4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits
;
111 bool target_page_bits_decided
;
114 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
115 /* current CPU in the current thread. It is only valid inside
117 __thread CPUState
*current_cpu
;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
123 uintptr_t qemu_host_page_size
;
124 intptr_t qemu_host_page_mask
;
126 bool set_preferred_target_page_bits(int bits
)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits
>= TARGET_PAGE_BITS_MIN
);
135 if (target_page_bits
== 0 || target_page_bits
> bits
) {
136 if (target_page_bits_decided
) {
139 target_page_bits
= bits
;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits
== 0) {
151 target_page_bits
= TARGET_PAGE_BITS_MIN
;
153 target_page_bits_decided
= true;
157 typedef struct PhysPageEntry PhysPageEntry
;
159 struct PhysPageEntry
{
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node
[P_L2_SIZE
];
178 typedef struct PhysPageMap
{
181 unsigned sections_nb
;
182 unsigned sections_nb_alloc
;
184 unsigned nodes_nb_alloc
;
186 MemoryRegionSection
*sections
;
189 struct AddressSpaceDispatch
{
190 MemoryRegionSection
*mru_section
;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map
;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t
{
203 uint16_t sub_section
[];
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener
*listener
);
215 static MemoryRegion io_mem_watch
;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace
{
227 struct AddressSpaceDispatch
*memory_dispatch
;
228 MemoryListener tcg_as_listener
;
231 struct DirtyBitmapSnapshot
{
234 unsigned long dirty
[];
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
243 static unsigned alloc_hint
= 16;
244 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
245 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
246 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
247 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
248 alloc_hint
= map
->nodes_nb_alloc
;
252 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
259 ret
= map
->nodes_nb
++;
261 assert(ret
!= PHYS_MAP_NODE_NIL
);
262 assert(ret
!= map
->nodes_nb_alloc
);
264 e
.skip
= leaf
? 0 : 1;
265 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
266 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
267 memcpy(&p
[i
], &e
, sizeof(e
));
272 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
273 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
277 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
279 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
280 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
282 p
= map
->nodes
[lp
->ptr
];
283 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
285 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
286 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
292 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
298 static void phys_page_set(AddressSpaceDispatch
*d
,
299 hwaddr index
, hwaddr nb
,
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
305 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
313 unsigned valid_ptr
= P_L2_SIZE
;
318 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
323 for (i
= 0; i
< P_L2_SIZE
; i
++) {
324 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
331 phys_page_compact(&p
[i
], nodes
);
335 /* We can only compress if there's only one child. */
340 assert(valid_ptr
< P_L2_SIZE
);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
347 lp
->ptr
= p
[valid_ptr
].ptr
;
348 if (!p
[valid_ptr
].skip
) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
357 lp
->skip
+= p
[valid_ptr
].skip
;
361 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
363 if (d
->phys_map
.skip
) {
364 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
368 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section
->size
) ||
375 range_covers_byte(section
->offset_within_address_space
,
376 int128_getlo(section
->size
), addr
);
379 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
381 PhysPageEntry lp
= d
->phys_map
, *p
;
382 Node
*nodes
= d
->map
.nodes
;
383 MemoryRegionSection
*sections
= d
->map
.sections
;
384 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
387 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
388 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
389 return §ions
[PHYS_SECTION_UNASSIGNED
];
392 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
395 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
396 return §ions
[lp
.ptr
];
398 return §ions
[PHYS_SECTION_UNASSIGNED
];
402 bool memory_region_is_unassigned(MemoryRegion
*mr
)
404 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
405 && mr
!= &io_mem_watch
;
408 /* Called from RCU critical section */
409 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
411 bool resolve_subpage
)
413 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
416 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
417 !section_covers_addr(section
, addr
)) {
418 section
= phys_page_find(d
, addr
);
419 atomic_set(&d
->mru_section
, section
);
421 if (resolve_subpage
&& section
->mr
->subpage
) {
422 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
423 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
428 /* Called from RCU critical section */
429 static MemoryRegionSection
*
430 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
431 hwaddr
*plen
, bool resolve_subpage
)
433 MemoryRegionSection
*section
;
437 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
438 /* Compute offset within MemoryRegionSection */
439 addr
-= section
->offset_within_address_space
;
441 /* Compute offset within MemoryRegion */
442 *xlat
= addr
+ section
->offset_within_region
;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr
)) {
458 diff
= int128_sub(section
->size
, int128_make64(addr
));
459 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
485 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
488 hwaddr
*page_mask_out
,
491 AddressSpace
**target_as
)
493 MemoryRegionSection
*section
;
494 hwaddr page_mask
= (hwaddr
)-1;
498 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
499 IOMMUTLBEntry iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
500 IOMMU_WO
: IOMMU_RO
);
502 if (!(iotlb
.perm
& (1 << is_write
))) {
506 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
507 | (addr
& iotlb
.addr_mask
));
508 page_mask
&= iotlb
.addr_mask
;
509 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
510 *target_as
= iotlb
.target_as
;
512 section
= address_space_translate_internal(
513 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
516 iommu_mr
= memory_region_get_iommu(section
->mr
);
517 } while (unlikely(iommu_mr
));
520 *page_mask_out
= page_mask
;
525 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
529 * flatview_do_translate - translate an address in FlatView
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
543 * @target_as: the address space targeted by the IOMMU
545 * This function is called from RCU critical section
547 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
551 hwaddr
*page_mask_out
,
554 AddressSpace
**target_as
)
556 MemoryRegionSection
*section
;
557 IOMMUMemoryRegion
*iommu_mr
;
558 hwaddr plen
= (hwaddr
)(-1);
564 section
= address_space_translate_internal(
565 flatview_to_dispatch(fv
), addr
, xlat
,
568 iommu_mr
= memory_region_get_iommu(section
->mr
);
569 if (unlikely(iommu_mr
)) {
570 return address_space_translate_iommu(iommu_mr
, xlat
,
571 plen_out
, page_mask_out
,
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out
= ~TARGET_PAGE_MASK
;
583 /* Called from RCU critical section */
584 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
587 MemoryRegionSection section
;
588 hwaddr xlat
, page_mask
;
591 * This can never be MMIO, and we don't really care about plen,
594 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
595 NULL
, &page_mask
, is_write
, false, &as
);
597 /* Illegal translation */
598 if (section
.mr
== &io_mem_unassigned
) {
602 /* Convert memory region offset into address space offset */
603 xlat
+= section
.offset_within_address_space
-
604 section
.offset_within_region
;
606 return (IOMMUTLBEntry
) {
608 .iova
= addr
& ~page_mask
,
609 .translated_addr
= xlat
& ~page_mask
,
610 .addr_mask
= page_mask
,
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
616 return (IOMMUTLBEntry
) {0};
619 /* Called from RCU critical section */
620 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
621 hwaddr
*plen
, bool is_write
)
624 MemoryRegionSection section
;
625 AddressSpace
*as
= NULL
;
627 /* This can be MMIO, so setup MMIO bit. */
628 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
629 is_write
, true, &as
);
632 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
633 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
634 *plen
= MIN(page
, *plen
);
640 /* Called from RCU critical section */
641 MemoryRegionSection
*
642 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
643 hwaddr
*xlat
, hwaddr
*plen
)
645 MemoryRegionSection
*section
;
646 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
648 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
650 assert(!memory_region_is_iommu(section
->mr
));
655 #if !defined(CONFIG_USER_ONLY)
657 static int cpu_common_post_load(void *opaque
, int version_id
)
659 CPUState
*cpu
= opaque
;
661 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
662 version_id is increased. */
663 cpu
->interrupt_request
&= ~0x01;
666 /* loadvm has just updated the content of RAM, bypassing the
667 * usual mechanisms that ensure we flush TBs for writes to
668 * memory we've translated code from. So we must flush all TBs,
669 * which will now be stale.
676 static int cpu_common_pre_load(void *opaque
)
678 CPUState
*cpu
= opaque
;
680 cpu
->exception_index
= -1;
685 static bool cpu_common_exception_index_needed(void *opaque
)
687 CPUState
*cpu
= opaque
;
689 return tcg_enabled() && cpu
->exception_index
!= -1;
692 static const VMStateDescription vmstate_cpu_common_exception_index
= {
693 .name
= "cpu_common/exception_index",
695 .minimum_version_id
= 1,
696 .needed
= cpu_common_exception_index_needed
,
697 .fields
= (VMStateField
[]) {
698 VMSTATE_INT32(exception_index
, CPUState
),
699 VMSTATE_END_OF_LIST()
703 static bool cpu_common_crash_occurred_needed(void *opaque
)
705 CPUState
*cpu
= opaque
;
707 return cpu
->crash_occurred
;
710 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
711 .name
= "cpu_common/crash_occurred",
713 .minimum_version_id
= 1,
714 .needed
= cpu_common_crash_occurred_needed
,
715 .fields
= (VMStateField
[]) {
716 VMSTATE_BOOL(crash_occurred
, CPUState
),
717 VMSTATE_END_OF_LIST()
721 const VMStateDescription vmstate_cpu_common
= {
722 .name
= "cpu_common",
724 .minimum_version_id
= 1,
725 .pre_load
= cpu_common_pre_load
,
726 .post_load
= cpu_common_post_load
,
727 .fields
= (VMStateField
[]) {
728 VMSTATE_UINT32(halted
, CPUState
),
729 VMSTATE_UINT32(interrupt_request
, CPUState
),
730 VMSTATE_END_OF_LIST()
732 .subsections
= (const VMStateDescription
*[]) {
733 &vmstate_cpu_common_exception_index
,
734 &vmstate_cpu_common_crash_occurred
,
741 CPUState
*qemu_get_cpu(int index
)
746 if (cpu
->cpu_index
== index
) {
754 #if !defined(CONFIG_USER_ONLY)
755 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
756 const char *prefix
, MemoryRegion
*mr
)
758 CPUAddressSpace
*newas
;
759 AddressSpace
*as
= g_new0(AddressSpace
, 1);
763 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
764 address_space_init(as
, mr
, as_name
);
767 /* Target code should have set num_ases before calling us */
768 assert(asidx
< cpu
->num_ases
);
771 /* address space 0 gets the convenience alias */
775 /* KVM cannot currently support multiple address spaces. */
776 assert(asidx
== 0 || !kvm_enabled());
778 if (!cpu
->cpu_ases
) {
779 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
782 newas
= &cpu
->cpu_ases
[asidx
];
786 newas
->tcg_as_listener
.commit
= tcg_commit
;
787 memory_listener_register(&newas
->tcg_as_listener
, as
);
791 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
793 /* Return the AddressSpace corresponding to the specified index */
794 return cpu
->cpu_ases
[asidx
].as
;
798 void cpu_exec_unrealizefn(CPUState
*cpu
)
800 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
802 cpu_list_remove(cpu
);
804 if (cc
->vmsd
!= NULL
) {
805 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
807 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
808 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
812 Property cpu_common_props
[] = {
813 #ifndef CONFIG_USER_ONLY
814 /* Create a memory property for softmmu CPU object,
815 * so users can wire up its memory. (This can't go in qom/cpu.c
816 * because that file is compiled only once for both user-mode
817 * and system builds.) The default if no link is set up is to use
818 * the system address space.
820 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
823 DEFINE_PROP_END_OF_LIST(),
826 void cpu_exec_initfn(CPUState
*cpu
)
831 #ifndef CONFIG_USER_ONLY
832 cpu
->thread_id
= qemu_get_thread_id();
833 cpu
->memory
= system_memory
;
834 object_ref(OBJECT(cpu
->memory
));
838 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
840 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
841 static bool tcg_target_initialized
;
845 if (tcg_enabled() && !tcg_target_initialized
) {
846 tcg_target_initialized
= true;
847 cc
->tcg_initialize();
850 #ifndef CONFIG_USER_ONLY
851 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
852 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
854 if (cc
->vmsd
!= NULL
) {
855 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
860 const char *parse_cpu_model(const char *cpu_model
)
864 gchar
**model_pieces
;
865 const char *cpu_type
;
867 model_pieces
= g_strsplit(cpu_model
, ",", 2);
869 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
871 error_report("unable to find CPU model '%s'", model_pieces
[0]);
872 g_strfreev(model_pieces
);
876 cpu_type
= object_class_get_name(oc
);
878 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
879 g_strfreev(model_pieces
);
883 #if defined(CONFIG_USER_ONLY)
884 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
888 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
893 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
896 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
897 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
899 /* Locks grabbed by tb_invalidate_phys_addr */
900 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
901 phys
| (pc
& ~TARGET_PAGE_MASK
));
906 #if defined(CONFIG_USER_ONLY)
907 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
912 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
918 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
922 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
923 int flags
, CPUWatchpoint
**watchpoint
)
928 /* Add a watchpoint. */
929 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
930 int flags
, CPUWatchpoint
**watchpoint
)
934 /* forbid ranges which are empty or run off the end of the address space */
935 if (len
== 0 || (addr
+ len
- 1) < addr
) {
936 error_report("tried to set invalid watchpoint at %"
937 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
940 wp
= g_malloc(sizeof(*wp
));
946 /* keep all GDB-injected watchpoints in front */
947 if (flags
& BP_GDB
) {
948 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
950 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
953 tlb_flush_page(cpu
, addr
);
960 /* Remove a specific watchpoint. */
961 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
966 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
967 if (addr
== wp
->vaddr
&& len
== wp
->len
968 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
969 cpu_watchpoint_remove_by_ref(cpu
, wp
);
976 /* Remove a specific watchpoint by reference. */
977 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
979 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
981 tlb_flush_page(cpu
, watchpoint
->vaddr
);
986 /* Remove all matching watchpoints. */
987 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
989 CPUWatchpoint
*wp
, *next
;
991 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
992 if (wp
->flags
& mask
) {
993 cpu_watchpoint_remove_by_ref(cpu
, wp
);
998 /* Return true if this watchpoint address matches the specified
999 * access (ie the address range covered by the watchpoint overlaps
1000 * partially or completely with the address range covered by the
1003 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1007 /* We know the lengths are non-zero, but a little caution is
1008 * required to avoid errors in the case where the range ends
1009 * exactly at the top of the address space and so addr + len
1010 * wraps round to zero.
1012 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1013 vaddr addrend
= addr
+ len
- 1;
1015 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1020 /* Add a breakpoint. */
1021 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1022 CPUBreakpoint
**breakpoint
)
1026 bp
= g_malloc(sizeof(*bp
));
1031 /* keep all GDB-injected breakpoints in front */
1032 if (flags
& BP_GDB
) {
1033 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1035 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1038 breakpoint_invalidate(cpu
, pc
);
1046 /* Remove a specific breakpoint. */
1047 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1051 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1052 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1053 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1060 /* Remove a specific breakpoint by reference. */
1061 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1063 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1065 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1070 /* Remove all matching breakpoints. */
1071 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1073 CPUBreakpoint
*bp
, *next
;
1075 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1076 if (bp
->flags
& mask
) {
1077 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1082 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1083 CPU loop after each instruction */
1084 void cpu_single_step(CPUState
*cpu
, int enabled
)
1086 if (cpu
->singlestep_enabled
!= enabled
) {
1087 cpu
->singlestep_enabled
= enabled
;
1088 if (kvm_enabled()) {
1089 kvm_update_guest_debug(cpu
, 0);
1091 /* must flush all the translated code to avoid inconsistencies */
1092 /* XXX: only flush what is necessary */
1098 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1105 fprintf(stderr
, "qemu: fatal: ");
1106 vfprintf(stderr
, fmt
, ap
);
1107 fprintf(stderr
, "\n");
1108 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1109 if (qemu_log_separate()) {
1111 qemu_log("qemu: fatal: ");
1112 qemu_log_vprintf(fmt
, ap2
);
1114 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1122 #if defined(CONFIG_USER_ONLY)
1124 struct sigaction act
;
1125 sigfillset(&act
.sa_mask
);
1126 act
.sa_handler
= SIG_DFL
;
1127 sigaction(SIGABRT
, &act
, NULL
);
1133 #if !defined(CONFIG_USER_ONLY)
1134 /* Called from RCU critical section */
1135 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1139 block
= atomic_rcu_read(&ram_list
.mru_block
);
1140 if (block
&& addr
- block
->offset
< block
->max_length
) {
1143 RAMBLOCK_FOREACH(block
) {
1144 if (addr
- block
->offset
< block
->max_length
) {
1149 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1153 /* It is safe to write mru_block outside the iothread lock. This
1158 * xxx removed from list
1162 * call_rcu(reclaim_ramblock, xxx);
1165 * atomic_rcu_set is not needed here. The block was already published
1166 * when it was placed into the list. Here we're just making an extra
1167 * copy of the pointer.
1169 ram_list
.mru_block
= block
;
1173 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1180 end
= TARGET_PAGE_ALIGN(start
+ length
);
1181 start
&= TARGET_PAGE_MASK
;
1184 block
= qemu_get_ram_block(start
);
1185 assert(block
== qemu_get_ram_block(end
- 1));
1186 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1188 tlb_reset_dirty(cpu
, start1
, length
);
1193 /* Note: start and end must be within the same ram block. */
1194 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1198 DirtyMemoryBlocks
*blocks
;
1199 unsigned long end
, page
;
1206 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1207 page
= start
>> TARGET_PAGE_BITS
;
1211 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1213 while (page
< end
) {
1214 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1215 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1216 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1218 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1225 if (dirty
&& tcg_enabled()) {
1226 tlb_reset_dirty_range_all(start
, length
);
1232 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1233 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1235 DirtyMemoryBlocks
*blocks
;
1236 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1237 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1238 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1239 DirtyBitmapSnapshot
*snap
;
1240 unsigned long page
, end
, dest
;
1242 snap
= g_malloc0(sizeof(*snap
) +
1243 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1244 snap
->start
= first
;
1247 page
= first
>> TARGET_PAGE_BITS
;
1248 end
= last
>> TARGET_PAGE_BITS
;
1253 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1255 while (page
< end
) {
1256 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1257 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1258 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1260 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1261 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1262 offset
>>= BITS_PER_LEVEL
;
1264 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1265 blocks
->blocks
[idx
] + offset
,
1268 dest
+= num
>> BITS_PER_LEVEL
;
1273 if (tcg_enabled()) {
1274 tlb_reset_dirty_range_all(start
, length
);
1280 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1284 unsigned long page
, end
;
1286 assert(start
>= snap
->start
);
1287 assert(start
+ length
<= snap
->end
);
1289 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1290 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1292 while (page
< end
) {
1293 if (test_bit(page
, snap
->dirty
)) {
1301 /* Called from RCU critical section */
1302 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1303 MemoryRegionSection
*section
,
1305 hwaddr paddr
, hwaddr xlat
,
1307 target_ulong
*address
)
1312 if (memory_region_is_ram(section
->mr
)) {
1314 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1315 if (!section
->readonly
) {
1316 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1318 iotlb
|= PHYS_SECTION_ROM
;
1321 AddressSpaceDispatch
*d
;
1323 d
= flatview_to_dispatch(section
->fv
);
1324 iotlb
= section
- d
->map
.sections
;
1328 /* Make accesses to pages with watchpoints go via the
1329 watchpoint trap routines. */
1330 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1331 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1332 /* Avoid trapping reads of pages with a write breakpoint. */
1333 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1334 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1335 *address
|= TLB_MMIO
;
1343 #endif /* defined(CONFIG_USER_ONLY) */
1345 #if !defined(CONFIG_USER_ONLY)
1347 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1349 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1351 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1352 qemu_anon_ram_alloc
;
1355 * Set a custom physical guest memory alloator.
1356 * Accelerators with unusual needs may need this. Hopefully, we can
1357 * get rid of it eventually.
1359 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1361 phys_mem_alloc
= alloc
;
1364 static uint16_t phys_section_add(PhysPageMap
*map
,
1365 MemoryRegionSection
*section
)
1367 /* The physical section number is ORed with a page-aligned
1368 * pointer to produce the iotlb entries. Thus it should
1369 * never overflow into the page-aligned value.
1371 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1373 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1374 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1375 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1376 map
->sections_nb_alloc
);
1378 map
->sections
[map
->sections_nb
] = *section
;
1379 memory_region_ref(section
->mr
);
1380 return map
->sections_nb
++;
1383 static void phys_section_destroy(MemoryRegion
*mr
)
1385 bool have_sub_page
= mr
->subpage
;
1387 memory_region_unref(mr
);
1389 if (have_sub_page
) {
1390 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1391 object_unref(OBJECT(&subpage
->iomem
));
1396 static void phys_sections_free(PhysPageMap
*map
)
1398 while (map
->sections_nb
> 0) {
1399 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1400 phys_section_destroy(section
->mr
);
1402 g_free(map
->sections
);
1406 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1408 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1410 hwaddr base
= section
->offset_within_address_space
1412 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1413 MemoryRegionSection subsection
= {
1414 .offset_within_address_space
= base
,
1415 .size
= int128_make64(TARGET_PAGE_SIZE
),
1419 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1421 if (!(existing
->mr
->subpage
)) {
1422 subpage
= subpage_init(fv
, base
);
1424 subsection
.mr
= &subpage
->iomem
;
1425 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1426 phys_section_add(&d
->map
, &subsection
));
1428 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1430 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1431 end
= start
+ int128_get64(section
->size
) - 1;
1432 subpage_register(subpage
, start
, end
,
1433 phys_section_add(&d
->map
, section
));
1437 static void register_multipage(FlatView
*fv
,
1438 MemoryRegionSection
*section
)
1440 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1441 hwaddr start_addr
= section
->offset_within_address_space
;
1442 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1443 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1447 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1450 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1452 MemoryRegionSection now
= *section
, remain
= *section
;
1453 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1455 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1456 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1457 - now
.offset_within_address_space
;
1459 now
.size
= int128_min(int128_make64(left
), now
.size
);
1460 register_subpage(fv
, &now
);
1462 now
.size
= int128_zero();
1464 while (int128_ne(remain
.size
, now
.size
)) {
1465 remain
.size
= int128_sub(remain
.size
, now
.size
);
1466 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1467 remain
.offset_within_region
+= int128_get64(now
.size
);
1469 if (int128_lt(remain
.size
, page_size
)) {
1470 register_subpage(fv
, &now
);
1471 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1472 now
.size
= page_size
;
1473 register_subpage(fv
, &now
);
1475 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1476 register_multipage(fv
, &now
);
1481 void qemu_flush_coalesced_mmio_buffer(void)
1484 kvm_flush_coalesced_mmio_buffer();
1487 void qemu_mutex_lock_ramlist(void)
1489 qemu_mutex_lock(&ram_list
.mutex
);
1492 void qemu_mutex_unlock_ramlist(void)
1494 qemu_mutex_unlock(&ram_list
.mutex
);
1497 void ram_block_dump(Monitor
*mon
)
1503 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1504 "Block Name", "PSize", "Offset", "Used", "Total");
1505 RAMBLOCK_FOREACH(block
) {
1506 psize
= size_to_str(block
->page_size
);
1507 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1508 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1509 (uint64_t)block
->offset
,
1510 (uint64_t)block
->used_length
,
1511 (uint64_t)block
->max_length
);
1519 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1520 * may or may not name the same files / on the same filesystem now as
1521 * when we actually open and map them. Iterate over the file
1522 * descriptors instead, and use qemu_fd_getpagesize().
1524 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1526 long *hpsize_min
= opaque
;
1528 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1529 long hpsize
= host_memory_backend_pagesize(MEMORY_BACKEND(obj
));
1531 if (hpsize
< *hpsize_min
) {
1532 *hpsize_min
= hpsize
;
1539 long qemu_getrampagesize(void)
1541 long hpsize
= LONG_MAX
;
1542 long mainrampagesize
;
1543 Object
*memdev_root
;
1545 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1547 /* it's possible we have memory-backend objects with
1548 * hugepage-backed RAM. these may get mapped into system
1549 * address space via -numa parameters or memory hotplug
1550 * hooks. we want to take these into account, but we
1551 * also want to make sure these supported hugepage
1552 * sizes are applicable across the entire range of memory
1553 * we may boot from, so we take the min across all
1554 * backends, and assume normal pages in cases where a
1555 * backend isn't backed by hugepages.
1557 memdev_root
= object_resolve_path("/objects", NULL
);
1559 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1561 if (hpsize
== LONG_MAX
) {
1562 /* No additional memory regions found ==> Report main RAM page size */
1563 return mainrampagesize
;
1566 /* If NUMA is disabled or the NUMA nodes are not backed with a
1567 * memory-backend, then there is at least one node using "normal" RAM,
1568 * so if its page size is smaller we have got to report that size instead.
1570 if (hpsize
> mainrampagesize
&&
1571 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1574 error_report("Huge page support disabled (n/a for main memory).");
1577 return mainrampagesize
;
1583 long qemu_getrampagesize(void)
1585 return getpagesize();
1590 static int64_t get_file_size(int fd
)
1592 int64_t size
= lseek(fd
, 0, SEEK_END
);
1599 static int file_ram_open(const char *path
,
1600 const char *region_name
,
1605 char *sanitized_name
;
1611 fd
= open(path
, O_RDWR
);
1613 /* @path names an existing file, use it */
1616 if (errno
== ENOENT
) {
1617 /* @path names a file that doesn't exist, create it */
1618 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1623 } else if (errno
== EISDIR
) {
1624 /* @path names a directory, create a file there */
1625 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1626 sanitized_name
= g_strdup(region_name
);
1627 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1633 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1635 g_free(sanitized_name
);
1637 fd
= mkstemp(filename
);
1645 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1646 error_setg_errno(errp
, errno
,
1647 "can't open backing store %s for guest RAM",
1652 * Try again on EINTR and EEXIST. The latter happens when
1653 * something else creates the file between our two open().
1660 static void *file_ram_alloc(RAMBlock
*block
,
1668 block
->page_size
= qemu_fd_getpagesize(fd
);
1669 if (block
->mr
->align
% block
->page_size
) {
1670 error_setg(errp
, "alignment 0x%" PRIx64
1671 " must be multiples of page size 0x%zx",
1672 block
->mr
->align
, block
->page_size
);
1675 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1676 #if defined(__s390x__)
1677 if (kvm_enabled()) {
1678 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1682 if (memory
< block
->page_size
) {
1683 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1684 "or larger than page size 0x%zx",
1685 memory
, block
->page_size
);
1689 memory
= ROUND_UP(memory
, block
->page_size
);
1692 * ftruncate is not supported by hugetlbfs in older
1693 * hosts, so don't bother bailing out on errors.
1694 * If anything goes wrong with it under other filesystems,
1697 * Do not truncate the non-empty backend file to avoid corrupting
1698 * the existing data in the file. Disabling shrinking is not
1699 * enough. For example, the current vNVDIMM implementation stores
1700 * the guest NVDIMM labels at the end of the backend file. If the
1701 * backend file is later extended, QEMU will not be able to find
1702 * those labels. Therefore, extending the non-empty backend file
1703 * is disabled as well.
1705 if (truncate
&& ftruncate(fd
, memory
)) {
1706 perror("ftruncate");
1709 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1710 block
->flags
& RAM_SHARED
);
1711 if (area
== MAP_FAILED
) {
1712 error_setg_errno(errp
, errno
,
1713 "unable to map backing store for guest RAM");
1718 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1719 if (errp
&& *errp
) {
1720 qemu_ram_munmap(area
, memory
);
1730 /* Allocate space within the ram_addr_t space that governs the
1732 * Called with the ramlist lock held.
1734 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1736 RAMBlock
*block
, *next_block
;
1737 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1739 assert(size
!= 0); /* it would hand out same offset multiple times */
1741 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1745 RAMBLOCK_FOREACH(block
) {
1746 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1748 /* Align blocks to start on a 'long' in the bitmap
1749 * which makes the bitmap sync'ing take the fast path.
1751 candidate
= block
->offset
+ block
->max_length
;
1752 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1754 /* Search for the closest following block
1757 RAMBLOCK_FOREACH(next_block
) {
1758 if (next_block
->offset
>= candidate
) {
1759 next
= MIN(next
, next_block
->offset
);
1763 /* If it fits remember our place and remember the size
1764 * of gap, but keep going so that we might find a smaller
1765 * gap to fill so avoiding fragmentation.
1767 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1769 mingap
= next
- candidate
;
1772 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1775 if (offset
== RAM_ADDR_MAX
) {
1776 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1781 trace_find_ram_offset(size
, offset
);
1786 unsigned long last_ram_page(void)
1789 ram_addr_t last
= 0;
1792 RAMBLOCK_FOREACH(block
) {
1793 last
= MAX(last
, block
->offset
+ block
->max_length
);
1796 return last
>> TARGET_PAGE_BITS
;
1799 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1803 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1804 if (!machine_dump_guest_core(current_machine
)) {
1805 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1807 perror("qemu_madvise");
1808 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1809 "but dump_guest_core=off specified\n");
1814 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1819 bool qemu_ram_is_shared(RAMBlock
*rb
)
1821 return rb
->flags
& RAM_SHARED
;
1824 /* Note: Only set at the start of postcopy */
1825 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1827 return rb
->flags
& RAM_UF_ZEROPAGE
;
1830 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1832 rb
->flags
|= RAM_UF_ZEROPAGE
;
1835 /* Called with iothread lock held. */
1836 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1841 assert(!new_block
->idstr
[0]);
1844 char *id
= qdev_get_dev_path(dev
);
1846 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1850 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1853 RAMBLOCK_FOREACH(block
) {
1854 if (block
!= new_block
&&
1855 !strcmp(block
->idstr
, new_block
->idstr
)) {
1856 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1864 /* Called with iothread lock held. */
1865 void qemu_ram_unset_idstr(RAMBlock
*block
)
1867 /* FIXME: arch_init.c assumes that this is not called throughout
1868 * migration. Ignore the problem since hot-unplug during migration
1869 * does not work anyway.
1872 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1876 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1878 return rb
->page_size
;
1881 /* Returns the largest size of page in use */
1882 size_t qemu_ram_pagesize_largest(void)
1887 RAMBLOCK_FOREACH(block
) {
1888 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1894 static int memory_try_enable_merging(void *addr
, size_t len
)
1896 if (!machine_mem_merge(current_machine
)) {
1897 /* disabled by the user */
1901 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1904 /* Only legal before guest might have detected the memory size: e.g. on
1905 * incoming migration, or right after reset.
1907 * As memory core doesn't know how is memory accessed, it is up to
1908 * resize callback to update device state and/or add assertions to detect
1909 * misuse, if necessary.
1911 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1915 newsize
= HOST_PAGE_ALIGN(newsize
);
1917 if (block
->used_length
== newsize
) {
1921 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1922 error_setg_errno(errp
, EINVAL
,
1923 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1924 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1925 newsize
, block
->used_length
);
1929 if (block
->max_length
< newsize
) {
1930 error_setg_errno(errp
, EINVAL
,
1931 "Length too large: %s: 0x" RAM_ADDR_FMT
1932 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1933 newsize
, block
->max_length
);
1937 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1938 block
->used_length
= newsize
;
1939 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1941 memory_region_set_size(block
->mr
, newsize
);
1942 if (block
->resized
) {
1943 block
->resized(block
->idstr
, newsize
, block
->host
);
1948 /* Called with ram_list.mutex held */
1949 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1950 ram_addr_t new_ram_size
)
1952 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1953 DIRTY_MEMORY_BLOCK_SIZE
);
1954 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1955 DIRTY_MEMORY_BLOCK_SIZE
);
1958 /* Only need to extend if block count increased */
1959 if (new_num_blocks
<= old_num_blocks
) {
1963 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1964 DirtyMemoryBlocks
*old_blocks
;
1965 DirtyMemoryBlocks
*new_blocks
;
1968 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1969 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1970 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1972 if (old_num_blocks
) {
1973 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1974 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1977 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1978 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1981 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1984 g_free_rcu(old_blocks
, rcu
);
1989 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
1992 RAMBlock
*last_block
= NULL
;
1993 ram_addr_t old_ram_size
, new_ram_size
;
1996 old_ram_size
= last_ram_page();
1998 qemu_mutex_lock_ramlist();
1999 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2001 if (!new_block
->host
) {
2002 if (xen_enabled()) {
2003 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2004 new_block
->mr
, &err
);
2006 error_propagate(errp
, err
);
2007 qemu_mutex_unlock_ramlist();
2011 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2012 &new_block
->mr
->align
, shared
);
2013 if (!new_block
->host
) {
2014 error_setg_errno(errp
, errno
,
2015 "cannot set up guest memory '%s'",
2016 memory_region_name(new_block
->mr
));
2017 qemu_mutex_unlock_ramlist();
2020 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2024 new_ram_size
= MAX(old_ram_size
,
2025 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2026 if (new_ram_size
> old_ram_size
) {
2027 dirty_memory_extend(old_ram_size
, new_ram_size
);
2029 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2030 * QLIST (which has an RCU-friendly variant) does not have insertion at
2031 * tail, so save the last element in last_block.
2033 RAMBLOCK_FOREACH(block
) {
2035 if (block
->max_length
< new_block
->max_length
) {
2040 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2041 } else if (last_block
) {
2042 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2043 } else { /* list is empty */
2044 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2046 ram_list
.mru_block
= NULL
;
2048 /* Write list before version */
2051 qemu_mutex_unlock_ramlist();
2053 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2054 new_block
->used_length
,
2057 if (new_block
->host
) {
2058 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2059 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2060 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2061 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2062 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2067 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2071 RAMBlock
*new_block
;
2072 Error
*local_err
= NULL
;
2075 if (xen_enabled()) {
2076 error_setg(errp
, "-mem-path not supported with Xen");
2080 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2082 "host lacks kvm mmu notifiers, -mem-path unsupported");
2086 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2088 * file_ram_alloc() needs to allocate just like
2089 * phys_mem_alloc, but we haven't bothered to provide
2093 "-mem-path not supported with this accelerator");
2097 size
= HOST_PAGE_ALIGN(size
);
2098 file_size
= get_file_size(fd
);
2099 if (file_size
> 0 && file_size
< size
) {
2100 error_setg(errp
, "backing store %s size 0x%" PRIx64
2101 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2102 mem_path
, file_size
, size
);
2106 new_block
= g_malloc0(sizeof(*new_block
));
2108 new_block
->used_length
= size
;
2109 new_block
->max_length
= size
;
2110 new_block
->flags
= share
? RAM_SHARED
: 0;
2111 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2112 if (!new_block
->host
) {
2117 ram_block_add(new_block
, &local_err
, share
);
2120 error_propagate(errp
, local_err
);
2128 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2129 bool share
, const char *mem_path
,
2136 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2141 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2155 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2156 void (*resized
)(const char*,
2159 void *host
, bool resizeable
, bool share
,
2160 MemoryRegion
*mr
, Error
**errp
)
2162 RAMBlock
*new_block
;
2163 Error
*local_err
= NULL
;
2165 size
= HOST_PAGE_ALIGN(size
);
2166 max_size
= HOST_PAGE_ALIGN(max_size
);
2167 new_block
= g_malloc0(sizeof(*new_block
));
2169 new_block
->resized
= resized
;
2170 new_block
->used_length
= size
;
2171 new_block
->max_length
= max_size
;
2172 assert(max_size
>= size
);
2174 new_block
->page_size
= getpagesize();
2175 new_block
->host
= host
;
2177 new_block
->flags
|= RAM_PREALLOC
;
2180 new_block
->flags
|= RAM_RESIZEABLE
;
2182 ram_block_add(new_block
, &local_err
, share
);
2185 error_propagate(errp
, local_err
);
2191 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2192 MemoryRegion
*mr
, Error
**errp
)
2194 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2198 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2199 MemoryRegion
*mr
, Error
**errp
)
2201 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2205 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2206 void (*resized
)(const char*,
2209 MemoryRegion
*mr
, Error
**errp
)
2211 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2215 static void reclaim_ramblock(RAMBlock
*block
)
2217 if (block
->flags
& RAM_PREALLOC
) {
2219 } else if (xen_enabled()) {
2220 xen_invalidate_map_cache_entry(block
->host
);
2222 } else if (block
->fd
>= 0) {
2223 qemu_ram_munmap(block
->host
, block
->max_length
);
2227 qemu_anon_ram_free(block
->host
, block
->max_length
);
2232 void qemu_ram_free(RAMBlock
*block
)
2239 ram_block_notify_remove(block
->host
, block
->max_length
);
2242 qemu_mutex_lock_ramlist();
2243 QLIST_REMOVE_RCU(block
, next
);
2244 ram_list
.mru_block
= NULL
;
2245 /* Write list before version */
2248 call_rcu(block
, reclaim_ramblock
, rcu
);
2249 qemu_mutex_unlock_ramlist();
2253 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2260 RAMBLOCK_FOREACH(block
) {
2261 offset
= addr
- block
->offset
;
2262 if (offset
< block
->max_length
) {
2263 vaddr
= ramblock_ptr(block
, offset
);
2264 if (block
->flags
& RAM_PREALLOC
) {
2266 } else if (xen_enabled()) {
2270 if (block
->fd
>= 0) {
2271 flags
|= (block
->flags
& RAM_SHARED
?
2272 MAP_SHARED
: MAP_PRIVATE
);
2273 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2274 flags
, block
->fd
, offset
);
2277 * Remap needs to match alloc. Accelerators that
2278 * set phys_mem_alloc never remap. If they did,
2279 * we'd need a remap hook here.
2281 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2283 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2284 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2287 if (area
!= vaddr
) {
2288 error_report("Could not remap addr: "
2289 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2293 memory_try_enable_merging(vaddr
, length
);
2294 qemu_ram_setup_dump(vaddr
, length
);
2299 #endif /* !_WIN32 */
2301 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2302 * This should not be used for general purpose DMA. Use address_space_map
2303 * or address_space_rw instead. For local memory (e.g. video ram) that the
2304 * device owns, use memory_region_get_ram_ptr.
2306 * Called within RCU critical section.
2308 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2310 RAMBlock
*block
= ram_block
;
2312 if (block
== NULL
) {
2313 block
= qemu_get_ram_block(addr
);
2314 addr
-= block
->offset
;
2317 if (xen_enabled() && block
->host
== NULL
) {
2318 /* We need to check if the requested address is in the RAM
2319 * because we don't want to map the entire memory in QEMU.
2320 * In that case just map until the end of the page.
2322 if (block
->offset
== 0) {
2323 return xen_map_cache(addr
, 0, 0, false);
2326 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2328 return ramblock_ptr(block
, addr
);
2331 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2332 * but takes a size argument.
2334 * Called within RCU critical section.
2336 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2337 hwaddr
*size
, bool lock
)
2339 RAMBlock
*block
= ram_block
;
2344 if (block
== NULL
) {
2345 block
= qemu_get_ram_block(addr
);
2346 addr
-= block
->offset
;
2348 *size
= MIN(*size
, block
->max_length
- addr
);
2350 if (xen_enabled() && block
->host
== NULL
) {
2351 /* We need to check if the requested address is in the RAM
2352 * because we don't want to map the entire memory in QEMU.
2353 * In that case just map the requested area.
2355 if (block
->offset
== 0) {
2356 return xen_map_cache(addr
, *size
, lock
, lock
);
2359 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2362 return ramblock_ptr(block
, addr
);
2365 /* Return the offset of a hostpointer within a ramblock */
2366 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2368 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2369 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2370 assert(res
< rb
->max_length
);
2376 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2379 * ptr: Host pointer to look up
2380 * round_offset: If true round the result offset down to a page boundary
2381 * *ram_addr: set to result ram_addr
2382 * *offset: set to result offset within the RAMBlock
2384 * Returns: RAMBlock (or NULL if not found)
2386 * By the time this function returns, the returned pointer is not protected
2387 * by RCU anymore. If the caller is not within an RCU critical section and
2388 * does not hold the iothread lock, it must have other means of protecting the
2389 * pointer, such as a reference to the region that includes the incoming
2392 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2396 uint8_t *host
= ptr
;
2398 if (xen_enabled()) {
2399 ram_addr_t ram_addr
;
2401 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2402 block
= qemu_get_ram_block(ram_addr
);
2404 *offset
= ram_addr
- block
->offset
;
2411 block
= atomic_rcu_read(&ram_list
.mru_block
);
2412 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2416 RAMBLOCK_FOREACH(block
) {
2417 /* This case append when the block is not mapped. */
2418 if (block
->host
== NULL
) {
2421 if (host
- block
->host
< block
->max_length
) {
2430 *offset
= (host
- block
->host
);
2432 *offset
&= TARGET_PAGE_MASK
;
2439 * Finds the named RAMBlock
2441 * name: The name of RAMBlock to find
2443 * Returns: RAMBlock (or NULL if not found)
2445 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2449 RAMBLOCK_FOREACH(block
) {
2450 if (!strcmp(name
, block
->idstr
)) {
2458 /* Some of the softmmu routines need to translate from a host pointer
2459 (typically a TLB entry) back to a ram offset. */
2460 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2465 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2467 return RAM_ADDR_INVALID
;
2470 return block
->offset
+ offset
;
2473 /* Called within RCU critical section. */
2474 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2477 ram_addr_t ram_addr
,
2481 ndi
->ram_addr
= ram_addr
;
2482 ndi
->mem_vaddr
= mem_vaddr
;
2484 ndi
->locked
= false;
2486 assert(tcg_enabled());
2487 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2490 tb_invalidate_phys_page_fast(ram_addr
, size
);
2494 /* Called within RCU critical section. */
2495 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2501 /* Set both VGA and migration bits for simplicity and to remove
2502 * the notdirty callback faster.
2504 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2505 DIRTY_CLIENTS_NOCODE
);
2506 /* we remove the notdirty callback only if the code has been
2508 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2509 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2513 /* Called within RCU critical section. */
2514 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2515 uint64_t val
, unsigned size
)
2519 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2524 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2527 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2530 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2533 stq_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2538 memory_notdirty_write_complete(&ndi
);
2541 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2542 unsigned size
, bool is_write
)
2547 static const MemoryRegionOps notdirty_mem_ops
= {
2548 .write
= notdirty_mem_write
,
2549 .valid
.accepts
= notdirty_mem_accepts
,
2550 .endianness
= DEVICE_NATIVE_ENDIAN
,
2552 .min_access_size
= 1,
2553 .max_access_size
= 8,
2557 .min_access_size
= 1,
2558 .max_access_size
= 8,
2563 /* Generate a debug exception if a watchpoint has been hit. */
2564 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2566 CPUState
*cpu
= current_cpu
;
2567 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2571 assert(tcg_enabled());
2572 if (cpu
->watchpoint_hit
) {
2573 /* We re-entered the check after replacing the TB. Now raise
2574 * the debug interrupt so that is will trigger after the
2575 * current instruction. */
2576 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2579 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2580 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2581 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2582 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2583 && (wp
->flags
& flags
)) {
2584 if (flags
== BP_MEM_READ
) {
2585 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2587 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2589 wp
->hitaddr
= vaddr
;
2590 wp
->hitattrs
= attrs
;
2591 if (!cpu
->watchpoint_hit
) {
2592 if (wp
->flags
& BP_CPU
&&
2593 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2594 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2597 cpu
->watchpoint_hit
= wp
;
2599 /* Both tb_lock and iothread_mutex will be reset when
2600 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2601 * back into the cpu_exec main loop.
2604 tb_check_watchpoint(cpu
);
2605 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2606 cpu
->exception_index
= EXCP_DEBUG
;
2609 /* Force execution of one insn next time. */
2610 cpu
->cflags_next_tb
= 1 | curr_cflags();
2611 cpu_loop_exit_noexc(cpu
);
2615 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2620 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2621 so these check for a hit then pass through to the normal out-of-line
2623 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2624 unsigned size
, MemTxAttrs attrs
)
2628 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2629 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2631 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2634 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2637 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2640 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2643 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2651 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2652 uint64_t val
, unsigned size
,
2656 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2657 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2659 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2662 address_space_stb(as
, addr
, val
, attrs
, &res
);
2665 address_space_stw(as
, addr
, val
, attrs
, &res
);
2668 address_space_stl(as
, addr
, val
, attrs
, &res
);
2671 address_space_stq(as
, addr
, val
, attrs
, &res
);
2678 static const MemoryRegionOps watch_mem_ops
= {
2679 .read_with_attrs
= watch_mem_read
,
2680 .write_with_attrs
= watch_mem_write
,
2681 .endianness
= DEVICE_NATIVE_ENDIAN
,
2683 .min_access_size
= 1,
2684 .max_access_size
= 8,
2688 .min_access_size
= 1,
2689 .max_access_size
= 8,
2694 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2695 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2696 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2697 const uint8_t *buf
, int len
);
2698 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2701 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2702 unsigned len
, MemTxAttrs attrs
)
2704 subpage_t
*subpage
= opaque
;
2708 #if defined(DEBUG_SUBPAGE)
2709 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2710 subpage
, len
, addr
);
2712 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2718 *data
= ldub_p(buf
);
2721 *data
= lduw_p(buf
);
2734 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2735 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2737 subpage_t
*subpage
= opaque
;
2740 #if defined(DEBUG_SUBPAGE)
2741 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2742 " value %"PRIx64
"\n",
2743 __func__
, subpage
, len
, addr
, value
);
2761 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2764 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2765 unsigned len
, bool is_write
)
2767 subpage_t
*subpage
= opaque
;
2768 #if defined(DEBUG_SUBPAGE)
2769 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2770 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2773 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2777 static const MemoryRegionOps subpage_ops
= {
2778 .read_with_attrs
= subpage_read
,
2779 .write_with_attrs
= subpage_write
,
2780 .impl
.min_access_size
= 1,
2781 .impl
.max_access_size
= 8,
2782 .valid
.min_access_size
= 1,
2783 .valid
.max_access_size
= 8,
2784 .valid
.accepts
= subpage_accepts
,
2785 .endianness
= DEVICE_NATIVE_ENDIAN
,
2788 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2793 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2795 idx
= SUBPAGE_IDX(start
);
2796 eidx
= SUBPAGE_IDX(end
);
2797 #if defined(DEBUG_SUBPAGE)
2798 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2799 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2801 for (; idx
<= eidx
; idx
++) {
2802 mmio
->sub_section
[idx
] = section
;
2808 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2812 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2815 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2816 NULL
, TARGET_PAGE_SIZE
);
2817 mmio
->iomem
.subpage
= true;
2818 #if defined(DEBUG_SUBPAGE)
2819 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2820 mmio
, base
, TARGET_PAGE_SIZE
);
2822 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2827 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2830 MemoryRegionSection section
= {
2833 .offset_within_address_space
= 0,
2834 .offset_within_region
= 0,
2835 .size
= int128_2_64(),
2838 return phys_section_add(map
, §ion
);
2841 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2842 uint64_t val
, unsigned size
)
2844 /* Ignore any write to ROM. */
2847 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2848 unsigned size
, bool is_write
)
2853 /* This will only be used for writes, because reads are special cased
2854 * to directly access the underlying host ram.
2856 static const MemoryRegionOps readonly_mem_ops
= {
2857 .write
= readonly_mem_write
,
2858 .valid
.accepts
= readonly_mem_accepts
,
2859 .endianness
= DEVICE_NATIVE_ENDIAN
,
2861 .min_access_size
= 1,
2862 .max_access_size
= 8,
2866 .min_access_size
= 1,
2867 .max_access_size
= 8,
2872 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2874 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2875 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2876 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2877 MemoryRegionSection
*sections
= d
->map
.sections
;
2879 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2882 static void io_mem_init(void)
2884 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
2885 NULL
, NULL
, UINT64_MAX
);
2886 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2889 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2890 * which can be called without the iothread mutex.
2892 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2894 memory_region_clear_global_locking(&io_mem_notdirty
);
2896 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2900 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2902 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2905 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2906 assert(n
== PHYS_SECTION_UNASSIGNED
);
2907 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
2908 assert(n
== PHYS_SECTION_NOTDIRTY
);
2909 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
2910 assert(n
== PHYS_SECTION_ROM
);
2911 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
2912 assert(n
== PHYS_SECTION_WATCH
);
2914 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2919 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2921 phys_sections_free(&d
->map
);
2925 static void tcg_commit(MemoryListener
*listener
)
2927 CPUAddressSpace
*cpuas
;
2928 AddressSpaceDispatch
*d
;
2930 /* since each CPU stores ram addresses in its TLB cache, we must
2931 reset the modified entries */
2932 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2933 cpu_reloading_memory_map();
2934 /* The CPU and TLB are protected by the iothread lock.
2935 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2936 * may have split the RCU critical section.
2938 d
= address_space_to_dispatch(cpuas
->as
);
2939 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2940 tlb_flush(cpuas
->cpu
);
2943 static void memory_map_init(void)
2945 system_memory
= g_malloc(sizeof(*system_memory
));
2947 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2948 address_space_init(&address_space_memory
, system_memory
, "memory");
2950 system_io
= g_malloc(sizeof(*system_io
));
2951 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2953 address_space_init(&address_space_io
, system_io
, "I/O");
2956 MemoryRegion
*get_system_memory(void)
2958 return system_memory
;
2961 MemoryRegion
*get_system_io(void)
2966 #endif /* !defined(CONFIG_USER_ONLY) */
2968 /* physical memory access (slow version, mainly for debug) */
2969 #if defined(CONFIG_USER_ONLY)
2970 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2971 uint8_t *buf
, int len
, int is_write
)
2978 page
= addr
& TARGET_PAGE_MASK
;
2979 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2982 flags
= page_get_flags(page
);
2983 if (!(flags
& PAGE_VALID
))
2986 if (!(flags
& PAGE_WRITE
))
2988 /* XXX: this code should not depend on lock_user */
2989 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2992 unlock_user(p
, addr
, l
);
2994 if (!(flags
& PAGE_READ
))
2996 /* XXX: this code should not depend on lock_user */
2997 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3000 unlock_user(p
, addr
, 0);
3011 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3014 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3015 addr
+= memory_region_get_ram_addr(mr
);
3017 /* No early return if dirty_log_mask is or becomes 0, because
3018 * cpu_physical_memory_set_dirty_range will still call
3019 * xen_modified_memory.
3021 if (dirty_log_mask
) {
3023 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3025 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3026 assert(tcg_enabled());
3028 tb_invalidate_phys_range(addr
, addr
+ length
);
3030 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3032 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3035 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3037 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3039 /* Regions are assumed to support 1-4 byte accesses unless
3040 otherwise specified. */
3041 if (access_size_max
== 0) {
3042 access_size_max
= 4;
3045 /* Bound the maximum access by the alignment of the address. */
3046 if (!mr
->ops
->impl
.unaligned
) {
3047 unsigned align_size_max
= addr
& -addr
;
3048 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3049 access_size_max
= align_size_max
;
3053 /* Don't attempt accesses larger than the maximum. */
3054 if (l
> access_size_max
) {
3055 l
= access_size_max
;
3062 static bool prepare_mmio_access(MemoryRegion
*mr
)
3064 bool unlocked
= !qemu_mutex_iothread_locked();
3065 bool release_lock
= false;
3067 if (unlocked
&& mr
->global_locking
) {
3068 qemu_mutex_lock_iothread();
3070 release_lock
= true;
3072 if (mr
->flush_coalesced_mmio
) {
3074 qemu_mutex_lock_iothread();
3076 qemu_flush_coalesced_mmio_buffer();
3078 qemu_mutex_unlock_iothread();
3082 return release_lock
;
3085 /* Called within RCU critical section. */
3086 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3089 int len
, hwaddr addr1
,
3090 hwaddr l
, MemoryRegion
*mr
)
3094 MemTxResult result
= MEMTX_OK
;
3095 bool release_lock
= false;
3098 if (!memory_access_is_direct(mr
, true)) {
3099 release_lock
|= prepare_mmio_access(mr
);
3100 l
= memory_access_size(mr
, l
, addr1
);
3101 /* XXX: could force current_cpu to NULL to avoid
3105 /* 64 bit write access */
3107 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
3111 /* 32 bit write access */
3112 val
= (uint32_t)ldl_p(buf
);
3113 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
3117 /* 16 bit write access */
3119 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
3123 /* 8 bit write access */
3125 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
3133 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3134 memcpy(ptr
, buf
, l
);
3135 invalidate_and_set_dirty(mr
, addr1
, l
);
3139 qemu_mutex_unlock_iothread();
3140 release_lock
= false;
3152 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3158 /* Called from RCU critical section. */
3159 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3160 const uint8_t *buf
, int len
)
3165 MemTxResult result
= MEMTX_OK
;
3168 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3169 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3175 /* Called within RCU critical section. */
3176 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3177 MemTxAttrs attrs
, uint8_t *buf
,
3178 int len
, hwaddr addr1
, hwaddr l
,
3183 MemTxResult result
= MEMTX_OK
;
3184 bool release_lock
= false;
3187 if (!memory_access_is_direct(mr
, false)) {
3189 release_lock
|= prepare_mmio_access(mr
);
3190 l
= memory_access_size(mr
, l
, addr1
);
3193 /* 64 bit read access */
3194 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
3199 /* 32 bit read access */
3200 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
3205 /* 16 bit read access */
3206 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
3211 /* 8 bit read access */
3212 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3221 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3222 memcpy(buf
, ptr
, l
);
3226 qemu_mutex_unlock_iothread();
3227 release_lock
= false;
3239 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3245 /* Called from RCU critical section. */
3246 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3247 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3254 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3255 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3259 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3260 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3262 MemTxResult result
= MEMTX_OK
;
3267 fv
= address_space_to_flatview(as
);
3268 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3275 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3277 const uint8_t *buf
, int len
)
3279 MemTxResult result
= MEMTX_OK
;
3284 fv
= address_space_to_flatview(as
);
3285 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3292 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3293 uint8_t *buf
, int len
, bool is_write
)
3296 return address_space_write(as
, addr
, attrs
, buf
, len
);
3298 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3302 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3303 int len
, int is_write
)
3305 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3306 buf
, len
, is_write
);
3309 enum write_rom_type
{
3314 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3315 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3325 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3327 if (!(memory_region_is_ram(mr
) ||
3328 memory_region_is_romd(mr
))) {
3329 l
= memory_access_size(mr
, l
, addr1
);
3332 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3335 memcpy(ptr
, buf
, l
);
3336 invalidate_and_set_dirty(mr
, addr1
, l
);
3339 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3350 /* used for ROM loading : can write in RAM and ROM */
3351 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3352 const uint8_t *buf
, int len
)
3354 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3357 void cpu_flush_icache_range(hwaddr start
, int len
)
3360 * This function should do the same thing as an icache flush that was
3361 * triggered from within the guest. For TCG we are always cache coherent,
3362 * so there is no need to flush anything. For KVM / Xen we need to flush
3363 * the host's instruction cache at least.
3365 if (tcg_enabled()) {
3369 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3370 start
, NULL
, len
, FLUSH_CACHE
);
3381 static BounceBuffer bounce
;
3383 typedef struct MapClient
{
3385 QLIST_ENTRY(MapClient
) link
;
3388 QemuMutex map_client_list_lock
;
3389 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3390 = QLIST_HEAD_INITIALIZER(map_client_list
);
3392 static void cpu_unregister_map_client_do(MapClient
*client
)
3394 QLIST_REMOVE(client
, link
);
3398 static void cpu_notify_map_clients_locked(void)
3402 while (!QLIST_EMPTY(&map_client_list
)) {
3403 client
= QLIST_FIRST(&map_client_list
);
3404 qemu_bh_schedule(client
->bh
);
3405 cpu_unregister_map_client_do(client
);
3409 void cpu_register_map_client(QEMUBH
*bh
)
3411 MapClient
*client
= g_malloc(sizeof(*client
));
3413 qemu_mutex_lock(&map_client_list_lock
);
3415 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3416 if (!atomic_read(&bounce
.in_use
)) {
3417 cpu_notify_map_clients_locked();
3419 qemu_mutex_unlock(&map_client_list_lock
);
3422 void cpu_exec_init_all(void)
3424 qemu_mutex_init(&ram_list
.mutex
);
3425 /* The data structures we set up here depend on knowing the page size,
3426 * so no more changes can be made after this point.
3427 * In an ideal world, nothing we did before we had finished the
3428 * machine setup would care about the target page size, and we could
3429 * do this much later, rather than requiring board models to state
3430 * up front what their requirements are.
3432 finalize_target_page_bits();
3435 qemu_mutex_init(&map_client_list_lock
);
3438 void cpu_unregister_map_client(QEMUBH
*bh
)
3442 qemu_mutex_lock(&map_client_list_lock
);
3443 QLIST_FOREACH(client
, &map_client_list
, link
) {
3444 if (client
->bh
== bh
) {
3445 cpu_unregister_map_client_do(client
);
3449 qemu_mutex_unlock(&map_client_list_lock
);
3452 static void cpu_notify_map_clients(void)
3454 qemu_mutex_lock(&map_client_list_lock
);
3455 cpu_notify_map_clients_locked();
3456 qemu_mutex_unlock(&map_client_list_lock
);
3459 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3467 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3468 if (!memory_access_is_direct(mr
, is_write
)) {
3469 l
= memory_access_size(mr
, l
, addr
);
3470 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3481 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3482 int len
, bool is_write
)
3488 fv
= address_space_to_flatview(as
);
3489 result
= flatview_access_valid(fv
, addr
, len
, is_write
);
3495 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3497 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3502 MemoryRegion
*this_mr
;
3508 if (target_len
== 0) {
3513 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3515 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3521 /* Map a physical memory region into a host virtual address.
3522 * May map a subset of the requested range, given by and returned in *plen.
3523 * May return NULL if resources needed to perform the mapping are exhausted.
3524 * Use only for reads OR writes - not for read-modify-write operations.
3525 * Use cpu_register_map_client() to know when retrying the map operation is
3526 * likely to succeed.
3528 void *address_space_map(AddressSpace
*as
,
3545 fv
= address_space_to_flatview(as
);
3546 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3548 if (!memory_access_is_direct(mr
, is_write
)) {
3549 if (atomic_xchg(&bounce
.in_use
, true)) {
3553 /* Avoid unbounded allocations */
3554 l
= MIN(l
, TARGET_PAGE_SIZE
);
3555 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3559 memory_region_ref(mr
);
3562 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3568 return bounce
.buffer
;
3572 memory_region_ref(mr
);
3573 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3575 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3581 /* Unmaps a memory region previously mapped by address_space_map().
3582 * Will also mark the memory as dirty if is_write == 1. access_len gives
3583 * the amount of memory that was actually read or written by the caller.
3585 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3586 int is_write
, hwaddr access_len
)
3588 if (buffer
!= bounce
.buffer
) {
3592 mr
= memory_region_from_host(buffer
, &addr1
);
3595 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3597 if (xen_enabled()) {
3598 xen_invalidate_map_cache_entry(buffer
);
3600 memory_region_unref(mr
);
3604 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3605 bounce
.buffer
, access_len
);
3607 qemu_vfree(bounce
.buffer
);
3608 bounce
.buffer
= NULL
;
3609 memory_region_unref(bounce
.mr
);
3610 atomic_mb_set(&bounce
.in_use
, false);
3611 cpu_notify_map_clients();
3614 void *cpu_physical_memory_map(hwaddr addr
,
3618 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3621 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3622 int is_write
, hwaddr access_len
)
3624 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3627 #define ARG1_DECL AddressSpace *as
3630 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3631 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3632 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3633 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3634 #define RCU_READ_LOCK(...) rcu_read_lock()
3635 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3636 #include "memory_ldst.inc.c"
3638 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3644 AddressSpaceDispatch
*d
;
3651 cache
->fv
= address_space_get_flatview(as
);
3652 d
= flatview_to_dispatch(cache
->fv
);
3653 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3656 memory_region_ref(mr
);
3657 if (memory_access_is_direct(mr
, is_write
)) {
3658 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3659 cache
->xlat
, l
, is_write
);
3660 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3666 cache
->is_write
= is_write
;
3670 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3674 assert(cache
->is_write
);
3675 if (likely(cache
->ptr
)) {
3676 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3680 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3682 if (!cache
->mrs
.mr
) {
3686 if (xen_enabled()) {
3687 xen_invalidate_map_cache_entry(cache
->ptr
);
3689 memory_region_unref(cache
->mrs
.mr
);
3690 flatview_unref(cache
->fv
);
3691 cache
->mrs
.mr
= NULL
;
3695 /* Called from RCU critical section. This function has the same
3696 * semantics as address_space_translate, but it only works on a
3697 * predefined range of a MemoryRegion that was mapped with
3698 * address_space_cache_init.
3700 static inline MemoryRegion
*address_space_translate_cached(
3701 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3702 hwaddr
*plen
, bool is_write
)
3704 MemoryRegionSection section
;
3706 IOMMUMemoryRegion
*iommu_mr
;
3707 AddressSpace
*target_as
;
3709 assert(!cache
->ptr
);
3710 *xlat
= addr
+ cache
->xlat
;
3713 iommu_mr
= memory_region_get_iommu(mr
);
3719 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3720 NULL
, is_write
, true,
3725 /* Called from RCU critical section. address_space_read_cached uses this
3726 * out of line function when the target is an MMIO or IOMMU region.
3729 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3736 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false);
3737 flatview_read_continue(cache
->fv
,
3738 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3742 /* Called from RCU critical section. address_space_write_cached uses this
3743 * out of line function when the target is an MMIO or IOMMU region.
3746 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3747 const void *buf
, int len
)
3753 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true);
3754 flatview_write_continue(cache
->fv
,
3755 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3759 #define ARG1_DECL MemoryRegionCache *cache
3761 #define SUFFIX _cached_slow
3762 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3763 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3764 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3765 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3766 #define RCU_READ_LOCK() ((void)0)
3767 #define RCU_READ_UNLOCK() ((void)0)
3768 #include "memory_ldst.inc.c"
3770 /* virtual memory access for debug (includes writing to ROM) */
3771 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3772 uint8_t *buf
, int len
, int is_write
)
3778 cpu_synchronize_state(cpu
);
3783 page
= addr
& TARGET_PAGE_MASK
;
3784 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3785 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3786 /* if no physical page mapped, return an error */
3787 if (phys_addr
== -1)
3789 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3792 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3794 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3797 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3798 MEMTXATTRS_UNSPECIFIED
,
3809 * Allows code that needs to deal with migration bitmaps etc to still be built
3810 * target independent.
3812 size_t qemu_target_page_size(void)
3814 return TARGET_PAGE_SIZE
;
3817 int qemu_target_page_bits(void)
3819 return TARGET_PAGE_BITS
;
3822 int qemu_target_page_bits_min(void)
3824 return TARGET_PAGE_BITS_MIN
;
3829 * A helper function for the _utterly broken_ virtio device model to find out if
3830 * it's running on a big endian machine. Don't do this at home kids!
3832 bool target_words_bigendian(void);
3833 bool target_words_bigendian(void)
3835 #if defined(TARGET_WORDS_BIGENDIAN)
3842 #ifndef CONFIG_USER_ONLY
3843 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3850 mr
= address_space_translate(&address_space_memory
,
3851 phys_addr
, &phys_addr
, &l
, false);
3853 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3858 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3864 RAMBLOCK_FOREACH(block
) {
3865 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3866 block
->used_length
, opaque
);
3876 * Unmap pages of memory from start to start+length such that
3877 * they a) read as 0, b) Trigger whatever fault mechanism
3878 * the OS provides for postcopy.
3879 * The pages must be unmapped by the end of the function.
3880 * Returns: 0 on success, none-0 on failure
3883 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3887 uint8_t *host_startaddr
= rb
->host
+ start
;
3889 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3890 error_report("ram_block_discard_range: Unaligned start address: %p",
3895 if ((start
+ length
) <= rb
->used_length
) {
3896 bool need_madvise
, need_fallocate
;
3897 uint8_t *host_endaddr
= host_startaddr
+ length
;
3898 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3899 error_report("ram_block_discard_range: Unaligned end address: %p",
3904 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3906 /* The logic here is messy;
3907 * madvise DONTNEED fails for hugepages
3908 * fallocate works on hugepages and shmem
3910 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3911 need_fallocate
= rb
->fd
!= -1;
3912 if (need_fallocate
) {
3913 /* For a file, this causes the area of the file to be zero'd
3914 * if read, and for hugetlbfs also causes it to be unmapped
3915 * so a userfault will trigger.
3917 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3918 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3922 error_report("ram_block_discard_range: Failed to fallocate "
3923 "%s:%" PRIx64
" +%zx (%d)",
3924 rb
->idstr
, start
, length
, ret
);
3929 error_report("ram_block_discard_range: fallocate not available/file"
3930 "%s:%" PRIx64
" +%zx (%d)",
3931 rb
->idstr
, start
, length
, ret
);
3936 /* For normal RAM this causes it to be unmapped,
3937 * for shared memory it causes the local mapping to disappear
3938 * and to fall back on the file contents (which we just
3939 * fallocate'd away).
3941 #if defined(CONFIG_MADVISE)
3942 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3945 error_report("ram_block_discard_range: Failed to discard range "
3946 "%s:%" PRIx64
" +%zx (%d)",
3947 rb
->idstr
, start
, length
, ret
);
3952 error_report("ram_block_discard_range: MADVISE not available"
3953 "%s:%" PRIx64
" +%zx (%d)",
3954 rb
->idstr
, start
, length
, ret
);
3958 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3959 need_madvise
, need_fallocate
, ret
);
3961 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3962 "/%zx/" RAM_ADDR_FMT
")",
3963 rb
->idstr
, start
, length
, rb
->used_length
);
3972 void page_size_init(void)
3974 /* NOTE: we can always suppose that qemu_host_page_size >=
3976 if (qemu_host_page_size
== 0) {
3977 qemu_host_page_size
= qemu_real_host_page_size
;
3979 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3980 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3982 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3985 #if !defined(CONFIG_USER_ONLY)
3987 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
3988 int start
, int end
, int skip
, int ptr
)
3990 if (start
== end
- 1) {
3991 mon(f
, "\t%3d ", start
);
3993 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
3995 mon(f
, " skip=%d ", skip
);
3996 if (ptr
== PHYS_MAP_NODE_NIL
) {
3999 mon(f
, " ptr=#%d", ptr
);
4001 mon(f
, " ptr=[%d]", ptr
);
4006 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4007 int128_sub((size), int128_one())) : 0)
4009 void mtree_print_dispatch(fprintf_function mon
, void *f
,
4010 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4014 mon(f
, " Dispatch\n");
4015 mon(f
, " Physical sections\n");
4017 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4018 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4019 const char *names
[] = { " [unassigned]", " [not dirty]",
4020 " [ROM]", " [watch]" };
4022 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
4024 s
->offset_within_address_space
,
4025 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4026 s
->mr
->name
? s
->mr
->name
: "(noname)",
4027 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4028 s
->mr
== root
? " [ROOT]" : "",
4029 s
== d
->mru_section
? " [MRU]" : "",
4030 s
->mr
->is_iommu
? " [iommu]" : "");
4033 mon(f
, " alias=%s", s
->mr
->alias
->name
?
4034 s
->mr
->alias
->name
: "noname");
4039 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4040 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4041 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4044 Node
*n
= d
->map
.nodes
+ i
;
4046 mon(f
, " [%d]\n", i
);
4048 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4049 PhysPageEntry
*pe
= *n
+ j
;
4051 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4055 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
4061 if (jprev
!= ARRAY_SIZE(*n
)) {
4062 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);