Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / hw / i386 / x86.c
blobeaff4227bd68b5362c5edf6825df5c16c29a5601
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/xen.h"
44 #include "trace.h"
46 #include "hw/i386/x86.h"
47 #include "target/i386/cpu.h"
48 #include "hw/i386/topology.h"
49 #include "hw/i386/fw_cfg.h"
50 #include "hw/intc/i8259.h"
51 #include "hw/rtc/mc146818rtc.h"
52 #include "target/i386/sev.h"
53 #include "hw/i386/microvm.h"
55 #include "hw/acpi/cpu_hotplug.h"
56 #include "hw/irq.h"
57 #include "hw/nmi.h"
58 #include "hw/loader.h"
59 #include "multiboot.h"
60 #include "elf.h"
61 #include "standard-headers/asm-x86/bootparam.h"
62 #include CONFIG_DEVICES
63 #include "kvm/kvm_i386.h"
65 /* Physical Address of PVH entry point read from kernel ELF NOTE */
66 static size_t pvh_start_addr;
68 inline void init_topo_info(X86CPUTopoInfo *topo_info,
69 const X86MachineState *x86ms)
71 MachineState *ms = MACHINE(x86ms);
73 topo_info->dies_per_pkg = ms->smp.dies;
74 topo_info->cores_per_die = ms->smp.cores;
75 topo_info->threads_per_core = ms->smp.threads;
79 * Calculates initial APIC ID for a specific CPU index
81 * Currently we need to be able to calculate the APIC ID from the CPU index
82 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
83 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
84 * all CPUs up to max_cpus.
86 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
87 unsigned int cpu_index)
89 X86CPUTopoInfo topo_info;
91 init_topo_info(&topo_info, x86ms);
93 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
97 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
99 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
101 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
102 goto out;
104 qdev_realize(DEVICE(cpu), NULL, errp);
106 out:
107 object_unref(cpu);
110 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
112 int i;
113 const CPUArchIdList *possible_cpus;
114 MachineState *ms = MACHINE(x86ms);
115 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
117 x86_cpu_set_default_version(default_cpu_version);
120 * Calculates the limit to CPU APIC ID values
122 * Limit for the APIC ID value, so that all
123 * CPU APIC IDs are < x86ms->apic_id_limit.
125 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
127 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
128 ms->smp.max_cpus - 1) + 1;
131 * Can we support APIC ID 255 or higher?
133 * Under Xen: yes.
134 * With userspace emulated lapic: no
135 * With KVM's in-kernel lapic: only if X2APIC API is enabled.
137 if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
138 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
139 error_report("current -smp configuration requires kernel "
140 "irqchip and X2APIC API support.");
141 exit(EXIT_FAILURE);
144 if (kvm_enabled()) {
145 kvm_set_max_apic_id(x86ms->apic_id_limit);
148 possible_cpus = mc->possible_cpu_arch_ids(ms);
149 for (i = 0; i < ms->smp.cpus; i++) {
150 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
154 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
156 if (cpus_count > 0xff) {
158 * If the number of CPUs can't be represented in 8 bits, the
159 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
160 * to make old BIOSes fail more predictably.
162 rtc_set_memory(rtc, 0x5f, 0);
163 } else {
164 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
168 static int x86_apic_cmp(const void *a, const void *b)
170 CPUArchId *apic_a = (CPUArchId *)a;
171 CPUArchId *apic_b = (CPUArchId *)b;
173 return apic_a->arch_id - apic_b->arch_id;
177 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
178 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
179 * entry corresponding to CPU's apic_id returns NULL.
181 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
183 CPUArchId apic_id, *found_cpu;
185 apic_id.arch_id = id;
186 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
187 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
188 x86_apic_cmp);
189 if (found_cpu && idx) {
190 *idx = found_cpu - ms->possible_cpus->cpus;
192 return found_cpu;
195 void x86_cpu_plug(HotplugHandler *hotplug_dev,
196 DeviceState *dev, Error **errp)
198 CPUArchId *found_cpu;
199 Error *local_err = NULL;
200 X86CPU *cpu = X86_CPU(dev);
201 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
203 if (x86ms->acpi_dev) {
204 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
205 if (local_err) {
206 goto out;
210 /* increment the number of CPUs */
211 x86ms->boot_cpus++;
212 if (x86ms->rtc) {
213 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
215 if (x86ms->fw_cfg) {
216 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
219 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
220 found_cpu->cpu = OBJECT(dev);
221 out:
222 error_propagate(errp, local_err);
225 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
226 DeviceState *dev, Error **errp)
228 int idx = -1;
229 X86CPU *cpu = X86_CPU(dev);
230 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
232 if (!x86ms->acpi_dev) {
233 error_setg(errp, "CPU hot unplug not supported without ACPI");
234 return;
237 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
238 assert(idx != -1);
239 if (idx == 0) {
240 error_setg(errp, "Boot CPU is unpluggable");
241 return;
244 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
245 errp);
248 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
249 DeviceState *dev, Error **errp)
251 CPUArchId *found_cpu;
252 Error *local_err = NULL;
253 X86CPU *cpu = X86_CPU(dev);
254 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
256 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
257 if (local_err) {
258 goto out;
261 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
262 found_cpu->cpu = NULL;
263 qdev_unrealize(dev);
265 /* decrement the number of CPUs */
266 x86ms->boot_cpus--;
267 /* Update the number of CPUs in CMOS */
268 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
269 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
270 out:
271 error_propagate(errp, local_err);
274 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
275 DeviceState *dev, Error **errp)
277 int idx;
278 CPUState *cs;
279 CPUArchId *cpu_slot;
280 X86CPUTopoIDs topo_ids;
281 X86CPU *cpu = X86_CPU(dev);
282 CPUX86State *env = &cpu->env;
283 MachineState *ms = MACHINE(hotplug_dev);
284 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
285 unsigned int smp_cores = ms->smp.cores;
286 unsigned int smp_threads = ms->smp.threads;
287 X86CPUTopoInfo topo_info;
289 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
290 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
291 ms->cpu_type);
292 return;
295 if (x86ms->acpi_dev) {
296 Error *local_err = NULL;
298 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
299 &local_err);
300 if (local_err) {
301 error_propagate(errp, local_err);
302 return;
306 init_topo_info(&topo_info, x86ms);
308 env->nr_dies = ms->smp.dies;
311 * If APIC ID is not set,
312 * set it based on socket/die/core/thread properties.
314 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
315 int max_socket = (ms->smp.max_cpus - 1) /
316 smp_threads / smp_cores / ms->smp.dies;
319 * die-id was optional in QEMU 4.0 and older, so keep it optional
320 * if there's only one die per socket.
322 if (cpu->die_id < 0 && ms->smp.dies == 1) {
323 cpu->die_id = 0;
326 if (cpu->socket_id < 0) {
327 error_setg(errp, "CPU socket-id is not set");
328 return;
329 } else if (cpu->socket_id > max_socket) {
330 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
331 cpu->socket_id, max_socket);
332 return;
334 if (cpu->die_id < 0) {
335 error_setg(errp, "CPU die-id is not set");
336 return;
337 } else if (cpu->die_id > ms->smp.dies - 1) {
338 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
339 cpu->die_id, ms->smp.dies - 1);
340 return;
342 if (cpu->core_id < 0) {
343 error_setg(errp, "CPU core-id is not set");
344 return;
345 } else if (cpu->core_id > (smp_cores - 1)) {
346 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
347 cpu->core_id, smp_cores - 1);
348 return;
350 if (cpu->thread_id < 0) {
351 error_setg(errp, "CPU thread-id is not set");
352 return;
353 } else if (cpu->thread_id > (smp_threads - 1)) {
354 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
355 cpu->thread_id, smp_threads - 1);
356 return;
359 topo_ids.pkg_id = cpu->socket_id;
360 topo_ids.die_id = cpu->die_id;
361 topo_ids.core_id = cpu->core_id;
362 topo_ids.smt_id = cpu->thread_id;
363 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
366 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
367 if (!cpu_slot) {
368 MachineState *ms = MACHINE(x86ms);
370 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
371 error_setg(errp,
372 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
373 " APIC ID %" PRIu32 ", valid index range 0:%d",
374 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
375 cpu->apic_id, ms->possible_cpus->len - 1);
376 return;
379 if (cpu_slot->cpu) {
380 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
381 idx, cpu->apic_id);
382 return;
385 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
386 * so that machine_query_hotpluggable_cpus would show correct values
388 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
389 * once -smp refactoring is complete and there will be CPU private
390 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
391 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
392 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
393 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
394 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
395 topo_ids.pkg_id);
396 return;
398 cpu->socket_id = topo_ids.pkg_id;
400 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
401 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
402 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
403 return;
405 cpu->die_id = topo_ids.die_id;
407 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
408 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
409 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
410 topo_ids.core_id);
411 return;
413 cpu->core_id = topo_ids.core_id;
415 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
416 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
417 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
418 topo_ids.smt_id);
419 return;
421 cpu->thread_id = topo_ids.smt_id;
423 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
424 !kvm_hv_vpindex_settable()) {
425 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
426 return;
429 cs = CPU(cpu);
430 cs->cpu_index = idx;
432 numa_cpu_pre_plug(cpu_slot, dev, errp);
435 CpuInstanceProperties
436 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
438 MachineClass *mc = MACHINE_GET_CLASS(ms);
439 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
441 assert(cpu_index < possible_cpus->len);
442 return possible_cpus->cpus[cpu_index].props;
445 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
447 X86CPUTopoIDs topo_ids;
448 X86MachineState *x86ms = X86_MACHINE(ms);
449 X86CPUTopoInfo topo_info;
451 init_topo_info(&topo_info, x86ms);
453 assert(idx < ms->possible_cpus->len);
454 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
455 &topo_info, &topo_ids);
456 return topo_ids.pkg_id % ms->numa_state->num_nodes;
459 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
461 X86MachineState *x86ms = X86_MACHINE(ms);
462 unsigned int max_cpus = ms->smp.max_cpus;
463 X86CPUTopoInfo topo_info;
464 int i;
466 if (ms->possible_cpus) {
468 * make sure that max_cpus hasn't changed since the first use, i.e.
469 * -smp hasn't been parsed after it
471 assert(ms->possible_cpus->len == max_cpus);
472 return ms->possible_cpus;
475 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
476 sizeof(CPUArchId) * max_cpus);
477 ms->possible_cpus->len = max_cpus;
479 init_topo_info(&topo_info, x86ms);
481 for (i = 0; i < ms->possible_cpus->len; i++) {
482 X86CPUTopoIDs topo_ids;
484 ms->possible_cpus->cpus[i].type = ms->cpu_type;
485 ms->possible_cpus->cpus[i].vcpus_count = 1;
486 ms->possible_cpus->cpus[i].arch_id =
487 x86_cpu_apic_id_from_index(x86ms, i);
488 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
489 &topo_info, &topo_ids);
490 ms->possible_cpus->cpus[i].props.has_socket_id = true;
491 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
492 if (ms->smp.dies > 1) {
493 ms->possible_cpus->cpus[i].props.has_die_id = true;
494 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
496 ms->possible_cpus->cpus[i].props.has_core_id = true;
497 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
498 ms->possible_cpus->cpus[i].props.has_thread_id = true;
499 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
501 return ms->possible_cpus;
504 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
506 /* cpu index isn't used */
507 CPUState *cs;
509 CPU_FOREACH(cs) {
510 X86CPU *cpu = X86_CPU(cs);
512 if (!cpu->apic_state) {
513 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
514 } else {
515 apic_deliver_nmi(cpu->apic_state);
520 static long get_file_size(FILE *f)
522 long where, size;
524 /* XXX: on Unix systems, using fstat() probably makes more sense */
526 where = ftell(f);
527 fseek(f, 0, SEEK_END);
528 size = ftell(f);
529 fseek(f, where, SEEK_SET);
531 return size;
534 /* TSC handling */
535 uint64_t cpu_get_tsc(CPUX86State *env)
537 return cpus_get_elapsed_ticks();
540 /* IRQ handling */
541 static void pic_irq_request(void *opaque, int irq, int level)
543 CPUState *cs = first_cpu;
544 X86CPU *cpu = X86_CPU(cs);
546 trace_x86_pic_interrupt(irq, level);
547 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
548 !whpx_apic_in_platform()) {
549 CPU_FOREACH(cs) {
550 cpu = X86_CPU(cs);
551 if (apic_accept_pic_intr(cpu->apic_state)) {
552 apic_deliver_pic_intr(cpu->apic_state, level);
555 } else {
556 if (level) {
557 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
558 } else {
559 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
564 qemu_irq x86_allocate_cpu_irq(void)
566 return qemu_allocate_irq(pic_irq_request, NULL, 0);
569 int cpu_get_pic_interrupt(CPUX86State *env)
571 X86CPU *cpu = env_archcpu(env);
572 int intno;
574 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
575 intno = apic_get_interrupt(cpu->apic_state);
576 if (intno >= 0) {
577 return intno;
579 /* read the irq from the PIC */
580 if (!apic_accept_pic_intr(cpu->apic_state)) {
581 return -1;
585 intno = pic_read_irq(isa_pic);
586 return intno;
589 DeviceState *cpu_get_current_apic(void)
591 if (current_cpu) {
592 X86CPU *cpu = X86_CPU(current_cpu);
593 return cpu->apic_state;
594 } else {
595 return NULL;
599 void gsi_handler(void *opaque, int n, int level)
601 GSIState *s = opaque;
603 trace_x86_gsi_interrupt(n, level);
604 switch (n) {
605 case 0 ... ISA_NUM_IRQS - 1:
606 if (s->i8259_irq[n]) {
607 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
608 qemu_set_irq(s->i8259_irq[n], level);
610 /* fall through */
611 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
612 qemu_set_irq(s->ioapic_irq[n], level);
613 break;
614 case IO_APIC_SECONDARY_IRQBASE
615 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
616 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
617 break;
621 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
623 DeviceState *dev;
624 SysBusDevice *d;
625 unsigned int i;
627 assert(parent_name);
628 if (kvm_ioapic_in_kernel()) {
629 dev = qdev_new(TYPE_KVM_IOAPIC);
630 } else {
631 dev = qdev_new(TYPE_IOAPIC);
633 object_property_add_child(object_resolve_path(parent_name, NULL),
634 "ioapic", OBJECT(dev));
635 d = SYS_BUS_DEVICE(dev);
636 sysbus_realize_and_unref(d, &error_fatal);
637 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
639 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
640 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
644 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
646 DeviceState *dev;
647 SysBusDevice *d;
648 unsigned int i;
650 dev = qdev_new(TYPE_IOAPIC);
651 d = SYS_BUS_DEVICE(dev);
652 sysbus_realize_and_unref(d, &error_fatal);
653 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
655 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
656 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
658 return dev;
661 typedef struct SetupData {
662 uint64_t next;
663 uint32_t type;
664 uint32_t len;
665 uint8_t data[];
666 } __attribute__((packed)) SetupData;
670 * The entry point into the kernel for PVH boot is different from
671 * the native entry point. The PVH entry is defined by the x86/HVM
672 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
674 * This function is passed to load_elf() when it is called from
675 * load_elfboot() which then additionally checks for an ELF Note of
676 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
677 * parse the PVH entry address from the ELF Note.
679 * Due to trickery in elf_opts.h, load_elf() is actually available as
680 * load_elf32() or load_elf64() and this routine needs to be able
681 * to deal with being called as 32 or 64 bit.
683 * The address of the PVH entry point is saved to the 'pvh_start_addr'
684 * global variable. (although the entry point is 32-bit, the kernel
685 * binary can be either 32-bit or 64-bit).
687 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
689 size_t *elf_note_data_addr;
691 /* Check if ELF Note header passed in is valid */
692 if (arg1 == NULL) {
693 return 0;
696 if (is64) {
697 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
698 uint64_t nhdr_size64 = sizeof(struct elf64_note);
699 uint64_t phdr_align = *(uint64_t *)arg2;
700 uint64_t nhdr_namesz = nhdr64->n_namesz;
702 elf_note_data_addr =
703 ((void *)nhdr64) + nhdr_size64 +
704 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
706 pvh_start_addr = *elf_note_data_addr;
707 } else {
708 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
709 uint32_t nhdr_size32 = sizeof(struct elf32_note);
710 uint32_t phdr_align = *(uint32_t *)arg2;
711 uint32_t nhdr_namesz = nhdr32->n_namesz;
713 elf_note_data_addr =
714 ((void *)nhdr32) + nhdr_size32 +
715 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
717 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
720 return pvh_start_addr;
723 static bool load_elfboot(const char *kernel_filename,
724 int kernel_file_size,
725 uint8_t *header,
726 size_t pvh_xen_start_addr,
727 FWCfgState *fw_cfg)
729 uint32_t flags = 0;
730 uint32_t mh_load_addr = 0;
731 uint32_t elf_kernel_size = 0;
732 uint64_t elf_entry;
733 uint64_t elf_low, elf_high;
734 int kernel_size;
736 if (ldl_p(header) != 0x464c457f) {
737 return false; /* no elfboot */
740 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
741 flags = elf_is64 ?
742 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
744 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
745 error_report("elfboot unsupported flags = %x", flags);
746 exit(1);
749 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
750 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
751 NULL, &elf_note_type, &elf_entry,
752 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
753 0, 0);
755 if (kernel_size < 0) {
756 error_report("Error while loading elf kernel");
757 exit(1);
759 mh_load_addr = elf_low;
760 elf_kernel_size = elf_high - elf_low;
762 if (pvh_start_addr == 0) {
763 error_report("Error loading uncompressed kernel without PVH ELF Note");
764 exit(1);
766 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
767 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
768 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
770 return true;
773 typedef struct SetupDataFixup {
774 void *pos;
775 hwaddr orig_val, new_val;
776 uint32_t addr;
777 } SetupDataFixup;
779 static void fixup_setup_data(void *opaque)
781 SetupDataFixup *fixup = opaque;
782 stq_p(fixup->pos, fixup->new_val);
785 static void reset_setup_data(void *opaque)
787 SetupDataFixup *fixup = opaque;
788 stq_p(fixup->pos, fixup->orig_val);
791 static void reset_rng_seed(void *opaque)
793 SetupData *setup_data = opaque;
794 qemu_guest_getrandom_nofail(setup_data->data, le32_to_cpu(setup_data->len));
797 void x86_load_linux(X86MachineState *x86ms,
798 FWCfgState *fw_cfg,
799 int acpi_data_size,
800 bool pvh_enabled,
801 bool legacy_no_rng_seed)
803 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
804 uint16_t protocol;
805 int setup_size, kernel_size, cmdline_size;
806 int dtb_size, setup_data_offset;
807 uint32_t initrd_max;
808 uint8_t header[8192], *setup, *kernel;
809 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0;
810 FILE *f;
811 char *vmode;
812 MachineState *machine = MACHINE(x86ms);
813 SetupData *setup_data;
814 const char *kernel_filename = machine->kernel_filename;
815 const char *initrd_filename = machine->initrd_filename;
816 const char *dtb_filename = machine->dtb;
817 char *kernel_cmdline;
818 SevKernelLoaderContext sev_load_ctx = {};
819 enum { RNG_SEED_LENGTH = 32 };
822 * Add the NUL terminator, some padding for the microvm cmdline fiddling
823 * hack, and then align to 16 bytes as a paranoia measure
825 cmdline_size = (strlen(machine->kernel_cmdline) + 1 +
826 VIRTIO_CMDLINE_TOTAL_MAX_LEN + 16) & ~15;
827 /* Make a copy, since we might append arbitrary bytes to it later. */
828 kernel_cmdline = g_strndup(machine->kernel_cmdline, cmdline_size);
830 /* load the kernel header */
831 f = fopen(kernel_filename, "rb");
832 if (!f) {
833 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
834 kernel_filename, strerror(errno));
835 exit(1);
838 kernel_size = get_file_size(f);
839 if (!kernel_size ||
840 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
841 MIN(ARRAY_SIZE(header), kernel_size)) {
842 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
843 kernel_filename, strerror(errno));
844 exit(1);
847 /* kernel protocol version */
848 if (ldl_p(header + 0x202) == 0x53726448) {
849 protocol = lduw_p(header + 0x206);
850 } else {
852 * This could be a multiboot kernel. If it is, let's stop treating it
853 * like a Linux kernel.
854 * Note: some multiboot images could be in the ELF format (the same of
855 * PVH), so we try multiboot first since we check the multiboot magic
856 * header before to load it.
858 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
859 kernel_cmdline, kernel_size, header)) {
860 return;
863 * Check if the file is an uncompressed kernel file (ELF) and load it,
864 * saving the PVH entry point used by the x86/HVM direct boot ABI.
865 * If load_elfboot() is successful, populate the fw_cfg info.
867 if (pvh_enabled &&
868 load_elfboot(kernel_filename, kernel_size,
869 header, pvh_start_addr, fw_cfg)) {
870 fclose(f);
872 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
873 strlen(kernel_cmdline) + 1);
874 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
876 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
877 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
878 header, sizeof(header));
880 /* load initrd */
881 if (initrd_filename) {
882 GMappedFile *mapped_file;
883 gsize initrd_size;
884 gchar *initrd_data;
885 GError *gerr = NULL;
887 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
888 if (!mapped_file) {
889 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
890 initrd_filename, gerr->message);
891 exit(1);
893 x86ms->initrd_mapped_file = mapped_file;
895 initrd_data = g_mapped_file_get_contents(mapped_file);
896 initrd_size = g_mapped_file_get_length(mapped_file);
897 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
898 if (initrd_size >= initrd_max) {
899 fprintf(stderr, "qemu: initrd is too large, cannot support."
900 "(max: %"PRIu32", need %"PRId64")\n",
901 initrd_max, (uint64_t)initrd_size);
902 exit(1);
905 initrd_addr = (initrd_max - initrd_size) & ~4095;
907 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
908 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
909 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
910 initrd_size);
913 option_rom[nb_option_roms].bootindex = 0;
914 option_rom[nb_option_roms].name = "pvh.bin";
915 nb_option_roms++;
917 return;
919 protocol = 0;
922 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
923 /* Low kernel */
924 real_addr = 0x90000;
925 cmdline_addr = 0x9a000 - cmdline_size;
926 prot_addr = 0x10000;
927 } else if (protocol < 0x202) {
928 /* High but ancient kernel */
929 real_addr = 0x90000;
930 cmdline_addr = 0x9a000 - cmdline_size;
931 prot_addr = 0x100000;
932 } else {
933 /* High and recent kernel */
934 real_addr = 0x10000;
935 cmdline_addr = 0x20000;
936 prot_addr = 0x100000;
939 /* highest address for loading the initrd */
940 if (protocol >= 0x20c &&
941 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
943 * Linux has supported initrd up to 4 GB for a very long time (2007,
944 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
945 * though it only sets initrd_max to 2 GB to "work around bootloader
946 * bugs". Luckily, QEMU firmware(which does something like bootloader)
947 * has supported this.
949 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
950 * be loaded into any address.
952 * In addition, initrd_max is uint32_t simply because QEMU doesn't
953 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
954 * field).
956 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
958 initrd_max = UINT32_MAX;
959 } else if (protocol >= 0x203) {
960 initrd_max = ldl_p(header + 0x22c);
961 } else {
962 initrd_max = 0x37ffffff;
965 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
966 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
969 if (protocol >= 0x202) {
970 stl_p(header + 0x228, cmdline_addr);
971 } else {
972 stw_p(header + 0x20, 0xA33F);
973 stw_p(header + 0x22, cmdline_addr - real_addr);
976 /* handle vga= parameter */
977 vmode = strstr(kernel_cmdline, "vga=");
978 if (vmode) {
979 unsigned int video_mode;
980 const char *end;
981 int ret;
982 /* skip "vga=" */
983 vmode += 4;
984 if (!strncmp(vmode, "normal", 6)) {
985 video_mode = 0xffff;
986 } else if (!strncmp(vmode, "ext", 3)) {
987 video_mode = 0xfffe;
988 } else if (!strncmp(vmode, "ask", 3)) {
989 video_mode = 0xfffd;
990 } else {
991 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
992 if (ret != 0 || (*end && *end != ' ')) {
993 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
994 exit(1);
997 stw_p(header + 0x1fa, video_mode);
1000 /* loader type */
1002 * High nybble = B reserved for QEMU; low nybble is revision number.
1003 * If this code is substantially changed, you may want to consider
1004 * incrementing the revision.
1006 if (protocol >= 0x200) {
1007 header[0x210] = 0xB0;
1009 /* heap */
1010 if (protocol >= 0x201) {
1011 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1012 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1015 /* load initrd */
1016 if (initrd_filename) {
1017 GMappedFile *mapped_file;
1018 gsize initrd_size;
1019 gchar *initrd_data;
1020 GError *gerr = NULL;
1022 if (protocol < 0x200) {
1023 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1024 exit(1);
1027 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1028 if (!mapped_file) {
1029 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1030 initrd_filename, gerr->message);
1031 exit(1);
1033 x86ms->initrd_mapped_file = mapped_file;
1035 initrd_data = g_mapped_file_get_contents(mapped_file);
1036 initrd_size = g_mapped_file_get_length(mapped_file);
1037 if (initrd_size >= initrd_max) {
1038 fprintf(stderr, "qemu: initrd is too large, cannot support."
1039 "(max: %"PRIu32", need %"PRId64")\n",
1040 initrd_max, (uint64_t)initrd_size);
1041 exit(1);
1044 initrd_addr = (initrd_max - initrd_size) & ~4095;
1046 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1047 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1048 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1049 sev_load_ctx.initrd_data = initrd_data;
1050 sev_load_ctx.initrd_size = initrd_size;
1052 stl_p(header + 0x218, initrd_addr);
1053 stl_p(header + 0x21c, initrd_size);
1056 /* load kernel and setup */
1057 setup_size = header[0x1f1];
1058 if (setup_size == 0) {
1059 setup_size = 4;
1061 setup_size = (setup_size + 1) * 512;
1062 if (setup_size > kernel_size) {
1063 fprintf(stderr, "qemu: invalid kernel header\n");
1064 exit(1);
1066 kernel_size -= setup_size;
1068 setup = g_malloc(setup_size);
1069 kernel = g_malloc(kernel_size);
1070 fseek(f, 0, SEEK_SET);
1071 if (fread(setup, 1, setup_size, f) != setup_size) {
1072 fprintf(stderr, "fread() failed\n");
1073 exit(1);
1075 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1076 fprintf(stderr, "fread() failed\n");
1077 exit(1);
1079 fclose(f);
1081 /* append dtb to kernel */
1082 if (dtb_filename) {
1083 if (protocol < 0x209) {
1084 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1085 exit(1);
1088 dtb_size = get_image_size(dtb_filename);
1089 if (dtb_size <= 0) {
1090 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1091 dtb_filename, strerror(errno));
1092 exit(1);
1095 setup_data_offset = cmdline_size;
1096 cmdline_size += sizeof(SetupData) + dtb_size;
1097 kernel_cmdline = g_realloc(kernel_cmdline, cmdline_size);
1098 setup_data = (void *)kernel_cmdline + setup_data_offset;
1099 setup_data->next = cpu_to_le64(first_setup_data);
1100 first_setup_data = cmdline_addr + setup_data_offset;
1101 setup_data->type = cpu_to_le32(SETUP_DTB);
1102 setup_data->len = cpu_to_le32(dtb_size);
1103 load_image_size(dtb_filename, setup_data->data, dtb_size);
1106 if (!legacy_no_rng_seed && protocol >= 0x209) {
1107 setup_data_offset = cmdline_size;
1108 cmdline_size += sizeof(SetupData) + RNG_SEED_LENGTH;
1109 kernel_cmdline = g_realloc(kernel_cmdline, cmdline_size);
1110 setup_data = (void *)kernel_cmdline + setup_data_offset;
1111 setup_data->next = cpu_to_le64(first_setup_data);
1112 first_setup_data = cmdline_addr + setup_data_offset;
1113 setup_data->type = cpu_to_le32(SETUP_RNG_SEED);
1114 setup_data->len = cpu_to_le32(RNG_SEED_LENGTH);
1115 qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH);
1116 qemu_register_reset_nosnapshotload(reset_rng_seed, setup_data);
1117 fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_KERNEL_DATA, reset_rng_seed, NULL,
1118 setup_data, kernel, kernel_size, true);
1119 } else {
1120 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1123 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1124 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, cmdline_size);
1125 fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline, cmdline_size);
1126 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
1127 sev_load_ctx.cmdline_size = cmdline_size;
1129 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1130 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1131 sev_load_ctx.kernel_data = (char *)kernel;
1132 sev_load_ctx.kernel_size = kernel_size;
1135 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1136 * efi stub for booting and doesn't require any values to be placed in the
1137 * kernel header. We therefore don't update the header so the hash of the
1138 * kernel on the other side of the fw_cfg interface matches the hash of the
1139 * file the user passed in.
1141 if (!sev_enabled() && first_setup_data) {
1142 SetupDataFixup *fixup = g_malloc(sizeof(*fixup));
1144 memcpy(setup, header, MIN(sizeof(header), setup_size));
1145 /* Offset 0x250 is a pointer to the first setup_data link. */
1146 fixup->pos = setup + 0x250;
1147 fixup->orig_val = ldq_p(fixup->pos);
1148 fixup->new_val = first_setup_data;
1149 fixup->addr = cpu_to_le32(real_addr);
1150 fw_cfg_add_bytes_callback(fw_cfg, FW_CFG_SETUP_ADDR, fixup_setup_data, NULL,
1151 fixup, &fixup->addr, sizeof(fixup->addr), true);
1152 qemu_register_reset(reset_setup_data, fixup);
1153 } else {
1154 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1156 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1157 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1158 sev_load_ctx.setup_data = (char *)setup;
1159 sev_load_ctx.setup_size = setup_size;
1161 if (sev_enabled()) {
1162 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1165 option_rom[nb_option_roms].bootindex = 0;
1166 option_rom[nb_option_roms].name = "linuxboot.bin";
1167 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1168 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1170 nb_option_roms++;
1173 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1174 MemoryRegion *rom_memory, bool isapc_ram_fw)
1176 const char *bios_name;
1177 char *filename;
1178 MemoryRegion *bios, *isa_bios;
1179 int bios_size, isa_bios_size;
1180 ssize_t ret;
1182 /* BIOS load */
1183 bios_name = ms->firmware ?: default_firmware;
1184 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1185 if (filename) {
1186 bios_size = get_image_size(filename);
1187 } else {
1188 bios_size = -1;
1190 if (bios_size <= 0 ||
1191 (bios_size % 65536) != 0) {
1192 goto bios_error;
1194 bios = g_malloc(sizeof(*bios));
1195 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1196 if (sev_enabled()) {
1198 * The concept of a "reset" simply doesn't exist for
1199 * confidential computing guests, we have to destroy and
1200 * re-launch them instead. So there is no need to register
1201 * the firmware as rom to properly re-initialize on reset.
1202 * Just go for a straight file load instead.
1204 void *ptr = memory_region_get_ram_ptr(bios);
1205 load_image_size(filename, ptr, bios_size);
1206 x86_firmware_configure(ptr, bios_size);
1207 } else {
1208 if (!isapc_ram_fw) {
1209 memory_region_set_readonly(bios, true);
1211 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1212 if (ret != 0) {
1213 goto bios_error;
1216 g_free(filename);
1218 /* map the last 128KB of the BIOS in ISA space */
1219 isa_bios_size = MIN(bios_size, 128 * KiB);
1220 isa_bios = g_malloc(sizeof(*isa_bios));
1221 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1222 bios_size - isa_bios_size, isa_bios_size);
1223 memory_region_add_subregion_overlap(rom_memory,
1224 0x100000 - isa_bios_size,
1225 isa_bios,
1227 if (!isapc_ram_fw) {
1228 memory_region_set_readonly(isa_bios, true);
1231 /* map all the bios at the top of memory */
1232 memory_region_add_subregion(rom_memory,
1233 (uint32_t)(-bios_size),
1234 bios);
1235 return;
1237 bios_error:
1238 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1239 exit(1);
1242 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1244 bool smm_available = false;
1246 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1247 return false;
1250 if (tcg_enabled() || qtest_enabled()) {
1251 smm_available = true;
1252 } else if (kvm_enabled()) {
1253 smm_available = kvm_has_smm();
1256 if (smm_available) {
1257 return true;
1260 if (x86ms->smm == ON_OFF_AUTO_ON) {
1261 error_report("System Management Mode not supported by this hypervisor.");
1262 exit(1);
1264 return false;
1267 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1268 void *opaque, Error **errp)
1270 X86MachineState *x86ms = X86_MACHINE(obj);
1271 OnOffAuto smm = x86ms->smm;
1273 visit_type_OnOffAuto(v, name, &smm, errp);
1276 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1277 void *opaque, Error **errp)
1279 X86MachineState *x86ms = X86_MACHINE(obj);
1281 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1284 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1286 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1287 return false;
1289 return true;
1292 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1293 void *opaque, Error **errp)
1295 X86MachineState *x86ms = X86_MACHINE(obj);
1296 OnOffAuto acpi = x86ms->acpi;
1298 visit_type_OnOffAuto(v, name, &acpi, errp);
1301 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1302 void *opaque, Error **errp)
1304 X86MachineState *x86ms = X86_MACHINE(obj);
1306 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1309 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1310 void *opaque, Error **errp)
1312 X86MachineState *x86ms = X86_MACHINE(obj);
1313 OnOffAuto pit = x86ms->pit;
1315 visit_type_OnOffAuto(v, name, &pit, errp);
1318 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1319 void *opaque, Error **errp)
1321 X86MachineState *x86ms = X86_MACHINE(obj);;
1323 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1326 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1327 void *opaque, Error **errp)
1329 X86MachineState *x86ms = X86_MACHINE(obj);
1330 OnOffAuto pic = x86ms->pic;
1332 visit_type_OnOffAuto(v, name, &pic, errp);
1335 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1336 void *opaque, Error **errp)
1338 X86MachineState *x86ms = X86_MACHINE(obj);
1340 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1343 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1345 X86MachineState *x86ms = X86_MACHINE(obj);
1347 return g_strdup(x86ms->oem_id);
1350 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1352 X86MachineState *x86ms = X86_MACHINE(obj);
1353 size_t len = strlen(value);
1355 if (len > 6) {
1356 error_setg(errp,
1357 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1358 "6 bytes in size");
1359 return;
1362 strncpy(x86ms->oem_id, value, 6);
1365 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1367 X86MachineState *x86ms = X86_MACHINE(obj);
1369 return g_strdup(x86ms->oem_table_id);
1372 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1373 Error **errp)
1375 X86MachineState *x86ms = X86_MACHINE(obj);
1376 size_t len = strlen(value);
1378 if (len > 8) {
1379 error_setg(errp,
1380 "User specified "X86_MACHINE_OEM_TABLE_ID
1381 " value is bigger than "
1382 "8 bytes in size");
1383 return;
1385 strncpy(x86ms->oem_table_id, value, 8);
1388 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1389 const char *name, void *opaque, Error **errp)
1391 X86MachineState *x86ms = X86_MACHINE(obj);
1392 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1394 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1397 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1398 const char *name, void *opaque, Error **errp)
1400 X86MachineState *x86ms = X86_MACHINE(obj);
1402 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1405 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1406 void *opaque, Error **errp)
1408 X86MachineState *x86ms = X86_MACHINE(obj);
1409 SgxEPCList *list = x86ms->sgx_epc_list;
1411 visit_type_SgxEPCList(v, name, &list, errp);
1414 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1415 void *opaque, Error **errp)
1417 X86MachineState *x86ms = X86_MACHINE(obj);
1418 SgxEPCList *list;
1420 list = x86ms->sgx_epc_list;
1421 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1423 qapi_free_SgxEPCList(list);
1426 static void x86_machine_initfn(Object *obj)
1428 X86MachineState *x86ms = X86_MACHINE(obj);
1430 x86ms->smm = ON_OFF_AUTO_AUTO;
1431 x86ms->acpi = ON_OFF_AUTO_AUTO;
1432 x86ms->pit = ON_OFF_AUTO_AUTO;
1433 x86ms->pic = ON_OFF_AUTO_AUTO;
1434 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1435 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1436 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1437 x86ms->bus_lock_ratelimit = 0;
1438 x86ms->above_4g_mem_start = 4 * GiB;
1441 static void x86_machine_class_init(ObjectClass *oc, void *data)
1443 MachineClass *mc = MACHINE_CLASS(oc);
1444 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1445 NMIClass *nc = NMI_CLASS(oc);
1447 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1448 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1449 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1450 x86mc->save_tsc_khz = true;
1451 x86mc->fwcfg_dma_enabled = true;
1452 nc->nmi_monitor_handler = x86_nmi;
1454 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1455 x86_machine_get_smm, x86_machine_set_smm,
1456 NULL, NULL);
1457 object_class_property_set_description(oc, X86_MACHINE_SMM,
1458 "Enable SMM");
1460 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1461 x86_machine_get_acpi, x86_machine_set_acpi,
1462 NULL, NULL);
1463 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1464 "Enable ACPI");
1466 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1467 x86_machine_get_pit,
1468 x86_machine_set_pit,
1469 NULL, NULL);
1470 object_class_property_set_description(oc, X86_MACHINE_PIT,
1471 "Enable i8254 PIT");
1473 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1474 x86_machine_get_pic,
1475 x86_machine_set_pic,
1476 NULL, NULL);
1477 object_class_property_set_description(oc, X86_MACHINE_PIC,
1478 "Enable i8259 PIC");
1480 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1481 x86_machine_get_oem_id,
1482 x86_machine_set_oem_id);
1483 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1484 "Override the default value of field OEMID "
1485 "in ACPI table header."
1486 "The string may be up to 6 bytes in size");
1489 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1490 x86_machine_get_oem_table_id,
1491 x86_machine_set_oem_table_id);
1492 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1493 "Override the default value of field OEM Table ID "
1494 "in ACPI table header."
1495 "The string may be up to 8 bytes in size");
1497 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1498 x86_machine_get_bus_lock_ratelimit,
1499 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1500 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1501 "Set the ratelimit for the bus locks acquired in VMs");
1503 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1504 machine_get_sgx_epc, machine_set_sgx_epc,
1505 NULL, NULL);
1506 object_class_property_set_description(oc, "sgx-epc",
1507 "SGX EPC device");
1510 static const TypeInfo x86_machine_info = {
1511 .name = TYPE_X86_MACHINE,
1512 .parent = TYPE_MACHINE,
1513 .abstract = true,
1514 .instance_size = sizeof(X86MachineState),
1515 .instance_init = x86_machine_initfn,
1516 .class_size = sizeof(X86MachineClass),
1517 .class_init = x86_machine_class_init,
1518 .interfaces = (InterfaceInfo[]) {
1519 { TYPE_NMI },
1524 static void x86_machine_register_types(void)
1526 type_register_static(&x86_machine_info);
1529 type_init(x86_machine_register_types)