hw/arm/virt: Consolidate GIC finalize logic
[qemu.git] / include / exec / cpu_ldst.h
blobd0c7c0d5fe8e56f6265f7a9af1b72eacd70f2a59
1 /*
2 * Software MMU support
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 * Generate inline load/store functions for all MMU modes (typically
21 * at least _user and _kernel) as well as _data versions, for all data
22 * sizes.
24 * Used by target op helpers.
26 * The syntax for the accessors is:
28 * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr)
29 * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr)
30 * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr)
31 * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr)
33 * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val)
34 * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr)
35 * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr)
36 * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr)
38 * sign is:
39 * (empty): for 32 and 64 bit sizes
40 * u : unsigned
41 * s : signed
43 * size is:
44 * b: 8 bits
45 * w: 16 bits
46 * l: 32 bits
47 * q: 64 bits
49 * end is:
50 * (empty): for target native endian, or for 8 bit access
51 * _be: for forced big endian
52 * _le: for forced little endian
54 * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx".
55 * The "mmuidx" suffix carries an extra mmu_idx argument that specifies
56 * the index to use; the "data" and "code" suffixes take the index from
57 * cpu_mmu_index().
59 * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the
60 * MemOp including alignment requirements. The alignment will be enforced.
62 #ifndef CPU_LDST_H
63 #define CPU_LDST_H
65 #include "exec/memopidx.h"
66 #include "qemu/int128.h"
67 #include "cpu.h"
69 #if defined(CONFIG_USER_ONLY)
70 /* sparc32plus has 64bit long but 32bit space address
71 * this can make bad result with g2h() and h2g()
73 #if TARGET_VIRT_ADDR_SPACE_BITS <= 32
74 typedef uint32_t abi_ptr;
75 #define TARGET_ABI_FMT_ptr "%x"
76 #else
77 typedef uint64_t abi_ptr;
78 #define TARGET_ABI_FMT_ptr "%"PRIx64
79 #endif
81 #ifndef TARGET_TAGGED_ADDRESSES
82 static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x)
84 return x;
86 #endif
88 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
89 static inline void *g2h_untagged(abi_ptr x)
91 return (void *)((uintptr_t)(x) + guest_base);
94 static inline void *g2h(CPUState *cs, abi_ptr x)
96 return g2h_untagged(cpu_untagged_addr(cs, x));
99 static inline bool guest_addr_valid_untagged(abi_ulong x)
101 return x <= GUEST_ADDR_MAX;
104 static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len)
106 return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1;
109 #define h2g_valid(x) \
110 (HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \
111 (uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX)
113 #define h2g_nocheck(x) ({ \
114 uintptr_t __ret = (uintptr_t)(x) - guest_base; \
115 (abi_ptr)__ret; \
118 #define h2g(x) ({ \
119 /* Check if given address fits target address space */ \
120 assert(h2g_valid(x)); \
121 h2g_nocheck(x); \
123 #else
124 typedef target_ulong abi_ptr;
125 #define TARGET_ABI_FMT_ptr TARGET_FMT_lx
126 #endif
128 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr);
129 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr);
130 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr);
131 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr);
132 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr);
133 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr);
134 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr);
135 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr);
136 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr);
137 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr);
139 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
140 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
141 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
142 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
143 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
144 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
145 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
146 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
147 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
148 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
150 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
151 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
152 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
153 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
154 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
155 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
156 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
158 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
159 uint32_t val, uintptr_t ra);
160 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
161 uint32_t val, uintptr_t ra);
162 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
163 uint32_t val, uintptr_t ra);
164 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
165 uint64_t val, uintptr_t ra);
166 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
167 uint32_t val, uintptr_t ra);
168 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
169 uint32_t val, uintptr_t ra);
170 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
171 uint64_t val, uintptr_t ra);
173 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
174 int mmu_idx, uintptr_t ra);
175 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
176 int mmu_idx, uintptr_t ra);
177 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
178 int mmu_idx, uintptr_t ra);
179 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
180 int mmu_idx, uintptr_t ra);
181 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
182 int mmu_idx, uintptr_t ra);
183 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
184 int mmu_idx, uintptr_t ra);
185 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
186 int mmu_idx, uintptr_t ra);
187 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
188 int mmu_idx, uintptr_t ra);
189 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
190 int mmu_idx, uintptr_t ra);
191 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
192 int mmu_idx, uintptr_t ra);
194 void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
195 int mmu_idx, uintptr_t ra);
196 void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
197 int mmu_idx, uintptr_t ra);
198 void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
199 int mmu_idx, uintptr_t ra);
200 void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
201 int mmu_idx, uintptr_t ra);
202 void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
203 int mmu_idx, uintptr_t ra);
204 void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
205 int mmu_idx, uintptr_t ra);
206 void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
207 int mmu_idx, uintptr_t ra);
209 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
210 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr ptr,
211 MemOpIdx oi, uintptr_t ra);
212 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr ptr,
213 MemOpIdx oi, uintptr_t ra);
214 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr ptr,
215 MemOpIdx oi, uintptr_t ra);
216 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr ptr,
217 MemOpIdx oi, uintptr_t ra);
218 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr ptr,
219 MemOpIdx oi, uintptr_t ra);
220 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr ptr,
221 MemOpIdx oi, uintptr_t ra);
223 void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val,
224 MemOpIdx oi, uintptr_t ra);
225 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
226 MemOpIdx oi, uintptr_t ra);
227 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
228 MemOpIdx oi, uintptr_t ra);
229 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
230 MemOpIdx oi, uintptr_t ra);
231 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
232 MemOpIdx oi, uintptr_t ra);
233 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
234 MemOpIdx oi, uintptr_t ra);
235 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
236 MemOpIdx oi, uintptr_t ra);
238 uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, target_ulong addr,
239 uint32_t cmpv, uint32_t newv,
240 MemOpIdx oi, uintptr_t retaddr);
241 uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, target_ulong addr,
242 uint32_t cmpv, uint32_t newv,
243 MemOpIdx oi, uintptr_t retaddr);
244 uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, target_ulong addr,
245 uint32_t cmpv, uint32_t newv,
246 MemOpIdx oi, uintptr_t retaddr);
247 uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, target_ulong addr,
248 uint64_t cmpv, uint64_t newv,
249 MemOpIdx oi, uintptr_t retaddr);
250 uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, target_ulong addr,
251 uint32_t cmpv, uint32_t newv,
252 MemOpIdx oi, uintptr_t retaddr);
253 uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, target_ulong addr,
254 uint32_t cmpv, uint32_t newv,
255 MemOpIdx oi, uintptr_t retaddr);
256 uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, target_ulong addr,
257 uint64_t cmpv, uint64_t newv,
258 MemOpIdx oi, uintptr_t retaddr);
260 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
261 TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \
262 (CPUArchState *env, target_ulong addr, TYPE val, \
263 MemOpIdx oi, uintptr_t retaddr);
265 #ifdef CONFIG_ATOMIC64
266 #define GEN_ATOMIC_HELPER_ALL(NAME) \
267 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
268 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
269 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
270 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
271 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
272 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
273 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
274 #else
275 #define GEN_ATOMIC_HELPER_ALL(NAME) \
276 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
277 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
278 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
279 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
280 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
281 #endif
283 GEN_ATOMIC_HELPER_ALL(fetch_add)
284 GEN_ATOMIC_HELPER_ALL(fetch_sub)
285 GEN_ATOMIC_HELPER_ALL(fetch_and)
286 GEN_ATOMIC_HELPER_ALL(fetch_or)
287 GEN_ATOMIC_HELPER_ALL(fetch_xor)
288 GEN_ATOMIC_HELPER_ALL(fetch_smin)
289 GEN_ATOMIC_HELPER_ALL(fetch_umin)
290 GEN_ATOMIC_HELPER_ALL(fetch_smax)
291 GEN_ATOMIC_HELPER_ALL(fetch_umax)
293 GEN_ATOMIC_HELPER_ALL(add_fetch)
294 GEN_ATOMIC_HELPER_ALL(sub_fetch)
295 GEN_ATOMIC_HELPER_ALL(and_fetch)
296 GEN_ATOMIC_HELPER_ALL(or_fetch)
297 GEN_ATOMIC_HELPER_ALL(xor_fetch)
298 GEN_ATOMIC_HELPER_ALL(smin_fetch)
299 GEN_ATOMIC_HELPER_ALL(umin_fetch)
300 GEN_ATOMIC_HELPER_ALL(smax_fetch)
301 GEN_ATOMIC_HELPER_ALL(umax_fetch)
303 GEN_ATOMIC_HELPER_ALL(xchg)
305 #undef GEN_ATOMIC_HELPER_ALL
306 #undef GEN_ATOMIC_HELPER
308 Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, target_ulong addr,
309 Int128 cmpv, Int128 newv,
310 MemOpIdx oi, uintptr_t retaddr);
311 Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, target_ulong addr,
312 Int128 cmpv, Int128 newv,
313 MemOpIdx oi, uintptr_t retaddr);
315 Int128 cpu_atomic_ldo_le_mmu(CPUArchState *env, target_ulong addr,
316 MemOpIdx oi, uintptr_t retaddr);
317 Int128 cpu_atomic_ldo_be_mmu(CPUArchState *env, target_ulong addr,
318 MemOpIdx oi, uintptr_t retaddr);
319 void cpu_atomic_sto_le_mmu(CPUArchState *env, target_ulong addr, Int128 val,
320 MemOpIdx oi, uintptr_t retaddr);
321 void cpu_atomic_sto_be_mmu(CPUArchState *env, target_ulong addr, Int128 val,
322 MemOpIdx oi, uintptr_t retaddr);
324 #if defined(CONFIG_USER_ONLY)
326 extern __thread uintptr_t helper_retaddr;
328 static inline void set_helper_retaddr(uintptr_t ra)
330 helper_retaddr = ra;
332 * Ensure that this write is visible to the SIGSEGV handler that
333 * may be invoked due to a subsequent invalid memory operation.
335 signal_barrier();
338 static inline void clear_helper_retaddr(void)
341 * Ensure that previous memory operations have succeeded before
342 * removing the data visible to the signal handler.
344 signal_barrier();
345 helper_retaddr = 0;
348 #else
350 /* Needed for TCG_OVERSIZED_GUEST */
351 #include "tcg/tcg.h"
353 static inline target_ulong tlb_addr_write(const CPUTLBEntry *entry)
355 #if TCG_OVERSIZED_GUEST
356 return entry->addr_write;
357 #else
358 return qatomic_read(&entry->addr_write);
359 #endif
362 /* Find the TLB index corresponding to the mmu_idx + address pair. */
363 static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx,
364 target_ulong addr)
366 uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
368 return (addr >> TARGET_PAGE_BITS) & size_mask;
371 /* Find the TLB entry corresponding to the mmu_idx + address pair. */
372 static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
373 target_ulong addr)
375 return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)];
378 #endif /* defined(CONFIG_USER_ONLY) */
380 #if TARGET_BIG_ENDIAN
381 # define cpu_lduw_data cpu_lduw_be_data
382 # define cpu_ldsw_data cpu_ldsw_be_data
383 # define cpu_ldl_data cpu_ldl_be_data
384 # define cpu_ldq_data cpu_ldq_be_data
385 # define cpu_lduw_data_ra cpu_lduw_be_data_ra
386 # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra
387 # define cpu_ldl_data_ra cpu_ldl_be_data_ra
388 # define cpu_ldq_data_ra cpu_ldq_be_data_ra
389 # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra
390 # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra
391 # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra
392 # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra
393 # define cpu_ldw_mmu cpu_ldw_be_mmu
394 # define cpu_ldl_mmu cpu_ldl_be_mmu
395 # define cpu_ldq_mmu cpu_ldq_be_mmu
396 # define cpu_stw_data cpu_stw_be_data
397 # define cpu_stl_data cpu_stl_be_data
398 # define cpu_stq_data cpu_stq_be_data
399 # define cpu_stw_data_ra cpu_stw_be_data_ra
400 # define cpu_stl_data_ra cpu_stl_be_data_ra
401 # define cpu_stq_data_ra cpu_stq_be_data_ra
402 # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra
403 # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra
404 # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra
405 # define cpu_stw_mmu cpu_stw_be_mmu
406 # define cpu_stl_mmu cpu_stl_be_mmu
407 # define cpu_stq_mmu cpu_stq_be_mmu
408 #else
409 # define cpu_lduw_data cpu_lduw_le_data
410 # define cpu_ldsw_data cpu_ldsw_le_data
411 # define cpu_ldl_data cpu_ldl_le_data
412 # define cpu_ldq_data cpu_ldq_le_data
413 # define cpu_lduw_data_ra cpu_lduw_le_data_ra
414 # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra
415 # define cpu_ldl_data_ra cpu_ldl_le_data_ra
416 # define cpu_ldq_data_ra cpu_ldq_le_data_ra
417 # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra
418 # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra
419 # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra
420 # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra
421 # define cpu_ldw_mmu cpu_ldw_le_mmu
422 # define cpu_ldl_mmu cpu_ldl_le_mmu
423 # define cpu_ldq_mmu cpu_ldq_le_mmu
424 # define cpu_stw_data cpu_stw_le_data
425 # define cpu_stl_data cpu_stl_le_data
426 # define cpu_stq_data cpu_stq_le_data
427 # define cpu_stw_data_ra cpu_stw_le_data_ra
428 # define cpu_stl_data_ra cpu_stl_le_data_ra
429 # define cpu_stq_data_ra cpu_stq_le_data_ra
430 # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra
431 # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra
432 # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra
433 # define cpu_stw_mmu cpu_stw_le_mmu
434 # define cpu_stl_mmu cpu_stl_le_mmu
435 # define cpu_stq_mmu cpu_stq_le_mmu
436 #endif
438 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr);
439 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr);
440 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr);
441 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr);
443 static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr)
445 return (int8_t)cpu_ldub_code(env, addr);
448 static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr)
450 return (int16_t)cpu_lduw_code(env, addr);
454 * tlb_vaddr_to_host:
455 * @env: CPUArchState
456 * @addr: guest virtual address to look up
457 * @access_type: 0 for read, 1 for write, 2 for execute
458 * @mmu_idx: MMU index to use for lookup
460 * Look up the specified guest virtual index in the TCG softmmu TLB.
461 * If we can translate a host virtual address suitable for direct RAM
462 * access, without causing a guest exception, then return it.
463 * Otherwise (TLB entry is for an I/O access, guest software
464 * TLB fill required, etc) return NULL.
466 #ifdef CONFIG_USER_ONLY
467 static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
468 MMUAccessType access_type, int mmu_idx)
470 return g2h(env_cpu(env), addr);
472 #else
473 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
474 MMUAccessType access_type, int mmu_idx);
475 #endif
477 #endif /* CPU_LDST_H */