hbitmap: Add @advance param to hbitmap_iter_next()
[qemu.git] / target / tricore / fpu_helper.c
blobdf162902d686fc8434d74c4ac42beaa45bdbe472
1 /*
2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define DIV_NAN 0x7fc00008
28 #define MUL_NAN 0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
38 return get_float_exception_flags(&env->fp_status)
39 & (float_flag_invalid
40 | float_flag_overflow
41 | float_flag_underflow
42 | float_flag_output_denormal
43 | float_flag_divbyzero
44 | float_flag_inexact);
47 static inline bool f_is_denormal(float32 arg)
49 return float32_is_zero_or_denormal(arg) && !float32_is_zero(arg);
52 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
53 float32 arg3, float32 result,
54 uint32_t muladd_negate_c)
56 uint32_t aSign, bSign, cSign;
57 uint32_t aExp, bExp, cExp;
59 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
60 float32_is_any_nan(arg3)) {
61 return QUIET_NAN;
62 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
63 return MUL_NAN;
64 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
65 return MUL_NAN;
66 } else {
67 aSign = arg1 >> 31;
68 bSign = arg2 >> 31;
69 cSign = arg3 >> 31;
71 aExp = (arg1 >> 23) & 0xff;
72 bExp = (arg2 >> 23) & 0xff;
73 cExp = (arg3 >> 23) & 0xff;
75 if (muladd_negate_c) {
76 cSign ^= 1;
78 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
79 if (aSign ^ bSign ^ cSign) {
80 return ADD_NAN;
85 return result;
88 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
90 uint8_t some_excp = 0;
91 set_float_exception_flags(0, &env->fp_status);
93 if (flags & float_flag_invalid) {
94 env->FPU_FI = 1 << 31;
95 some_excp = 1;
98 if (flags & float_flag_overflow) {
99 env->FPU_FV = 1 << 31;
100 some_excp = 1;
103 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
104 env->FPU_FU = 1 << 31;
105 some_excp = 1;
108 if (flags & float_flag_divbyzero) {
109 env->FPU_FZ = 1 << 31;
110 some_excp = 1;
113 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
114 env->PSW |= 1 << 26;
115 some_excp = 1;
118 env->FPU_FS = some_excp;
121 #define FADD_SUB(op) \
122 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
124 float32 arg1 = make_float32(r1); \
125 float32 arg2 = make_float32(r2); \
126 uint32_t flags; \
127 float32 f_result; \
129 f_result = float32_##op(arg2, arg1, &env->fp_status); \
130 flags = f_get_excp_flags(env); \
131 if (flags) { \
132 /* If the output is a NaN, but the inputs aren't, \
133 we return a unique value. */ \
134 if ((flags & float_flag_invalid) \
135 && !float32_is_any_nan(arg1) \
136 && !float32_is_any_nan(arg2)) { \
137 f_result = ADD_NAN; \
139 f_update_psw_flags(env, flags); \
140 } else { \
141 env->FPU_FS = 0; \
143 return (uint32_t)f_result; \
145 FADD_SUB(add)
146 FADD_SUB(sub)
148 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
150 uint32_t flags;
151 float32 arg1 = make_float32(r1);
152 float32 arg2 = make_float32(r2);
153 float32 f_result;
155 f_result = float32_mul(arg1, arg2, &env->fp_status);
157 flags = f_get_excp_flags(env);
158 if (flags) {
159 /* If the output is a NaN, but the inputs aren't,
160 we return a unique value. */
161 if ((flags & float_flag_invalid)
162 && !float32_is_any_nan(arg1)
163 && !float32_is_any_nan(arg2)) {
164 f_result = MUL_NAN;
166 f_update_psw_flags(env, flags);
167 } else {
168 env->FPU_FS = 0;
170 return (uint32_t)f_result;
174 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
176 uint32_t flags;
177 float32 arg1 = make_float32(r1);
178 float32 arg2 = make_float32(r2);
179 float32 f_result;
181 f_result = float32_div(arg1, arg2 , &env->fp_status);
183 flags = f_get_excp_flags(env);
184 if (flags) {
185 /* If the output is a NaN, but the inputs aren't,
186 we return a unique value. */
187 if ((flags & float_flag_invalid)
188 && !float32_is_any_nan(arg1)
189 && !float32_is_any_nan(arg2)) {
190 f_result = DIV_NAN;
192 f_update_psw_flags(env, flags);
193 } else {
194 env->FPU_FS = 0;
197 return (uint32_t)f_result;
200 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
201 uint32_t r2, uint32_t r3)
203 uint32_t flags;
204 float32 arg1 = make_float32(r1);
205 float32 arg2 = make_float32(r2);
206 float32 arg3 = make_float32(r3);
207 float32 f_result;
209 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
211 flags = f_get_excp_flags(env);
212 if (flags) {
213 if (flags & float_flag_invalid) {
214 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
215 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
216 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
217 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
219 f_update_psw_flags(env, flags);
220 } else {
221 env->FPU_FS = 0;
223 return (uint32_t)f_result;
226 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
227 uint32_t r2, uint32_t r3)
229 uint32_t flags;
230 float32 arg1 = make_float32(r1);
231 float32 arg2 = make_float32(r2);
232 float32 arg3 = make_float32(r3);
233 float32 f_result;
235 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
236 &env->fp_status);
238 flags = f_get_excp_flags(env);
239 if (flags) {
240 if (flags & float_flag_invalid) {
241 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
242 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
243 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
245 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
247 f_update_psw_flags(env, flags);
248 } else {
249 env->FPU_FS = 0;
251 return (uint32_t)f_result;
254 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
256 uint32_t result, flags;
257 float32 arg1 = make_float32(r1);
258 float32 arg2 = make_float32(r2);
260 set_flush_inputs_to_zero(0, &env->fp_status);
262 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
263 result |= f_is_denormal(arg1) << 4;
264 result |= f_is_denormal(arg2) << 5;
266 flags = f_get_excp_flags(env);
267 if (flags) {
268 f_update_psw_flags(env, flags);
269 } else {
270 env->FPU_FS = 0;
273 set_flush_inputs_to_zero(1, &env->fp_status);
274 return result;
277 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
279 float32 f_arg = make_float32(arg);
280 int32_t result, flags;
282 result = float32_to_int32(f_arg, &env->fp_status);
284 flags = f_get_excp_flags(env);
285 if (flags) {
286 if (float32_is_any_nan(f_arg)) {
287 result = 0;
289 f_update_psw_flags(env, flags);
290 } else {
291 env->FPU_FS = 0;
293 return (uint32_t)result;
296 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
298 float32 f_result;
299 uint32_t flags;
300 f_result = int32_to_float32(arg, &env->fp_status);
302 flags = f_get_excp_flags(env);
303 if (flags) {
304 f_update_psw_flags(env, flags);
305 } else {
306 env->FPU_FS = 0;
308 return (uint32_t)f_result;
311 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
313 float32 f_arg = make_float32(arg);
314 uint32_t result;
315 int32_t flags;
317 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
319 flags = f_get_excp_flags(env);
320 if (flags & float_flag_invalid) {
321 flags &= ~float_flag_inexact;
322 if (float32_is_any_nan(f_arg)) {
323 result = 0;
325 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
326 flags = float_flag_invalid;
327 result = 0;
330 if (flags) {
331 f_update_psw_flags(env, flags);
332 } else {
333 env->FPU_FS = 0;
335 return result;
338 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
340 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
341 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
342 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
343 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
344 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
345 /* clear FX and RM */
346 env->PSW &= ~(extract32(arg, 10, 1) << 26);
347 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
349 fpu_set_state(env);