946 regs
->pc
= infop
->entry
;
947 regs
->r1
= infop
->start_stack
;
951 #define ELF_EXEC_PAGESIZE 4096
953 #define USE_ELF_CORE_DUMP
955 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
958 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
962 for (i
= 0; i
< 32; i
++) {
963 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
966 for (i
= 0; i
< 6; i
++) {
967 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
971 #endif /* TARGET_MICROBLAZE */
973 #ifdef TARGET_OPENRISC
975 #define ELF_START_MMAP 0x08000000
977 #define ELF_ARCH EM_OPENRISC
978 #define ELF_CLASS ELFCLASS32
979 #define ELF_DATA ELFDATA2MSB
981 static inline void init_thread(struct target_pt_regs
*regs
,
982 struct image_info
*infop
)
984 regs
->pc
= infop
->entry
;
985 regs
->gpr
[1] = infop
->start_stack
;
988 #define USE_ELF_CORE_DUMP
989 #define ELF_EXEC_PAGESIZE 8192
991 /* See linux kernel arch/openrisc/include/asm/elf.h. */
992 #define ELF_NREG 34 /* gprs and pc, sr */
993 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
995 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
996 const CPUOpenRISCState
*env
)
1000 for (i
= 0; i
< 32; i
++) {
1001 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1004 (*regs
)[32] = tswapreg(env
->pc
);
1005 (*regs
)[33] = tswapreg(env
->sr
);
1008 #define ELF_PLATFORM NULL
1010 #endif /* TARGET_OPENRISC */
1014 #define ELF_START_MMAP 0x80000000
1016 #define ELF_CLASS ELFCLASS32
1017 #define ELF_ARCH EM_SH
1019 static inline void init_thread(struct target_pt_regs
*regs
,
1020 struct image_info
*infop
)
1022 /* Check other registers XXXXX */
1023 regs
->pc
= infop
->entry
;
1024 regs
->regs
[15] = infop
->start_stack
;
1027 /* See linux kernel: arch/sh/include/asm/elf.h. */
1029 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1031 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1036 TARGET_REG_GBR
= 19,
1037 TARGET_REG_MACH
= 20,
1038 TARGET_REG_MACL
= 21,
1039 TARGET_REG_SYSCALL
= 22
1042 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1043 const CPUSH4State
*env
)
1047 for (i
= 0; i
< 16; i
++) {
1048 (*regs
[i
]) = tswapreg(env
->gregs
[i
]);
1051 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1052 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1053 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1054 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1055 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1056 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1057 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_EXEC_PAGESIZE 4096
1064 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1065 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1066 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1067 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1068 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1069 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1070 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1071 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1072 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1073 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1076 #define ELF_HWCAP get_elf_hwcap()
1078 static uint32_t get_elf_hwcap(void)
1080 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1083 hwcap
|= SH_CPU_HAS_FPU
;
1085 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1086 hwcap
|= SH_CPU_HAS_LLSC
;
1096 #define ELF_START_MMAP 0x80000000
1098 #define ELF_CLASS ELFCLASS32
1099 #define ELF_ARCH EM_CRIS
1101 static inline void init_thread(struct target_pt_regs
*regs
,
1102 struct image_info
*infop
)
1104 regs
->erp
= infop
->entry
;
1107 #define ELF_EXEC_PAGESIZE 8192
1113 #define ELF_START_MMAP 0x80000000
1115 #define ELF_CLASS ELFCLASS32
1116 #define ELF_ARCH EM_68K
1118 /* ??? Does this need to do anything?
1119 #define ELF_PLAT_INIT(_r) */
1121 static inline void init_thread(struct target_pt_regs
*regs
,
1122 struct image_info
*infop
)
1124 regs
->usp
= infop
->start_stack
;
1126 regs
->pc
= infop
->entry
;
1129 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1131 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1133 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1135 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1136 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1137 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1138 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1139 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1140 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1141 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1142 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1143 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1144 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1145 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1146 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1147 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1148 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1149 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1150 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1151 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1152 (*regs
)[17] = tswapreg(env
->sr
);
1153 (*regs
)[18] = tswapreg(env
->pc
);
1154 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1157 #define USE_ELF_CORE_DUMP
1158 #define ELF_EXEC_PAGESIZE 8192
1164 #define ELF_START_MMAP (0x30000000000ULL)
1166 #define ELF_CLASS ELFCLASS64
1167 #define ELF_ARCH EM_ALPHA
1169 static inline void init_thread(struct target_pt_regs
*regs
,
1170 struct image_info
*infop
)
1172 regs
->pc
= infop
->entry
;
1174 regs
->usp
= infop
->start_stack
;
1177 #define ELF_EXEC_PAGESIZE 8192
1179 #endif /* TARGET_ALPHA */
1183 #define ELF_START_MMAP (0x20000000000ULL)
1185 #define ELF_CLASS ELFCLASS64
1186 #define ELF_DATA ELFDATA2MSB
1187 #define ELF_ARCH EM_S390
1189 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1191 regs
->psw
.addr
= infop
->entry
;
1192 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1193 regs
->gprs
[15] = infop
->start_stack
;
1196 #endif /* TARGET_S390X */
1198 #ifdef TARGET_TILEGX
1200 /* 42 bits real used address, a half for user mode */
1201 #define ELF_START_MMAP (0x00000020000000000ULL)
1203 #define elf_check_arch(x) ((x) == EM_TILEGX)
1205 #define ELF_CLASS ELFCLASS64
1206 #define ELF_DATA ELFDATA2LSB
1207 #define ELF_ARCH EM_TILEGX
1209 static inline void init_thread(struct target_pt_regs
*regs
,
1210 struct image_info
*infop
)
1212 regs
->pc
= infop
->entry
;
1213 regs
->sp
= infop
->start_stack
;
1217 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1219 #endif /* TARGET_TILEGX */
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1226 #define ELF_MACHINE ELF_ARCH
1229 #ifndef elf_check_arch
1230 #define elf_check_arch(x) ((x) == ELF_ARCH)
1239 #define ELF_CLASS ELFCLASS32
1241 #define bswaptls(ptr) bswap32s(ptr)
1248 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1249 unsigned int a_text
; /* length of text, in bytes */
1250 unsigned int a_data
; /* length of data, in bytes */
1251 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1252 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1253 unsigned int a_entry
; /* start address */
1254 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1255 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1259 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1265 /* Necessary parameters */
1266 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1267 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1268 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1269 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1271 #define DLINFO_ITEMS 14
1273 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1275 memcpy(to
, from
, n
);
1279 static void bswap_ehdr(struct elfhdr
*ehdr
)
1281 bswap16s(&ehdr
->e_type
); /* Object file type */
1282 bswap16s(&ehdr
->e_machine
); /* Architecture */
1283 bswap32s(&ehdr
->e_version
); /* Object file version */
1284 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1285 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1286 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1287 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1288 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1289 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1290 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1291 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1292 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1293 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1296 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1299 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1300 bswap32s(&phdr
->p_type
); /* Segment type */
1301 bswap32s(&phdr
->p_flags
); /* Segment flags */
1302 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1303 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1304 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1305 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1306 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1307 bswaptls(&phdr
->p_align
); /* Segment alignment */
1311 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1314 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1315 bswap32s(&shdr
->sh_name
);
1316 bswap32s(&shdr
->sh_type
);
1317 bswaptls(&shdr
->sh_flags
);
1318 bswaptls(&shdr
->sh_addr
);
1319 bswaptls(&shdr
->sh_offset
);
1320 bswaptls(&shdr
->sh_size
);
1321 bswap32s(&shdr
->sh_link
);
1322 bswap32s(&shdr
->sh_info
);
1323 bswaptls(&shdr
->sh_addralign
);
1324 bswaptls(&shdr
->sh_entsize
);
1328 static void bswap_sym(struct elf_sym
*sym
)
1330 bswap32s(&sym
->st_name
);
1331 bswaptls(&sym
->st_value
);
1332 bswaptls(&sym
->st_size
);
1333 bswap16s(&sym
->st_shndx
);
1336 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1337 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1338 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1339 static inline void bswap_sym(struct elf_sym
*sym
) { }
1342 #ifdef USE_ELF_CORE_DUMP
1343 static int elf_core_dump(int, const CPUArchState
*);
1344 #endif /* USE_ELF_CORE_DUMP */
1345 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1347 /* Verify the portions of EHDR within E_IDENT for the target.
1348 This can be performed before bswapping the entire header. */
1349 static bool elf_check_ident(struct elfhdr
*ehdr
)
1351 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1352 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1353 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1354 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1355 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1356 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1357 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1360 /* Verify the portions of EHDR outside of E_IDENT for the target.
1361 This has to wait until after bswapping the header. */
1362 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1364 return (elf_check_arch(ehdr
->e_machine
)
1365 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1366 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1367 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1371 * 'copy_elf_strings()' copies argument/envelope strings from user
1372 * memory to free pages in kernel mem. These are in a format ready
1373 * to be put directly into the top of new user memory.
1376 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1377 abi_ulong p
, abi_ulong stack_limit
)
1384 return 0; /* bullet-proofing */
1387 offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1389 while (argc
-- > 0) {
1392 fprintf(stderr
, "VFS: argc is wrong");
1395 len
= strlen(tmp
) + 1;
1398 if (len
> (p
- stack_limit
)) {
1402 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1403 tmp
-= bytes_to_copy
;
1405 offset
-= bytes_to_copy
;
1406 len
-= bytes_to_copy
;
1408 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1411 memcpy_to_target(p
, scratch
, top
- p
);
1413 offset
= TARGET_PAGE_SIZE
;
1418 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1424 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1425 * argument/environment space. Newer kernels (>2.6.33) allow more,
1426 * dependent on stack size, but guarantee at least 32 pages for
1427 * backwards compatibility.
1429 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1431 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1432 struct image_info
*info
)
1434 abi_ulong size
, error
, guard
;
1436 size
= guest_stack_size
;
1437 if (size
< STACK_LOWER_LIMIT
) {
1438 size
= STACK_LOWER_LIMIT
;
1440 guard
= TARGET_PAGE_SIZE
;
1441 if (guard
< qemu_real_host_page_size
) {
1442 guard
= qemu_real_host_page_size
;
1445 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1446 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1448 perror("mmap stack");
1452 /* We reserve one extra page at the top of the stack as guard. */
1453 target_mprotect(error
, guard
, PROT_NONE
);
1455 info
->stack_limit
= error
+ guard
;
1457 return info
->stack_limit
+ size
- sizeof(void *);
1460 /* Map and zero the bss. We need to explicitly zero any fractional pages
1461 after the data section (i.e. bss). */
1462 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1464 uintptr_t host_start
, host_map_start
, host_end
;
1466 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1468 /* ??? There is confusion between qemu_real_host_page_size and
1469 qemu_host_page_size here and elsewhere in target_mmap, which
1470 may lead to the end of the data section mapping from the file
1471 not being mapped. At least there was an explicit test and
1472 comment for that here, suggesting that "the file size must
1473 be known". The comment probably pre-dates the introduction
1474 of the fstat system call in target_mmap which does in fact
1475 find out the size. What isn't clear is if the workaround
1476 here is still actually needed. For now, continue with it,
1477 but merge it with the "normal" mmap that would allocate the bss. */
1479 host_start
= (uintptr_t) g2h(elf_bss
);
1480 host_end
= (uintptr_t) g2h(last_bss
);
1481 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1482 host_map_start
&= -qemu_real_host_page_size
;
1484 if (host_map_start
< host_end
) {
1485 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1486 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1487 if (p
== MAP_FAILED
) {
1488 perror("cannot mmap brk");
1493 /* Ensure that the bss page(s) are valid */
1494 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1495 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1498 if (host_start
< host_map_start
) {
1499 memset((void *)host_start
, 0, host_map_start
- host_start
);
1503 #ifdef CONFIG_USE_FDPIC
1504 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1507 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1509 /* elf32_fdpic_loadseg */
1513 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1514 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1515 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1518 /* elf32_fdpic_loadmap */
1520 put_user_u16(0, sp
+0); /* version */
1521 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1523 info
->personality
= PER_LINUX_FDPIC
;
1524 info
->loadmap_addr
= sp
;
1530 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1531 struct elfhdr
*exec
,
1532 struct image_info
*info
,
1533 struct image_info
*interp_info
)
1539 abi_ulong u_rand_bytes
;
1540 uint8_t k_rand_bytes
[16];
1541 abi_ulong u_platform
;
1542 const char *k_platform
;
1543 const int n
= sizeof(elf_addr_t
);
1547 #ifdef CONFIG_USE_FDPIC
1548 /* Needs to be before we load the env/argc/... */
1549 if (elf_is_fdpic(exec
)) {
1550 /* Need 4 byte alignment for these structs */
1552 sp
= loader_build_fdpic_loadmap(info
, sp
);
1553 info
->other_info
= interp_info
;
1555 interp_info
->other_info
= info
;
1556 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1562 k_platform
= ELF_PLATFORM
;
1564 size_t len
= strlen(k_platform
) + 1;
1565 sp
-= (len
+ n
- 1) & ~(n
- 1);
1567 /* FIXME - check return value of memcpy_to_target() for failure */
1568 memcpy_to_target(sp
, k_platform
, len
);
1572 * Generate 16 random bytes for userspace PRNG seeding (not
1573 * cryptically secure but it's not the aim of QEMU).
1575 for (i
= 0; i
< 16; i
++) {
1576 k_rand_bytes
[i
] = rand();
1580 /* FIXME - check return value of memcpy_to_target() for failure */
1581 memcpy_to_target(sp
, k_rand_bytes
, 16);
1584 * Force 16 byte _final_ alignment here for generality.
1586 sp
= sp
&~ (abi_ulong
)15;
1587 size
= (DLINFO_ITEMS
+ 1) * 2;
1590 #ifdef DLINFO_ARCH_ITEMS
1591 size
+= DLINFO_ARCH_ITEMS
* 2;
1596 size
+= envc
+ argc
+ 2;
1597 size
+= 1; /* argc itself */
1600 sp
-= 16 - (size
& 15);
1602 /* This is correct because Linux defines
1603 * elf_addr_t as Elf32_Off / Elf64_Off
1605 #define NEW_AUX_ENT(id, val) do { \
1606 sp -= n; put_user_ual(val, sp); \
1607 sp -= n; put_user_ual(id, sp); \
1611 NEW_AUX_ENT (AT_NULL
, 0);
1613 /* There must be exactly DLINFO_ITEMS entries here. */
1614 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1615 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1616 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1617 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1618 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1619 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1620 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1621 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1622 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1623 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1624 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1625 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1626 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1627 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1630 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1634 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1637 * ARCH_DLINFO must come last so platform specific code can enforce
1638 * special alignment requirements on the AUXV if necessary (eg. PPC).
1644 info
->saved_auxv
= sp
;
1645 info
->auxv_len
= sp_auxv
- sp
;
1647 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1648 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1649 assert(sp_auxv
- sp
== size
);
1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1654 /* If the guest doesn't have a validation function just agree */
1655 static int validate_guest_space(unsigned long guest_base
,
1656 unsigned long guest_size
)
1662 unsigned long init_guest_space(unsigned long host_start
,
1663 unsigned long host_size
,
1664 unsigned long guest_start
,
1667 unsigned long current_start
, real_start
;
1670 assert(host_start
|| host_size
);
1672 /* If just a starting address is given, then just verify that
1674 if (host_start
&& !host_size
) {
1675 if (validate_guest_space(host_start
, host_size
) == 1) {
1678 return (unsigned long)-1;
1682 /* Setup the initial flags and start address. */
1683 current_start
= host_start
& qemu_host_page_mask
;
1684 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1689 /* Otherwise, a non-zero size region of memory needs to be mapped
1692 unsigned long real_size
= host_size
;
1694 /* Do not use mmap_find_vma here because that is limited to the
1695 * guest address space. We are going to make the
1696 * guest address space fit whatever we're given.
1698 real_start
= (unsigned long)
1699 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1700 if (real_start
== (unsigned long)-1) {
1701 return (unsigned long)-1;
1704 /* Ensure the address is properly aligned. */
1705 if (real_start
& ~qemu_host_page_mask
) {
1706 munmap((void *)real_start
, host_size
);
1707 real_size
= host_size
+ qemu_host_page_size
;
1708 real_start
= (unsigned long)
1709 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
1710 if (real_start
== (unsigned long)-1) {
1711 return (unsigned long)-1;
1713 real_start
= HOST_PAGE_ALIGN(real_start
);
1716 /* Check to see if the address is valid. */
1717 if (!host_start
|| real_start
== current_start
) {
1718 int valid
= validate_guest_space(real_start
- guest_start
,
1722 } else if (valid
== -1) {
1723 return (unsigned long)-1;
1725 /* valid == 0, so try again. */
1728 /* That address didn't work. Unmap and try a different one.
1729 * The address the host picked because is typically right at
1730 * the top of the host address space and leaves the guest with
1731 * no usable address space. Resort to a linear search. We
1732 * already compensated for mmap_min_addr, so this should not
1733 * happen often. Probably means we got unlucky and host
1734 * address space randomization put a shared library somewhere
1737 munmap((void *)real_start
, host_size
);
1738 current_start
+= qemu_host_page_size
;
1739 if (host_start
== current_start
) {
1740 /* Theoretically possible if host doesn't have any suitably
1741 * aligned areas. Normally the first mmap will fail.
1743 return (unsigned long)-1;
1747 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size
);
1752 static void probe_guest_base(const char *image_name
,
1753 abi_ulong loaddr
, abi_ulong hiaddr
)
1755 /* Probe for a suitable guest base address, if the user has not set
1756 * it explicitly, and set guest_base appropriately.
1757 * In case of error we will print a suitable message and exit.
1760 if (!have_guest_base
&& !reserved_va
) {
1761 unsigned long host_start
, real_start
, host_size
;
1763 /* Round addresses to page boundaries. */
1764 loaddr
&= qemu_host_page_mask
;
1765 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1767 if (loaddr
< mmap_min_addr
) {
1768 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1770 host_start
= loaddr
;
1771 if (host_start
!= loaddr
) {
1772 errmsg
= "Address overflow loading ELF binary";
1776 host_size
= hiaddr
- loaddr
;
1778 /* Setup the initial guest memory space with ranges gleaned from
1779 * the ELF image that is being loaded.
1781 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
1782 if (real_start
== (unsigned long)-1) {
1783 errmsg
= "Unable to find space for application";
1786 guest_base
= real_start
- loaddr
;
1788 qemu_log("Relocating guest address space from 0x"
1789 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1790 loaddr
, real_start
);
1795 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1800 /* Load an ELF image into the address space.
1802 IMAGE_NAME is the filename of the image, to use in error messages.
1803 IMAGE_FD is the open file descriptor for the image.
1805 BPRM_BUF is a copy of the beginning of the file; this of course
1806 contains the elf file header at offset 0. It is assumed that this
1807 buffer is sufficiently aligned to present no problems to the host
1808 in accessing data at aligned offsets within the buffer.
1810 On return: INFO values will be filled in, as necessary or available. */
1812 static void load_elf_image(const char *image_name
, int image_fd
,
1813 struct image_info
*info
, char **pinterp_name
,
1814 char bprm_buf
[BPRM_BUF_SIZE
])
1816 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1817 struct elf_phdr
*phdr
;
1818 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1822 /* First of all, some simple consistency checks */
1823 errmsg
= "Invalid ELF image for this architecture";
1824 if (!elf_check_ident(ehdr
)) {
1828 if (!elf_check_ehdr(ehdr
)) {
1832 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1833 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1834 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1836 phdr
= (struct elf_phdr
*) alloca(i
);
1837 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1842 bswap_phdr(phdr
, ehdr
->e_phnum
);
1844 #ifdef CONFIG_USE_FDPIC
1846 info
->pt_dynamic_addr
= 0;
1849 /* Find the maximum size of the image and allocate an appropriate
1850 amount of memory to handle that. */
1851 loaddr
= -1, hiaddr
= 0;
1852 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1853 if (phdr
[i
].p_type
== PT_LOAD
) {
1854 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
1858 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
1862 #ifdef CONFIG_USE_FDPIC
1869 if (ehdr
->e_type
== ET_DYN
) {
1870 /* The image indicates that it can be loaded anywhere. Find a
1871 location that can hold the memory space required. If the
1872 image is pre-linked, LOADDR will be non-zero. Since we do
1873 not supply MAP_FIXED here we'll use that address if and
1874 only if it remains available. */
1875 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1876 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1878 if (load_addr
== -1) {
1881 } else if (pinterp_name
!= NULL
) {
1882 /* This is the main executable. Make sure that the low
1883 address does not conflict with MMAP_MIN_ADDR or the
1884 QEMU application itself. */
1885 probe_guest_base(image_name
, loaddr
, hiaddr
);
1887 load_bias
= load_addr
- loaddr
;
1889 #ifdef CONFIG_USE_FDPIC
1891 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1892 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1894 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1895 switch (phdr
[i
].p_type
) {
1897 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1900 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1901 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1902 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1910 info
->load_bias
= load_bias
;
1911 info
->load_addr
= load_addr
;
1912 info
->entry
= ehdr
->e_entry
+ load_bias
;
1913 info
->start_code
= -1;
1915 info
->start_data
= -1;
1918 info
->elf_flags
= ehdr
->e_flags
;
1920 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1921 struct elf_phdr
*eppnt
= phdr
+ i
;
1922 if (eppnt
->p_type
== PT_LOAD
) {
1923 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1926 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1927 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1928 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1930 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1931 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1932 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1934 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1935 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1936 image_fd
, eppnt
->p_offset
- vaddr_po
);
1941 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1942 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1944 /* If the load segment requests extra zeros (e.g. bss), map it. */
1945 if (vaddr_ef
< vaddr_em
) {
1946 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1949 /* Find the full program boundaries. */
1950 if (elf_prot
& PROT_EXEC
) {
1951 if (vaddr
< info
->start_code
) {
1952 info
->start_code
= vaddr
;
1954 if (vaddr_ef
> info
->end_code
) {
1955 info
->end_code
= vaddr_ef
;
1958 if (elf_prot
& PROT_WRITE
) {
1959 if (vaddr
< info
->start_data
) {
1960 info
->start_data
= vaddr
;
1962 if (vaddr_ef
> info
->end_data
) {
1963 info
->end_data
= vaddr_ef
;
1965 if (vaddr_em
> info
->brk
) {
1966 info
->brk
= vaddr_em
;
1969 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1972 if (*pinterp_name
) {
1973 errmsg
= "Multiple PT_INTERP entries";
1976 interp_name
= malloc(eppnt
->p_filesz
);
1981 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1982 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1985 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1987 if (retval
!= eppnt
->p_filesz
) {
1991 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1992 errmsg
= "Invalid PT_INTERP entry";
1995 *pinterp_name
= interp_name
;
1999 if (info
->end_data
== 0) {
2000 info
->start_data
= info
->end_code
;
2001 info
->end_data
= info
->end_code
;
2002 info
->brk
= info
->end_code
;
2005 if (qemu_log_enabled()) {
2006 load_symbols(ehdr
, image_fd
, load_bias
);
2014 errmsg
= "Incomplete read of file header";
2018 errmsg
= strerror(errno
);
2020 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2024 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2025 char bprm_buf
[BPRM_BUF_SIZE
])
2029 fd
= open(path(filename
), O_RDONLY
);
2034 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2038 if (retval
< BPRM_BUF_SIZE
) {
2039 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2042 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2046 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2050 static int symfind(const void *s0
, const void *s1
)
2052 target_ulong addr
= *(target_ulong
*)s0
;
2053 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2055 if (addr
< sym
->st_value
) {
2057 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2063 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2065 #if ELF_CLASS == ELFCLASS32
2066 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2068 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2072 struct elf_sym
*sym
;
2074 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2076 return s
->disas_strtab
+ sym
->st_name
;
2082 /* FIXME: This should use elf_ops.h */
2083 static int symcmp(const void *s0
, const void *s1
)
2085 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2086 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2087 return (sym0
->st_value
< sym1
->st_value
)
2089 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2092 /* Best attempt to load symbols from this ELF object. */
2093 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2095 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2096 struct elf_shdr
*shdr
;
2097 char *strings
= NULL
;
2098 struct syminfo
*s
= NULL
;
2099 struct elf_sym
*new_syms
, *syms
= NULL
;
2101 shnum
= hdr
->e_shnum
;
2102 i
= shnum
* sizeof(struct elf_shdr
);
2103 shdr
= (struct elf_shdr
*)alloca(i
);
2104 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2108 bswap_shdr(shdr
, shnum
);
2109 for (i
= 0; i
< shnum
; ++i
) {
2110 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2112 str_idx
= shdr
[i
].sh_link
;
2117 /* There will be no symbol table if the file was stripped. */
2121 /* Now know where the strtab and symtab are. Snarf them. */
2122 s
= malloc(sizeof(*s
));
2127 i
= shdr
[str_idx
].sh_size
;
2128 s
->disas_strtab
= strings
= malloc(i
);
2129 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
2133 i
= shdr
[sym_idx
].sh_size
;
2135 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
2139 nsyms
= i
/ sizeof(struct elf_sym
);
2140 for (i
= 0; i
< nsyms
; ) {
2141 bswap_sym(syms
+ i
);
2142 /* Throw away entries which we do not need. */
2143 if (syms
[i
].st_shndx
== SHN_UNDEF
2144 || syms
[i
].st_shndx
>= SHN_LORESERVE
2145 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2147 syms
[i
] = syms
[nsyms
];
2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2151 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2152 syms
[i
].st_value
&= ~(target_ulong
)1;
2154 syms
[i
].st_value
+= load_bias
;
2159 /* No "useful" symbol. */
2164 /* Attempt to free the storage associated with the local symbols
2165 that we threw away. Whether or not this has any effect on the
2166 memory allocation depends on the malloc implementation and how
2167 many symbols we managed to discard. */
2168 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
2169 if (new_syms
== NULL
) {
2174 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2176 s
->disas_num_syms
= nsyms
;
2177 #if ELF_CLASS == ELFCLASS32
2178 s
->disas_symtab
.elf32
= syms
;
2180 s
->disas_symtab
.elf64
= syms
;
2182 s
->lookup_symbol
= lookup_symbolxx
;
2194 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2196 struct image_info interp_info
;
2197 struct elfhdr elf_ex
;
2198 char *elf_interpreter
= NULL
;
2201 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2203 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2204 &elf_interpreter
, bprm
->buf
);
2206 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2207 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2208 when we load the interpreter. */
2209 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2211 /* Do this so that we can load the interpreter, if need be. We will
2212 change some of these later */
2213 bprm
->p
= setup_arg_pages(bprm
, info
);
2215 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2216 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2217 bprm
->p
, info
->stack_limit
);
2218 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2219 bprm
->p
, info
->stack_limit
);
2220 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2221 bprm
->p
, info
->stack_limit
);
2225 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2229 if (elf_interpreter
) {
2230 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2232 /* If the program interpreter is one of these two, then assume
2233 an iBCS2 image. Otherwise assume a native linux image. */
2235 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2236 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2237 info
->personality
= PER_SVR4
;
2239 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2240 and some applications "depend" upon this behavior. Since
2241 we do not have the power to recompile these, we emulate
2242 the SVr4 behavior. Sigh. */
2243 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2244 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
2248 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2249 info
, (elf_interpreter
? &interp_info
: NULL
));
2250 info
->start_stack
= bprm
->p
;
2252 /* If we have an interpreter, set that as the program's entry point.
2253 Copy the load_bias as well, to help PPC64 interpret the entry
2254 point as a function descriptor. Do this after creating elf tables
2255 so that we copy the original program entry point into the AUXV. */
2256 if (elf_interpreter
) {
2257 info
->load_bias
= interp_info
.load_bias
;
2258 info
->entry
= interp_info
.entry
;
2259 free(elf_interpreter
);
2262 #ifdef USE_ELF_CORE_DUMP
2263 bprm
->core_dump
= &elf_core_dump
;
2269 #ifdef USE_ELF_CORE_DUMP
2271 * Definitions to generate Intel SVR4-like core files.
2272 * These mostly have the same names as the SVR4 types with "target_elf_"
2273 * tacked on the front to prevent clashes with linux definitions,
2274 * and the typedef forms have been avoided. This is mostly like
2275 * the SVR4 structure, but more Linuxy, with things that Linux does
2276 * not support and which gdb doesn't really use excluded.
2278 * Fields we don't dump (their contents is zero) in linux-user qemu
2279 * are marked with XXX.
2281 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2283 * Porting ELF coredump for target is (quite) simple process. First you
2284 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2285 * the target resides):
2287 * #define USE_ELF_CORE_DUMP
2289 * Next you define type of register set used for dumping. ELF specification
2290 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2292 * typedef <target_regtype> target_elf_greg_t;
2293 * #define ELF_NREG <number of registers>
2294 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2296 * Last step is to implement target specific function that copies registers
2297 * from given cpu into just specified register set. Prototype is:
2299 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2300 * const CPUArchState *env);
2303 * regs - copy register values into here (allocated and zeroed by caller)
2304 * env - copy registers from here
2306 * Example for ARM target is provided in this file.
2309 /* An ELF note in memory */
2313 size_t namesz_rounded
;
2316 size_t datasz_rounded
;
2321 struct target_elf_siginfo
{
2322 abi_int si_signo
; /* signal number */
2323 abi_int si_code
; /* extra code */
2324 abi_int si_errno
; /* errno */
2327 struct target_elf_prstatus
{
2328 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2329 abi_short pr_cursig
; /* Current signal */
2330 abi_ulong pr_sigpend
; /* XXX */
2331 abi_ulong pr_sighold
; /* XXX */
2332 target_pid_t pr_pid
;
2333 target_pid_t pr_ppid
;
2334 target_pid_t pr_pgrp
;
2335 target_pid_t pr_sid
;
2336 struct target_timeval pr_utime
; /* XXX User time */
2337 struct target_timeval pr_stime
; /* XXX System time */
2338 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2339 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2340 target_elf_gregset_t pr_reg
; /* GP registers */
2341 abi_int pr_fpvalid
; /* XXX */
2344 #define ELF_PRARGSZ (80) /* Number of chars for args */
2346 struct target_elf_prpsinfo
{
2347 char pr_state
; /* numeric process state */
2348 char pr_sname
; /* char for pr_state */
2349 char pr_zomb
; /* zombie */
2350 char pr_nice
; /* nice val */
2351 abi_ulong pr_flag
; /* flags */
2352 target_uid_t pr_uid
;
2353 target_gid_t pr_gid
;
2354 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2356 char pr_fname
[16]; /* filename of executable */
2357 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2360 /* Here is the structure in which status of each thread is captured. */
2361 struct elf_thread_status
{
2362 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2363 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2365 elf_fpregset_t fpu
; /* NT_PRFPREG */
2366 struct task_struct
*thread
;
2367 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2369 struct memelfnote notes
[1];
2373 struct elf_note_info
{
2374 struct memelfnote
*notes
;
2375 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2376 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2378 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2381 * Current version of ELF coredump doesn't support
2382 * dumping fp regs etc.
2384 elf_fpregset_t
*fpu
;
2385 elf_fpxregset_t
*xfpu
;
2386 int thread_status_size
;
2392 struct vm_area_struct
{
2393 target_ulong vma_start
; /* start vaddr of memory region */
2394 target_ulong vma_end
; /* end vaddr of memory region */
2395 abi_ulong vma_flags
; /* protection etc. flags for the region */
2396 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2400 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2401 int mm_count
; /* number of mappings */
2404 static struct mm_struct
*vma_init(void);
2405 static void vma_delete(struct mm_struct
*);
2406 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2407 target_ulong
, abi_ulong
);
2408 static int vma_get_mapping_count(const struct mm_struct
*);
2409 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2410 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2411 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2412 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2413 unsigned long flags
);
2415 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2416 static void fill_note(struct memelfnote
*, const char *, int,
2417 unsigned int, void *);
2418 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2419 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2420 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2421 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2422 static size_t note_size(const struct memelfnote
*);
2423 static void free_note_info(struct elf_note_info
*);
2424 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2425 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2426 static int core_dump_filename(const TaskState
*, char *, size_t);
2428 static int dump_write(int, const void *, size_t);
2429 static int write_note(struct memelfnote
*, int);
2430 static int write_note_info(struct elf_note_info
*, int);
2433 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2435 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2436 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2437 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2438 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2439 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2440 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2441 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2442 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2443 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2444 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2445 /* cpu times are not filled, so we skip them */
2446 /* regs should be in correct format already */
2447 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2450 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2452 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2453 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2454 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2455 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2456 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2457 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2458 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2461 static void bswap_note(struct elf_note
*en
)
2463 bswap32s(&en
->n_namesz
);
2464 bswap32s(&en
->n_descsz
);
2465 bswap32s(&en
->n_type
);
2468 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2469 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2470 static inline void bswap_note(struct elf_note
*en
) { }
2471 #endif /* BSWAP_NEEDED */
2474 * Minimal support for linux memory regions. These are needed
2475 * when we are finding out what memory exactly belongs to
2476 * emulated process. No locks needed here, as long as
2477 * thread that received the signal is stopped.
2480 static struct mm_struct
*vma_init(void)
2482 struct mm_struct
*mm
;
2484 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2488 QTAILQ_INIT(&mm
->mm_mmap
);
2493 static void vma_delete(struct mm_struct
*mm
)
2495 struct vm_area_struct
*vma
;
2497 while ((vma
= vma_first(mm
)) != NULL
) {
2498 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2504 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2505 target_ulong end
, abi_ulong flags
)
2507 struct vm_area_struct
*vma
;
2509 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2512 vma
->vma_start
= start
;
2514 vma
->vma_flags
= flags
;
2516 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2522 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2524 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2527 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2529 return (QTAILQ_NEXT(vma
, vma_link
));
2532 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2534 return (mm
->mm_count
);
2538 * Calculate file (dump) size of given memory region.
2540 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2542 /* if we cannot even read the first page, skip it */
2543 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2547 * Usually we don't dump executable pages as they contain
2548 * non-writable code that debugger can read directly from
2549 * target library etc. However, thread stacks are marked
2550 * also executable so we read in first page of given region
2551 * and check whether it contains elf header. If there is
2552 * no elf header, we dump it.
2554 if (vma
->vma_flags
& PROT_EXEC
) {
2555 char page
[TARGET_PAGE_SIZE
];
2557 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2558 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2559 (page
[EI_MAG1
] == ELFMAG1
) &&
2560 (page
[EI_MAG2
] == ELFMAG2
) &&
2561 (page
[EI_MAG3
] == ELFMAG3
)) {
2563 * Mappings are possibly from ELF binary. Don't dump
2570 return (vma
->vma_end
- vma
->vma_start
);
2573 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2574 unsigned long flags
)
2576 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2578 vma_add_mapping(mm
, start
, end
, flags
);
2582 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2583 unsigned int sz
, void *data
)
2585 unsigned int namesz
;
2587 namesz
= strlen(name
) + 1;
2589 note
->namesz
= namesz
;
2590 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2593 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2598 * We calculate rounded up note size here as specified by
2601 note
->notesz
= sizeof (struct elf_note
) +
2602 note
->namesz_rounded
+ note
->datasz_rounded
;
2605 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2608 (void) memset(elf
, 0, sizeof(*elf
));
2610 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2611 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2612 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2613 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2614 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2616 elf
->e_type
= ET_CORE
;
2617 elf
->e_machine
= machine
;
2618 elf
->e_version
= EV_CURRENT
;
2619 elf
->e_phoff
= sizeof(struct elfhdr
);
2620 elf
->e_flags
= flags
;
2621 elf
->e_ehsize
= sizeof(struct elfhdr
);
2622 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2623 elf
->e_phnum
= segs
;
2628 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2630 phdr
->p_type
= PT_NOTE
;
2631 phdr
->p_offset
= offset
;
2634 phdr
->p_filesz
= sz
;
2639 bswap_phdr(phdr
, 1);
2642 static size_t note_size(const struct memelfnote
*note
)
2644 return (note
->notesz
);
2647 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2648 const TaskState
*ts
, int signr
)
2650 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2651 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2652 prstatus
->pr_pid
= ts
->ts_tid
;
2653 prstatus
->pr_ppid
= getppid();
2654 prstatus
->pr_pgrp
= getpgrp();
2655 prstatus
->pr_sid
= getsid(0);
2657 bswap_prstatus(prstatus
);
2660 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2662 char *base_filename
;
2663 unsigned int i
, len
;
2665 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2667 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2668 if (len
>= ELF_PRARGSZ
)
2669 len
= ELF_PRARGSZ
- 1;
2670 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2672 for (i
= 0; i
< len
; i
++)
2673 if (psinfo
->pr_psargs
[i
] == 0)
2674 psinfo
->pr_psargs
[i
] = ' ';
2675 psinfo
->pr_psargs
[len
] = 0;
2677 psinfo
->pr_pid
= getpid();
2678 psinfo
->pr_ppid
= getppid();
2679 psinfo
->pr_pgrp
= getpgrp();
2680 psinfo
->pr_sid
= getsid(0);
2681 psinfo
->pr_uid
= getuid();
2682 psinfo
->pr_gid
= getgid();
2684 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2686 * Using strncpy here is fine: at max-length,
2687 * this field is not NUL-terminated.
2689 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2690 sizeof(psinfo
->pr_fname
));
2692 g_free(base_filename
);
2693 bswap_psinfo(psinfo
);
2697 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2699 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2700 elf_addr_t orig_auxv
= auxv
;
2702 int len
= ts
->info
->auxv_len
;
2705 * Auxiliary vector is stored in target process stack. It contains
2706 * {type, value} pairs that we need to dump into note. This is not
2707 * strictly necessary but we do it here for sake of completeness.
2710 /* read in whole auxv vector and copy it to memelfnote */
2711 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2713 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2714 unlock_user(ptr
, auxv
, len
);
2719 * Constructs name of coredump file. We have following convention
2721 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2723 * Returns 0 in case of success, -1 otherwise (errno is set).
2725 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2729 char *filename
= NULL
;
2730 char *base_filename
= NULL
;
2734 assert(bufsize
>= PATH_MAX
);
2736 if (gettimeofday(&tv
, NULL
) < 0) {
2737 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2742 filename
= strdup(ts
->bprm
->filename
);
2743 base_filename
= strdup(basename(filename
));
2744 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2745 localtime_r(&tv
.tv_sec
, &tm
));
2746 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2747 base_filename
, timestamp
, (int)getpid());
2748 free(base_filename
);
2754 static int dump_write(int fd
, const void *ptr
, size_t size
)
2756 const char *bufp
= (const char *)ptr
;
2757 ssize_t bytes_written
, bytes_left
;
2758 struct rlimit dumpsize
;
2762 getrlimit(RLIMIT_CORE
, &dumpsize
);
2763 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2764 if (errno
== ESPIPE
) { /* not a seekable stream */
2770 if (dumpsize
.rlim_cur
<= pos
) {
2772 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2775 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2776 bytes_left
= limit_left
>= size
? size
: limit_left
;
2781 * In normal conditions, single write(2) should do but
2782 * in case of socket etc. this mechanism is more portable.
2785 bytes_written
= write(fd
, bufp
, bytes_left
);
2786 if (bytes_written
< 0) {
2790 } else if (bytes_written
== 0) { /* eof */
2793 bufp
+= bytes_written
;
2794 bytes_left
-= bytes_written
;
2795 } while (bytes_left
> 0);
2800 static int write_note(struct memelfnote
*men
, int fd
)
2804 en
.n_namesz
= men
->namesz
;
2805 en
.n_type
= men
->type
;
2806 en
.n_descsz
= men
->datasz
;
2810 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2812 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2814 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2820 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
2822 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2823 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2824 struct elf_thread_status
*ets
;
2826 ets
= g_malloc0(sizeof (*ets
));
2827 ets
->num_notes
= 1; /* only prstatus is dumped */
2828 fill_prstatus(&ets
->prstatus
, ts
, 0);
2829 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2830 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2833 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2835 info
->notes_size
+= note_size(&ets
->notes
[0]);
2838 static void init_note_info(struct elf_note_info
*info
)
2840 /* Initialize the elf_note_info structure so that it is at
2841 * least safe to call free_note_info() on it. Must be
2842 * called before calling fill_note_info().
2844 memset(info
, 0, sizeof (*info
));
2845 QTAILQ_INIT(&info
->thread_list
);
2848 static int fill_note_info(struct elf_note_info
*info
,
2849 long signr
, const CPUArchState
*env
)
2852 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2853 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2856 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
2857 if (info
->notes
== NULL
)
2859 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
2860 if (info
->prstatus
== NULL
)
2862 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
2863 if (info
->prstatus
== NULL
)
2867 * First fill in status (and registers) of current thread
2868 * including process info & aux vector.
2870 fill_prstatus(info
->prstatus
, ts
, signr
);
2871 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2872 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2873 sizeof (*info
->prstatus
), info
->prstatus
);
2874 fill_psinfo(info
->psinfo
, ts
);
2875 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2876 sizeof (*info
->psinfo
), info
->psinfo
);
2877 fill_auxv_note(&info
->notes
[2], ts
);
2880 info
->notes_size
= 0;
2881 for (i
= 0; i
< info
->numnote
; i
++)
2882 info
->notes_size
+= note_size(&info
->notes
[i
]);
2884 /* read and fill status of all threads */
2887 if (cpu
== thread_cpu
) {
2890 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
2897 static void free_note_info(struct elf_note_info
*info
)
2899 struct elf_thread_status
*ets
;
2901 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2902 ets
= QTAILQ_FIRST(&info
->thread_list
);
2903 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2907 g_free(info
->prstatus
);
2908 g_free(info
->psinfo
);
2909 g_free(info
->notes
);
2912 static int write_note_info(struct elf_note_info
*info
, int fd
)
2914 struct elf_thread_status
*ets
;
2917 /* write prstatus, psinfo and auxv for current thread */
2918 for (i
= 0; i
< info
->numnote
; i
++)
2919 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2922 /* write prstatus for each thread */
2923 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
2924 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2932 * Write out ELF coredump.
2934 * See documentation of ELF object file format in:
2935 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2937 * Coredump format in linux is following:
2939 * 0 +----------------------+ \
2940 * | ELF header | ET_CORE |
2941 * +----------------------+ |
2942 * | ELF program headers | |--- headers
2943 * | - NOTE section | |
2944 * | - PT_LOAD sections | |
2945 * +----------------------+ /
2950 * +----------------------+ <-- aligned to target page
2951 * | Process memory dump |
2956 * +----------------------+
2958 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2959 * NT_PRSINFO -> struct elf_prpsinfo
2960 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2962 * Format follows System V format as close as possible. Current
2963 * version limitations are as follows:
2964 * - no floating point registers are dumped
2966 * Function returns 0 in case of success, negative errno otherwise.
2968 * TODO: make this work also during runtime: it should be
2969 * possible to force coredump from running process and then
2970 * continue processing. For example qemu could set up SIGUSR2
2971 * handler (provided that target process haven't registered
2972 * handler for that) that does the dump when signal is received.
2974 static int elf_core_dump(int signr
, const CPUArchState
*env
)
2976 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2977 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
2978 struct vm_area_struct
*vma
= NULL
;
2979 char corefile
[PATH_MAX
];
2980 struct elf_note_info info
;
2982 struct elf_phdr phdr
;
2983 struct rlimit dumpsize
;
2984 struct mm_struct
*mm
= NULL
;
2985 off_t offset
= 0, data_offset
= 0;
2989 init_note_info(&info
);
2992 getrlimit(RLIMIT_CORE
, &dumpsize
);
2993 if (dumpsize
.rlim_cur
== 0)
2996 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2999 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3000 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3004 * Walk through target process memory mappings and
3005 * set up structure containing this information. After
3006 * this point vma_xxx functions can be used.
3008 if ((mm
= vma_init()) == NULL
)
3011 walk_memory_regions(mm
, vma_walker
);
3012 segs
= vma_get_mapping_count(mm
);
3015 * Construct valid coredump ELF header. We also
3016 * add one more segment for notes.
3018 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3019 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3022 /* fill in the in-memory version of notes */
3023 if (fill_note_info(&info
, signr
, env
) < 0)
3026 offset
+= sizeof (elf
); /* elf header */
3027 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3029 /* write out notes program header */
3030 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3032 offset
+= info
.notes_size
;
3033 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3037 * ELF specification wants data to start at page boundary so
3040 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3043 * Write program headers for memory regions mapped in
3044 * the target process.
3046 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3047 (void) memset(&phdr
, 0, sizeof (phdr
));
3049 phdr
.p_type
= PT_LOAD
;
3050 phdr
.p_offset
= offset
;
3051 phdr
.p_vaddr
= vma
->vma_start
;
3053 phdr
.p_filesz
= vma_dump_size(vma
);
3054 offset
+= phdr
.p_filesz
;
3055 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3056 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3057 if (vma
->vma_flags
& PROT_WRITE
)
3058 phdr
.p_flags
|= PF_W
;
3059 if (vma
->vma_flags
& PROT_EXEC
)
3060 phdr
.p_flags
|= PF_X
;
3061 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3063 bswap_phdr(&phdr
, 1);
3064 dump_write(fd
, &phdr
, sizeof (phdr
));
3068 * Next we write notes just after program headers. No
3069 * alignment needed here.
3071 if (write_note_info(&info
, fd
) < 0)
3074 /* align data to page boundary */
3075 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3079 * Finally we can dump process memory into corefile as well.
3081 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3085 end
= vma
->vma_start
+ vma_dump_size(vma
);
3087 for (addr
= vma
->vma_start
; addr
< end
;
3088 addr
+= TARGET_PAGE_SIZE
) {
3089 char page
[TARGET_PAGE_SIZE
];
3093 * Read in page from target process memory and
3094 * write it to coredump file.
3096 error
= copy_from_user(page
, addr
, sizeof (page
));
3098 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3103 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3109 free_note_info(&info
);
3118 #endif /* USE_ELF_CORE_DUMP */
3120 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3122 init_thread(regs
, infop
);