qcow2: manually add more coroutine_fn annotations
[qemu.git] / hw / intc / arm_gicv3_common.c
blob351843db4aac35526b9dedcd239dac4dccb299a8
1 /*
2 * ARM GICv3 support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Copyright (c) 2015 Huawei.
6 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7 * Written by Peter Maydell
8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/module.h"
27 #include "hw/core/cpu.h"
28 #include "hw/intc/arm_gicv3_common.h"
29 #include "hw/qdev-properties.h"
30 #include "migration/vmstate.h"
31 #include "gicv3_internal.h"
32 #include "hw/arm/linux-boot-if.h"
33 #include "sysemu/kvm.h"
36 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs)
38 if (cs->gicd_no_migration_shift_bug) {
39 return;
42 /* Older versions of QEMU had a bug in the handling of state save/restore
43 * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
44 * so that instead of the data for external interrupts 32 and up
45 * starting at bit position 32 in the bitmap, it started at bit
46 * position 64. If we're receiving data from a QEMU with that bug,
47 * we must move the data down into the right place.
49 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
50 sizeof(cs->group) - GIC_INTERNAL / 8);
51 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
52 sizeof(cs->grpmod) - GIC_INTERNAL / 8);
53 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
54 sizeof(cs->enabled) - GIC_INTERNAL / 8);
55 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
56 sizeof(cs->pending) - GIC_INTERNAL / 8);
57 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
58 sizeof(cs->active) - GIC_INTERNAL / 8);
59 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
60 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
63 * While this new version QEMU doesn't have this kind of bug as we fix it,
64 * so it needs to set the flag to true to indicate that and it's necessary
65 * for next migration to work from this new version QEMU.
67 cs->gicd_no_migration_shift_bug = true;
70 static int gicv3_pre_save(void *opaque)
72 GICv3State *s = (GICv3State *)opaque;
73 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
75 if (c->pre_save) {
76 c->pre_save(s);
79 return 0;
82 static int gicv3_post_load(void *opaque, int version_id)
84 GICv3State *s = (GICv3State *)opaque;
85 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
87 gicv3_gicd_no_migration_shift_bug_post_load(s);
89 if (c->post_load) {
90 c->post_load(s);
92 return 0;
95 static bool virt_state_needed(void *opaque)
97 GICv3CPUState *cs = opaque;
99 return cs->num_list_regs != 0;
102 static const VMStateDescription vmstate_gicv3_cpu_virt = {
103 .name = "arm_gicv3_cpu/virt",
104 .version_id = 1,
105 .minimum_version_id = 1,
106 .needed = virt_state_needed,
107 .fields = (VMStateField[]) {
108 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
109 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
110 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
111 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
112 VMSTATE_END_OF_LIST()
116 static int vmstate_gicv3_cpu_pre_load(void *opaque)
118 GICv3CPUState *cs = opaque;
121 * If the sre_el1 subsection is not transferred this
122 * means SRE_EL1 is 0x7 (which might not be the same as
123 * our reset value).
125 cs->icc_sre_el1 = 0x7;
126 return 0;
129 static bool icc_sre_el1_reg_needed(void *opaque)
131 GICv3CPUState *cs = opaque;
133 return cs->icc_sre_el1 != 7;
136 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
137 .name = "arm_gicv3_cpu/sre_el1",
138 .version_id = 1,
139 .minimum_version_id = 1,
140 .needed = icc_sre_el1_reg_needed,
141 .fields = (VMStateField[]) {
142 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
143 VMSTATE_END_OF_LIST()
147 static bool gicv4_needed(void *opaque)
149 GICv3CPUState *cs = opaque;
151 return cs->gic->revision > 3;
154 const VMStateDescription vmstate_gicv3_gicv4 = {
155 .name = "arm_gicv3_cpu/gicv4",
156 .version_id = 1,
157 .minimum_version_id = 1,
158 .needed = gicv4_needed,
159 .fields = (VMStateField[]) {
160 VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState),
161 VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState),
162 VMSTATE_END_OF_LIST()
166 static const VMStateDescription vmstate_gicv3_cpu = {
167 .name = "arm_gicv3_cpu",
168 .version_id = 1,
169 .minimum_version_id = 1,
170 .pre_load = vmstate_gicv3_cpu_pre_load,
171 .fields = (VMStateField[]) {
172 VMSTATE_UINT32(level, GICv3CPUState),
173 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
174 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
175 VMSTATE_UINT32(gicr_waker, GICv3CPUState),
176 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
177 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
178 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
179 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
180 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
181 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
182 VMSTATE_UINT32(edge_trigger, GICv3CPUState),
183 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
184 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
185 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
186 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
187 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
188 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
189 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
190 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
191 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
192 VMSTATE_END_OF_LIST()
194 .subsections = (const VMStateDescription * []) {
195 &vmstate_gicv3_cpu_virt,
196 &vmstate_gicv3_cpu_sre_el1,
197 &vmstate_gicv3_gicv4,
198 NULL
202 static int gicv3_pre_load(void *opaque)
204 GICv3State *cs = opaque;
207 * The gicd_no_migration_shift_bug flag is used for migration compatibility
208 * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
209 * Strictly, what we want to know is whether the migration source is using
210 * KVM. Since we don't have any way to determine that, we look at whether the
211 * destination is using KVM; this is close enough because for the older QEMU
212 * versions with this bug KVM -> TCG migration didn't work anyway. If the
213 * source is a newer QEMU without this bug it will transmit the migration
214 * subsection which sets the flag to true; otherwise it will remain set to
215 * the value we select here.
217 if (kvm_enabled()) {
218 cs->gicd_no_migration_shift_bug = false;
221 return 0;
224 static bool needed_always(void *opaque)
226 return true;
229 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
230 .name = "arm_gicv3/gicd_no_migration_shift_bug",
231 .version_id = 1,
232 .minimum_version_id = 1,
233 .needed = needed_always,
234 .fields = (VMStateField[]) {
235 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
236 VMSTATE_END_OF_LIST()
240 static const VMStateDescription vmstate_gicv3 = {
241 .name = "arm_gicv3",
242 .version_id = 1,
243 .minimum_version_id = 1,
244 .pre_load = gicv3_pre_load,
245 .pre_save = gicv3_pre_save,
246 .post_load = gicv3_post_load,
247 .priority = MIG_PRI_GICV3,
248 .fields = (VMStateField[]) {
249 VMSTATE_UINT32(gicd_ctlr, GICv3State),
250 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
251 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
252 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
253 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
254 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
255 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
256 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
257 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
258 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
259 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
260 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
261 DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
262 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
263 vmstate_gicv3_cpu, GICv3CPUState),
264 VMSTATE_END_OF_LIST()
266 .subsections = (const VMStateDescription * []) {
267 &vmstate_gicv3_gicd_no_migration_shift_bug,
268 NULL
272 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
273 const MemoryRegionOps *ops)
275 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
276 int i;
277 int cpuidx;
279 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
280 * GPIO array layout is thus:
281 * [0..N-1] spi
282 * [N..N+31] PPIs for CPU 0
283 * [N+32..N+63] PPIs for CPU 1
284 * ...
286 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
287 qdev_init_gpio_in(DEVICE(s), handler, i);
289 for (i = 0; i < s->num_cpu; i++) {
290 sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
292 for (i = 0; i < s->num_cpu; i++) {
293 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
295 for (i = 0; i < s->num_cpu; i++) {
296 sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
298 for (i = 0; i < s->num_cpu; i++) {
299 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
302 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
303 "gicv3_dist", 0x10000);
304 sysbus_init_mmio(sbd, &s->iomem_dist);
306 s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions);
307 cpuidx = 0;
308 for (i = 0; i < s->nb_redist_regions; i++) {
309 char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
310 GICv3RedistRegion *region = &s->redist_regions[i];
312 region->gic = s;
313 region->cpuidx = cpuidx;
314 cpuidx += s->redist_region_count[i];
316 memory_region_init_io(&region->iomem, OBJECT(s),
317 ops ? &ops[1] : NULL, region, name,
318 s->redist_region_count[i] * gicv3_redist_size(s));
319 sysbus_init_mmio(sbd, &region->iomem);
320 g_free(name);
324 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
326 GICv3State *s = ARM_GICV3_COMMON(dev);
327 int i, rdist_capacity, cpuidx;
330 * This GIC device supports only revisions 3 and 4. The GICv1/v2
331 * is a separate device.
332 * Note that subclasses of this device may impose further restrictions
333 * on the GIC revision: notably, the in-kernel KVM GIC doesn't
334 * support GICv4.
336 if (s->revision != 3 && s->revision != 4) {
337 error_setg(errp, "unsupported GIC revision %d", s->revision);
338 return;
341 if (s->num_irq > GICV3_MAXIRQ) {
342 error_setg(errp,
343 "requested %u interrupt lines exceeds GIC maximum %d",
344 s->num_irq, GICV3_MAXIRQ);
345 return;
347 if (s->num_irq < GIC_INTERNAL) {
348 error_setg(errp,
349 "requested %u interrupt lines is below GIC minimum %d",
350 s->num_irq, GIC_INTERNAL);
351 return;
353 if (s->num_cpu == 0) {
354 error_setg(errp, "num-cpu must be at least 1");
355 return;
358 /* ITLinesNumber is represented as (N / 32) - 1, so this is an
359 * implementation imposed restriction, not an architectural one,
360 * so we don't have to deal with bitfields where only some of the
361 * bits in a 32-bit word should be valid.
363 if (s->num_irq % 32) {
364 error_setg(errp,
365 "%d interrupt lines unsupported: not divisible by 32",
366 s->num_irq);
367 return;
370 if (s->lpi_enable && !s->dma) {
371 error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set");
372 return;
375 rdist_capacity = 0;
376 for (i = 0; i < s->nb_redist_regions; i++) {
377 rdist_capacity += s->redist_region_count[i];
379 if (rdist_capacity != s->num_cpu) {
380 error_setg(errp, "Capacity of the redist regions(%d) "
381 "does not match the number of vcpus(%d)",
382 rdist_capacity, s->num_cpu);
383 return;
386 if (s->lpi_enable) {
387 address_space_init(&s->dma_as, s->dma,
388 "gicv3-its-sysmem");
391 s->cpu = g_new0(GICv3CPUState, s->num_cpu);
393 for (i = 0; i < s->num_cpu; i++) {
394 CPUState *cpu = qemu_get_cpu(i);
395 uint64_t cpu_affid;
397 s->cpu[i].cpu = cpu;
398 s->cpu[i].gic = s;
399 /* Store GICv3CPUState in CPUARMState gicv3state pointer */
400 gicv3_set_gicv3state(cpu, &s->cpu[i]);
402 /* Pre-construct the GICR_TYPER:
403 * For our implementation:
404 * Top 32 bits are the affinity value of the associated CPU
405 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
406 * Processor_Number == CPU index starting from 0
407 * DPGS == 0 (GICR_CTLR.DPG* not supported)
408 * Last == 1 if this is the last redistributor in a series of
409 * contiguous redistributor pages
410 * DirectLPI == 0 (direct injection of LPIs not supported)
411 * VLPIS == 1 if vLPIs supported (GICv4 and up)
412 * PLPIS == 1 if LPIs supported
414 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
416 /* The CPU mp-affinity property is in MPIDR register format; squash
417 * the affinity bytes into 32 bits as the GICR_TYPER has them.
419 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
420 (cpu_affid & 0xFFFFFF);
421 s->cpu[i].gicr_typer = (cpu_affid << 32) |
422 (1 << 24) |
423 (i << 8);
425 if (s->lpi_enable) {
426 s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS;
427 if (s->revision > 3) {
428 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS;
434 * Now go through and set GICR_TYPER.Last for the final
435 * redistributor in each region.
437 cpuidx = 0;
438 for (i = 0; i < s->nb_redist_regions; i++) {
439 cpuidx += s->redist_region_count[i];
440 s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST;
443 s->itslist = g_ptr_array_new();
446 static void arm_gicv3_finalize(Object *obj)
448 GICv3State *s = ARM_GICV3_COMMON(obj);
450 g_free(s->redist_region_count);
453 static void arm_gicv3_common_reset(DeviceState *dev)
455 GICv3State *s = ARM_GICV3_COMMON(dev);
456 int i;
458 for (i = 0; i < s->num_cpu; i++) {
459 GICv3CPUState *cs = &s->cpu[i];
461 cs->level = 0;
462 cs->gicr_ctlr = 0;
463 if (s->lpi_enable) {
464 /* Our implementation supports clearing GICR_CTLR.EnableLPIs */
465 cs->gicr_ctlr |= GICR_CTLR_CES;
467 cs->gicr_statusr[GICV3_S] = 0;
468 cs->gicr_statusr[GICV3_NS] = 0;
469 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
470 cs->gicr_propbaser = 0;
471 cs->gicr_pendbaser = 0;
472 cs->gicr_vpropbaser = 0;
473 cs->gicr_vpendbaser = 0;
474 /* If we're resetting a TZ-aware GIC as if secure firmware
475 * had set it up ready to start a kernel in non-secure, we
476 * need to set interrupts to group 1 so the kernel can use them.
477 * Otherwise they reset to group 0 like the hardware.
479 if (s->irq_reset_nonsecure) {
480 cs->gicr_igroupr0 = 0xffffffff;
481 } else {
482 cs->gicr_igroupr0 = 0;
485 cs->gicr_ienabler0 = 0;
486 cs->gicr_ipendr0 = 0;
487 cs->gicr_iactiver0 = 0;
488 cs->edge_trigger = 0xffff;
489 cs->gicr_igrpmodr0 = 0;
490 cs->gicr_nsacr = 0;
491 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
493 cs->hppi.prio = 0xff;
494 cs->hpplpi.prio = 0xff;
495 cs->hppvlpi.prio = 0xff;
497 /* State in the CPU interface must *not* be reset here, because it
498 * is part of the CPU's reset domain, not the GIC device's.
502 /* For our implementation affinity routing is always enabled */
503 if (s->security_extn) {
504 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
505 } else {
506 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
509 s->gicd_statusr[GICV3_S] = 0;
510 s->gicd_statusr[GICV3_NS] = 0;
512 memset(s->group, 0, sizeof(s->group));
513 memset(s->grpmod, 0, sizeof(s->grpmod));
514 memset(s->enabled, 0, sizeof(s->enabled));
515 memset(s->pending, 0, sizeof(s->pending));
516 memset(s->active, 0, sizeof(s->active));
517 memset(s->level, 0, sizeof(s->level));
518 memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
519 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
520 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
521 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
522 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
523 * write these to get sane behaviour and we need not populate the
524 * pointer cache here; however having the cache be different for
525 * "happened to be 0 from reset" and "guest wrote 0" would be
526 * too confusing.
528 gicv3_cache_all_target_cpustates(s);
530 if (s->irq_reset_nonsecure) {
531 /* If we're resetting a TZ-aware GIC as if secure firmware
532 * had set it up ready to start a kernel in non-secure, we
533 * need to set interrupts to group 1 so the kernel can use them.
534 * Otherwise they reset to group 0 like the hardware.
536 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
537 gicv3_gicd_group_set(s, i);
540 s->gicd_no_migration_shift_bug = true;
543 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
544 bool secure_boot)
546 GICv3State *s = ARM_GICV3_COMMON(obj);
548 if (s->security_extn && !secure_boot) {
549 /* We're directly booting a kernel into NonSecure. If this GIC
550 * implements the security extensions then we must configure it
551 * to have all the interrupts be NonSecure (this is a job that
552 * is done by the Secure boot firmware in real hardware, and in
553 * this mode QEMU is acting as a minimalist firmware-and-bootloader
554 * equivalent).
556 s->irq_reset_nonsecure = true;
560 static Property arm_gicv3_common_properties[] = {
561 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
562 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
563 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
564 DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0),
565 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
567 * Compatibility property: force 8 bits of physical priority, even
568 * if the CPU being emulated should have fewer.
570 DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0),
571 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
572 redist_region_count, qdev_prop_uint32, uint32_t),
573 DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION,
574 MemoryRegion *),
575 DEFINE_PROP_END_OF_LIST(),
578 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
580 DeviceClass *dc = DEVICE_CLASS(klass);
581 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
583 dc->reset = arm_gicv3_common_reset;
584 dc->realize = arm_gicv3_common_realize;
585 device_class_set_props(dc, arm_gicv3_common_properties);
586 dc->vmsd = &vmstate_gicv3;
587 albifc->arm_linux_init = arm_gic_common_linux_init;
590 static const TypeInfo arm_gicv3_common_type = {
591 .name = TYPE_ARM_GICV3_COMMON,
592 .parent = TYPE_SYS_BUS_DEVICE,
593 .instance_size = sizeof(GICv3State),
594 .class_size = sizeof(ARMGICv3CommonClass),
595 .class_init = arm_gicv3_common_class_init,
596 .instance_finalize = arm_gicv3_finalize,
597 .abstract = true,
598 .interfaces = (InterfaceInfo []) {
599 { TYPE_ARM_LINUX_BOOT_IF },
600 { },
604 static void register_types(void)
606 type_register_static(&arm_gicv3_common_type);
609 type_init(register_types)