2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
64 #include "hw/core/split-irq.h"
65 #include "hw/qdev-clock.h"
66 #include "qom/object.h"
68 #define MPS2TZ_NUMIRQ 92
70 typedef enum MPS2TZFPGAType
{
75 struct MPS2TZMachineClass
{
77 MPS2TZFPGAType fpga_type
;
79 uint32_t sysclk_frq
; /* Main SYSCLK frequency in Hz */
80 const char *armsse_type
;
83 struct MPS2TZMachineState
{
87 MemoryRegion ssram
[3];
88 MemoryRegion ssram1_m
;
94 ArmSbconI2CState i2c
[4];
95 UnimplementedDeviceState i2s_audio
;
96 UnimplementedDeviceState gpio
[4];
97 UnimplementedDeviceState gfx
;
100 CMSDKAPBUART uart
[5];
101 SplitIRQ sec_resp_splitter
;
102 qemu_or_irq uart_irq_orgate
;
103 DeviceState
*lan9118
;
104 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ
];
109 #define TYPE_MPS2TZ_MACHINE "mps2tz"
110 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
111 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
113 OBJECT_DECLARE_TYPE(MPS2TZMachineState
, MPS2TZMachineClass
, MPS2TZ_MACHINE
)
115 /* Slow 32Khz S32KCLK frequency in Hz */
116 #define S32KCLK_FRQ (32 * 1000)
118 /* Create an alias of an entire original MemoryRegion @orig
119 * located at @base in the memory map.
121 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
122 MemoryRegion
*orig
, hwaddr base
)
124 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
125 memory_region_size(orig
));
126 memory_region_add_subregion(get_system_memory(), base
, mr
);
129 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
131 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
132 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
134 assert(irqno
< MPS2TZ_NUMIRQ
);
136 switch (mmc
->fpga_type
) {
138 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
140 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
142 g_assert_not_reached();
146 /* Most of the devices in the AN505 FPGA image sit behind
147 * Peripheral Protection Controllers. These data structures
148 * define the layout of which devices sit behind which PPCs.
149 * The devfn for each port is a function which creates, configures
150 * and initializes the device, returning the MemoryRegion which
151 * needs to be plugged into the downstream end of the PPC port.
153 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
154 const char *name
, hwaddr size
);
156 typedef struct PPCPortInfo
{
164 typedef struct PPCInfo
{
166 PPCPortInfo ports
[TZ_NUM_PORTS
];
169 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
171 const char *name
, hwaddr size
)
173 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
174 * and return a pointer to its MemoryRegion.
176 UnimplementedDeviceState
*uds
= opaque
;
178 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
179 qdev_prop_set_string(DEVICE(uds
), "name", name
);
180 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
181 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
185 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
186 const char *name
, hwaddr size
)
188 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
189 CMSDKAPBUART
*uart
= opaque
;
190 int i
= uart
- &mms
->uart
[0];
192 int txirqno
= i
* 2 + 1;
193 int combirqno
= i
+ 10;
195 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
197 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_CMSDK_APB_UART
);
198 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
199 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", mmc
->sysclk_frq
);
200 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
201 s
= SYS_BUS_DEVICE(uart
);
202 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, txirqno
));
203 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, rxirqno
));
204 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
205 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
206 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, combirqno
));
207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
210 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
211 const char *name
, hwaddr size
)
213 MPS2SCC
*scc
= opaque
;
215 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
217 object_initialize_child(OBJECT(mms
), "scc", scc
, TYPE_MPS2_SCC
);
218 sccdev
= DEVICE(scc
);
219 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
220 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
221 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
222 sysbus_realize(SYS_BUS_DEVICE(scc
), &error_fatal
);
223 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
226 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
227 const char *name
, hwaddr size
)
229 MPS2FPGAIO
*fpgaio
= opaque
;
231 object_initialize_child(OBJECT(mms
), "fpgaio", fpgaio
, TYPE_MPS2_FPGAIO
);
232 sysbus_realize(SYS_BUS_DEVICE(fpgaio
), &error_fatal
);
233 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
236 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
237 const char *name
, hwaddr size
)
240 NICInfo
*nd
= &nd_table
[0];
242 /* In hardware this is a LAN9220; the LAN9118 is software compatible
243 * except that it doesn't support the checksum-offload feature.
245 qemu_check_nic_model(nd
, "lan9118");
246 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
247 qdev_set_nic_properties(mms
->lan9118
, nd
);
249 s
= SYS_BUS_DEVICE(mms
->lan9118
);
250 sysbus_realize_and_unref(s
, &error_fatal
);
251 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 16));
252 return sysbus_mmio_get_region(s
, 0);
255 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
256 const char *name
, hwaddr size
)
259 int i
= mpc
- &mms
->ssram_mpc
[0];
260 MemoryRegion
*ssram
= &mms
->ssram
[i
];
261 MemoryRegion
*upstream
;
262 char *mpcname
= g_strdup_printf("%s-mpc", name
);
263 static uint32_t ramsize
[] = { 0x00400000, 0x00200000, 0x00200000 };
264 static uint32_t rambase
[] = { 0x00000000, 0x28000000, 0x28200000 };
266 memory_region_init_ram(ssram
, NULL
, name
, ramsize
[i
], &error_fatal
);
268 object_initialize_child(OBJECT(mms
), mpcname
, mpc
, TYPE_TZ_MPC
);
269 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(ssram
),
271 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
272 /* Map the upstream end of the MPC into system memory */
273 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
274 memory_region_add_subregion(get_system_memory(), rambase
[i
], upstream
);
275 /* and connect its interrupt to the IoTKit */
276 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
277 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
278 "mpcexp_status", i
));
280 /* The first SSRAM is a special case as it has an alias; accesses to
281 * the alias region at 0x00400000 must also go to the MPC upstream.
284 make_ram_alias(&mms
->ssram1_m
, "mps.ssram1_m", upstream
, 0x00400000);
288 /* Return the register interface MR for our caller to map behind the PPC */
289 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
292 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
293 const char *name
, hwaddr size
)
295 PL080State
*dma
= opaque
;
296 int i
= dma
- &mms
->dma
[0];
298 char *mscname
= g_strdup_printf("%s-msc", name
);
299 TZMSC
*msc
= &mms
->msc
[i
];
300 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
301 MemoryRegion
*msc_upstream
;
302 MemoryRegion
*msc_downstream
;
305 * Each DMA device is a PL081 whose transaction master interface
306 * is guarded by a Master Security Controller. The downstream end of
307 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
308 * DMA devices can see all devices and memory that the CPU does.
310 object_initialize_child(OBJECT(mms
), mscname
, msc
, TYPE_TZ_MSC
);
311 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
312 object_property_set_link(OBJECT(msc
), "downstream",
313 OBJECT(msc_downstream
), &error_fatal
);
314 object_property_set_link(OBJECT(msc
), "idau", OBJECT(mms
), &error_fatal
);
315 sysbus_realize(SYS_BUS_DEVICE(msc
), &error_fatal
);
317 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
318 qdev_get_gpio_in_named(iotkitdev
,
319 "mscexp_status", i
));
320 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
321 qdev_get_gpio_in_named(DEVICE(msc
),
323 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
324 qdev_get_gpio_in_named(DEVICE(msc
),
326 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
327 ARRAY_SIZE(mms
->ppc
) + i
,
328 qdev_get_gpio_in_named(DEVICE(msc
),
330 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
332 object_initialize_child(OBJECT(mms
), name
, dma
, TYPE_PL081
);
333 object_property_set_link(OBJECT(dma
), "downstream", OBJECT(msc_upstream
),
335 sysbus_realize(SYS_BUS_DEVICE(dma
), &error_fatal
);
337 s
= SYS_BUS_DEVICE(dma
);
338 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
339 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 58 + i
* 3));
340 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, 56 + i
* 3));
341 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, 57 + i
* 3));
344 return sysbus_mmio_get_region(s
, 0);
347 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
348 const char *name
, hwaddr size
)
351 * The AN505 has five PL022 SPI controllers.
352 * One of these should have the LCD controller behind it; the others
353 * are connected only to the FPGA's "general purpose SPI connector"
354 * or "shield" expansion connectors.
355 * Note that if we do implement devices behind SPI, the chip select
356 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
358 PL022State
*spi
= opaque
;
359 int i
= spi
- &mms
->spi
[0];
362 object_initialize_child(OBJECT(mms
), name
, spi
, TYPE_PL022
);
363 sysbus_realize(SYS_BUS_DEVICE(spi
), &error_fatal
);
364 s
= SYS_BUS_DEVICE(spi
);
365 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 51 + i
));
366 return sysbus_mmio_get_region(s
, 0);
369 static MemoryRegion
*make_i2c(MPS2TZMachineState
*mms
, void *opaque
,
370 const char *name
, hwaddr size
)
372 ArmSbconI2CState
*i2c
= opaque
;
375 object_initialize_child(OBJECT(mms
), name
, i2c
, TYPE_ARM_SBCON_I2C
);
376 s
= SYS_BUS_DEVICE(i2c
);
377 sysbus_realize(s
, &error_fatal
);
378 return sysbus_mmio_get_region(s
, 0);
381 static void mps2tz_common_init(MachineState
*machine
)
383 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
384 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
385 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
386 MemoryRegion
*system_memory
= get_system_memory();
387 DeviceState
*iotkitdev
;
388 DeviceState
*dev_splitter
;
391 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
392 error_report("This board can only be used with CPU %s",
393 mc
->default_cpu_type
);
397 if (machine
->ram_size
!= mc
->default_ram_size
) {
398 char *sz
= size_to_str(mc
->default_ram_size
);
399 error_report("Invalid RAM size, should be %s", sz
);
404 /* These clocks don't need migration because they are fixed-frequency */
405 mms
->sysclk
= clock_new(OBJECT(machine
), "SYSCLK");
406 clock_set_hz(mms
->sysclk
, mmc
->sysclk_frq
);
407 mms
->s32kclk
= clock_new(OBJECT(machine
), "S32KCLK");
408 clock_set_hz(mms
->s32kclk
, S32KCLK_FRQ
);
410 object_initialize_child(OBJECT(machine
), TYPE_IOTKIT
, &mms
->iotkit
,
412 iotkitdev
= DEVICE(&mms
->iotkit
);
413 object_property_set_link(OBJECT(&mms
->iotkit
), "memory",
414 OBJECT(system_memory
), &error_abort
);
415 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", MPS2TZ_NUMIRQ
);
416 qdev_connect_clock_in(iotkitdev
, "MAINCLK", mms
->sysclk
);
417 qdev_connect_clock_in(iotkitdev
, "S32KCLK", mms
->s32kclk
);
418 sysbus_realize(SYS_BUS_DEVICE(&mms
->iotkit
), &error_fatal
);
421 * The AN521 needs us to create splitters to feed the IRQ inputs
422 * for each CPU in the SSE-200 from each device in the board.
424 if (mmc
->fpga_type
== FPGA_AN521
) {
425 for (i
= 0; i
< MPS2TZ_NUMIRQ
; i
++) {
426 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
427 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
429 object_initialize_child_with_props(OBJECT(machine
), name
,
430 splitter
, sizeof(*splitter
),
431 TYPE_SPLIT_IRQ
, &error_fatal
,
435 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
437 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
438 qdev_connect_gpio_out(DEVICE(splitter
), 0,
439 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
441 qdev_connect_gpio_out(DEVICE(splitter
), 1,
442 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
447 /* The sec_resp_cfg output from the IoTKit must be split into multiple
448 * lines, one for each of the PPCs we create here, plus one per MSC.
450 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
451 &mms
->sec_resp_splitter
, TYPE_SPLIT_IRQ
);
452 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
453 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
455 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
456 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
457 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
458 qdev_get_gpio_in(dev_splitter
, 0));
460 /* The IoTKit sets up much of the memory layout, including
461 * the aliases between secure and non-secure regions in the
462 * address space. The FPGA itself contains:
464 * 0x00000000..0x003fffff SSRAM1
465 * 0x00400000..0x007fffff alias of SSRAM1
466 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
467 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
468 * 0x80000000..0x80ffffff 16MB PSRAM
471 /* The FPGA images have an odd combination of different RAMs,
472 * because in hardware they are different implementations and
473 * connected to different buses, giving varying performance/size
474 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
475 * call the 16MB our "system memory", as it's the largest lump.
477 memory_region_add_subregion(system_memory
, 0x80000000, machine
->ram
);
479 /* The overflow IRQs for all UARTs are ORed together.
480 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
481 * Create the OR gate for this.
483 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
484 &mms
->uart_irq_orgate
, TYPE_OR_IRQ
);
485 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), "num-lines", 10,
487 qdev_realize(DEVICE(&mms
->uart_irq_orgate
), NULL
, &error_fatal
);
488 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
489 get_sse_irq_in(mms
, 15));
491 /* Most of the devices in the FPGA are behind Peripheral Protection
492 * Controllers. The required order for initializing things is:
493 * + initialize the PPC
494 * + initialize, configure and realize downstream devices
495 * + connect downstream device MemoryRegions to the PPC
497 * + map the PPC's MemoryRegions to the places in the address map
498 * where the downstream devices should appear
499 * + wire up the PPC's control lines to the IoTKit object
502 const PPCInfo ppcs
[] = { {
503 .name
= "apb_ppcexp0",
505 { "ssram-0", make_mpc
, &mms
->ssram_mpc
[0], 0x58007000, 0x1000 },
506 { "ssram-1", make_mpc
, &mms
->ssram_mpc
[1], 0x58008000, 0x1000 },
507 { "ssram-2", make_mpc
, &mms
->ssram_mpc
[2], 0x58009000, 0x1000 },
510 .name
= "apb_ppcexp1",
512 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000 },
513 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000 },
514 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000 },
515 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000 },
516 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000 },
517 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000 },
518 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000 },
519 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000 },
520 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000 },
521 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000 },
522 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x40207000, 0x1000 },
523 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x40208000, 0x1000 },
524 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x4020c000, 0x1000 },
525 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x4020d000, 0x1000 },
528 .name
= "apb_ppcexp2",
530 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
531 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
532 0x40301000, 0x1000 },
533 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
536 .name
= "ahb_ppcexp0",
538 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
539 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
540 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
541 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
542 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
543 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000 },
546 .name
= "ahb_ppcexp1",
548 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000 },
549 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000 },
550 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000 },
551 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000 },
556 for (i
= 0; i
< ARRAY_SIZE(ppcs
); i
++) {
557 const PPCInfo
*ppcinfo
= &ppcs
[i
];
558 TZPPC
*ppc
= &mms
->ppc
[i
];
563 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
565 ppcdev
= DEVICE(ppc
);
567 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
568 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
576 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
577 portname
= g_strdup_printf("port[%d]", port
);
578 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
583 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
585 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
586 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
591 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
593 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
594 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
595 qdev_get_gpio_in_named(ppcdev
,
599 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
600 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
601 qdev_get_gpio_in_named(ppcdev
,
606 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
607 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
608 qdev_get_gpio_in_named(ppcdev
,
611 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
612 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
613 qdev_get_gpio_in_named(ppcdev
,
616 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
617 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
618 qdev_get_gpio_in_named(iotkitdev
,
622 qdev_connect_gpio_out(dev_splitter
, i
,
623 qdev_get_gpio_in_named(ppcdev
,
627 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
629 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
, 0x400000);
632 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
633 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
636 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
637 * the Master Security Controllers. Thes have the same logic as
638 * is used by the IoTKit for the IDAU connected to the CPU, except
639 * that MSCs don't care about the NSC attribute.
641 int region
= extract32(address
, 28, 4);
645 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
646 *exempt
= (address
& 0xeff00000) == 0xe0000000;
650 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
652 MachineClass
*mc
= MACHINE_CLASS(oc
);
653 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
655 mc
->init
= mps2tz_common_init
;
656 iic
->check
= mps2_tz_idau_check
;
657 mc
->default_ram_size
= 16 * MiB
;
658 mc
->default_ram_id
= "mps.ram";
661 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
663 MachineClass
*mc
= MACHINE_CLASS(oc
);
664 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
666 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
667 mc
->default_cpus
= 1;
668 mc
->min_cpus
= mc
->default_cpus
;
669 mc
->max_cpus
= mc
->default_cpus
;
670 mmc
->fpga_type
= FPGA_AN505
;
671 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
672 mmc
->scc_id
= 0x41045050;
673 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
674 mmc
->armsse_type
= TYPE_IOTKIT
;
677 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
679 MachineClass
*mc
= MACHINE_CLASS(oc
);
680 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
682 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
683 mc
->default_cpus
= 2;
684 mc
->min_cpus
= mc
->default_cpus
;
685 mc
->max_cpus
= mc
->default_cpus
;
686 mmc
->fpga_type
= FPGA_AN521
;
687 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
688 mmc
->scc_id
= 0x41045210;
689 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
690 mmc
->armsse_type
= TYPE_SSE200
;
693 static const TypeInfo mps2tz_info
= {
694 .name
= TYPE_MPS2TZ_MACHINE
,
695 .parent
= TYPE_MACHINE
,
697 .instance_size
= sizeof(MPS2TZMachineState
),
698 .class_size
= sizeof(MPS2TZMachineClass
),
699 .class_init
= mps2tz_class_init
,
700 .interfaces
= (InterfaceInfo
[]) {
701 { TYPE_IDAU_INTERFACE
},
706 static const TypeInfo mps2tz_an505_info
= {
707 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
708 .parent
= TYPE_MPS2TZ_MACHINE
,
709 .class_init
= mps2tz_an505_class_init
,
712 static const TypeInfo mps2tz_an521_info
= {
713 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
714 .parent
= TYPE_MPS2TZ_MACHINE
,
715 .class_init
= mps2tz_an521_class_init
,
718 static void mps2tz_machine_init(void)
720 type_register_static(&mps2tz_info
);
721 type_register_static(&mps2tz_an505_info
);
722 type_register_static(&mps2tz_an521_info
);
725 type_init(mps2tz_machine_init
);