2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
47 #include <machine/profile.h>
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
63 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_UNASSIGNED
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock
*tbs
;
83 static int code_gen_max_blocks
;
84 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
101 #define code_gen_section \
102 __attribute__((aligned (32)))
105 uint8_t code_gen_prologue
[1024] code_gen_section
;
106 static uint8_t *code_gen_buffer
;
107 static unsigned long code_gen_buffer_size
;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size
;
110 static uint8_t *code_gen_ptr
;
112 #if !defined(CONFIG_USER_ONLY)
114 static int in_migration
;
116 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
118 static MemoryRegion
*system_memory
;
119 static MemoryRegion
*system_io
;
124 /* current CPU in the current thread. It is only valid inside
126 DEFINE_TLS(CPUState
*,cpu_single_env
);
127 /* 0 = Do not count executed instructions.
128 1 = Precise instruction counting.
129 2 = Adaptive rate instruction counting. */
132 typedef struct PageDesc
{
133 /* list of TBs intersecting this ram page */
134 TranslationBlock
*first_tb
;
135 /* in order to optimize self modifying code, we count the number
136 of lookups we do to a given page to use a bitmap */
137 unsigned int code_write_count
;
138 uint8_t *code_bitmap
;
139 #if defined(CONFIG_USER_ONLY)
144 /* In system mode we want L1_MAP to be based on ram offsets,
145 while in user mode we want it to be based on virtual addresses. */
146 #if !defined(CONFIG_USER_ONLY)
147 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
148 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
150 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 /* Size of the L2 (and L3, etc) page tables. */
158 #define L2_SIZE (1 << L2_BITS)
160 /* The bits remaining after N lower levels of page tables. */
161 #define P_L1_BITS_REM \
162 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163 #define V_L1_BITS_REM \
164 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
166 /* Size of the L1 page table. Avoid silly small sizes. */
167 #if P_L1_BITS_REM < 4
168 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
170 #define P_L1_BITS P_L1_BITS_REM
173 #if V_L1_BITS_REM < 4
174 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
176 #define V_L1_BITS V_L1_BITS_REM
179 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
180 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
182 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
183 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
185 unsigned long qemu_real_host_page_size
;
186 unsigned long qemu_host_page_size
;
187 unsigned long qemu_host_page_mask
;
189 /* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191 static void *l1_map
[V_L1_SIZE
];
193 #if !defined(CONFIG_USER_ONLY)
194 typedef struct PhysPageDesc
{
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset
;
197 ram_addr_t region_offset
;
200 /* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202 static void *l1_phys_map
[P_L1_SIZE
];
204 static void io_mem_init(void);
205 static void memory_map_init(void);
207 /* io memory support */
208 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
209 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
210 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
211 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
212 static int io_mem_watch
;
217 static const char *logfilename
= "qemu.log";
219 static const char *logfilename
= "/tmp/qemu.log";
223 static int log_append
= 0;
226 #if !defined(CONFIG_USER_ONLY)
227 static int tlb_flush_count
;
229 static int tb_flush_count
;
230 static int tb_phys_invalidate_count
;
233 static void map_exec(void *addr
, long size
)
236 VirtualProtect(addr
, size
,
237 PAGE_EXECUTE_READWRITE
, &old_protect
);
241 static void map_exec(void *addr
, long size
)
243 unsigned long start
, end
, page_size
;
245 page_size
= getpagesize();
246 start
= (unsigned long)addr
;
247 start
&= ~(page_size
- 1);
249 end
= (unsigned long)addr
+ size
;
250 end
+= page_size
- 1;
251 end
&= ~(page_size
- 1);
253 mprotect((void *)start
, end
- start
,
254 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
258 static void page_init(void)
260 /* NOTE: we can always suppose that qemu_host_page_size >=
264 SYSTEM_INFO system_info
;
266 GetSystemInfo(&system_info
);
267 qemu_real_host_page_size
= system_info
.dwPageSize
;
270 qemu_real_host_page_size
= getpagesize();
272 if (qemu_host_page_size
== 0)
273 qemu_host_page_size
= qemu_real_host_page_size
;
274 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
275 qemu_host_page_size
= TARGET_PAGE_SIZE
;
276 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
278 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
280 #ifdef HAVE_KINFO_GETVMMAP
281 struct kinfo_vmentry
*freep
;
284 freep
= kinfo_getvmmap(getpid(), &cnt
);
287 for (i
= 0; i
< cnt
; i
++) {
288 unsigned long startaddr
, endaddr
;
290 startaddr
= freep
[i
].kve_start
;
291 endaddr
= freep
[i
].kve_end
;
292 if (h2g_valid(startaddr
)) {
293 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
295 if (h2g_valid(endaddr
)) {
296 endaddr
= h2g(endaddr
);
297 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
299 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
301 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
312 last_brk
= (unsigned long)sbrk(0);
314 f
= fopen("/compat/linux/proc/self/maps", "r");
319 unsigned long startaddr
, endaddr
;
322 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
324 if (n
== 2 && h2g_valid(startaddr
)) {
325 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
327 if (h2g_valid(endaddr
)) {
328 endaddr
= h2g(endaddr
);
332 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
344 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
350 #if defined(CONFIG_USER_ONLY)
351 /* We can't use g_malloc because it may recurse into a locked mutex. */
352 # define ALLOC(P, SIZE) \
354 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
355 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
358 # define ALLOC(P, SIZE) \
359 do { P = g_malloc0(SIZE); } while (0)
362 /* Level 1. Always allocated. */
363 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
366 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
373 ALLOC(p
, sizeof(void *) * L2_SIZE
);
377 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
385 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
391 return pd
+ (index
& (L2_SIZE
- 1));
394 static inline PageDesc
*page_find(tb_page_addr_t index
)
396 return page_find_alloc(index
, 0);
399 #if !defined(CONFIG_USER_ONLY)
400 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
406 /* Level 1. Always allocated. */
407 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
410 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
416 *lp
= p
= g_malloc0(sizeof(void *) * L2_SIZE
);
418 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
424 int first_index
= index
& ~(L2_SIZE
- 1);
430 *lp
= pd
= g_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
432 for (i
= 0; i
< L2_SIZE
; i
++) {
433 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
434 pd
[i
].region_offset
= (first_index
+ i
) << TARGET_PAGE_BITS
;
438 return pd
+ (index
& (L2_SIZE
- 1));
441 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
443 return phys_page_find_alloc(index
, 0);
446 static void tlb_protect_code(ram_addr_t ram_addr
);
447 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
449 #define mmap_lock() do { } while(0)
450 #define mmap_unlock() do { } while(0)
453 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
455 #if defined(CONFIG_USER_ONLY)
456 /* Currently it is not recommended to allocate big chunks of data in
457 user mode. It will change when a dedicated libc will be used */
458 #define USE_STATIC_CODE_GEN_BUFFER
461 #ifdef USE_STATIC_CODE_GEN_BUFFER
462 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
463 __attribute__((aligned (CODE_GEN_ALIGN
)));
466 static void code_gen_alloc(unsigned long tb_size
)
468 #ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer
= static_code_gen_buffer
;
470 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
471 map_exec(code_gen_buffer
, code_gen_buffer_size
);
473 code_gen_buffer_size
= tb_size
;
474 if (code_gen_buffer_size
== 0) {
475 #if defined(CONFIG_USER_ONLY)
476 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
478 /* XXX: needs adjustments */
479 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
482 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
483 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
484 /* The code gen buffer location may have constraints depending on
485 the host cpu and OS */
486 #if defined(__linux__)
491 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
492 #if defined(__x86_64__)
494 /* Cannot map more than that */
495 if (code_gen_buffer_size
> (800 * 1024 * 1024))
496 code_gen_buffer_size
= (800 * 1024 * 1024);
497 #elif defined(__sparc_v9__)
498 // Map the buffer below 2G, so we can use direct calls and branches
500 start
= (void *) 0x60000000UL
;
501 if (code_gen_buffer_size
> (512 * 1024 * 1024))
502 code_gen_buffer_size
= (512 * 1024 * 1024);
503 #elif defined(__arm__)
504 /* Keep the buffer no bigger than 16GB to branch between blocks */
505 if (code_gen_buffer_size
> 16 * 1024 * 1024)
506 code_gen_buffer_size
= 16 * 1024 * 1024;
507 #elif defined(__s390x__)
508 /* Map the buffer so that we can use direct calls and branches. */
509 /* We have a +- 4GB range on the branches; leave some slop. */
510 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
511 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
513 start
= (void *)0x90000000UL
;
515 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
516 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
518 if (code_gen_buffer
== MAP_FAILED
) {
519 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
523 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
524 || defined(__DragonFly__) || defined(__OpenBSD__) \
525 || defined(__NetBSD__)
529 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
530 #if defined(__x86_64__)
531 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
532 * 0x40000000 is free */
534 addr
= (void *)0x40000000;
535 /* Cannot map more than that */
536 if (code_gen_buffer_size
> (800 * 1024 * 1024))
537 code_gen_buffer_size
= (800 * 1024 * 1024);
538 #elif defined(__sparc_v9__)
539 // Map the buffer below 2G, so we can use direct calls and branches
541 addr
= (void *) 0x60000000UL
;
542 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
543 code_gen_buffer_size
= (512 * 1024 * 1024);
546 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
547 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
549 if (code_gen_buffer
== MAP_FAILED
) {
550 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
555 code_gen_buffer
= g_malloc(code_gen_buffer_size
);
556 map_exec(code_gen_buffer
, code_gen_buffer_size
);
558 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
559 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
560 code_gen_buffer_max_size
= code_gen_buffer_size
-
561 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
562 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
563 tbs
= g_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
566 /* Must be called before using the QEMU cpus. 'tb_size' is the size
567 (in bytes) allocated to the translation buffer. Zero means default
569 void tcg_exec_init(unsigned long tb_size
)
572 code_gen_alloc(tb_size
);
573 code_gen_ptr
= code_gen_buffer
;
575 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
576 /* There's no guest base to take into account, so go ahead and
577 initialize the prologue now. */
578 tcg_prologue_init(&tcg_ctx
);
582 bool tcg_enabled(void)
584 return code_gen_buffer
!= NULL
;
587 void cpu_exec_init_all(void)
589 #if !defined(CONFIG_USER_ONLY)
595 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
597 static int cpu_common_post_load(void *opaque
, int version_id
)
599 CPUState
*env
= opaque
;
601 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
602 version_id is increased. */
603 env
->interrupt_request
&= ~0x01;
609 static const VMStateDescription vmstate_cpu_common
= {
610 .name
= "cpu_common",
612 .minimum_version_id
= 1,
613 .minimum_version_id_old
= 1,
614 .post_load
= cpu_common_post_load
,
615 .fields
= (VMStateField
[]) {
616 VMSTATE_UINT32(halted
, CPUState
),
617 VMSTATE_UINT32(interrupt_request
, CPUState
),
618 VMSTATE_END_OF_LIST()
623 CPUState
*qemu_get_cpu(int cpu
)
625 CPUState
*env
= first_cpu
;
628 if (env
->cpu_index
== cpu
)
636 void cpu_exec_init(CPUState
*env
)
641 #if defined(CONFIG_USER_ONLY)
644 env
->next_cpu
= NULL
;
647 while (*penv
!= NULL
) {
648 penv
= &(*penv
)->next_cpu
;
651 env
->cpu_index
= cpu_index
;
653 QTAILQ_INIT(&env
->breakpoints
);
654 QTAILQ_INIT(&env
->watchpoints
);
655 #ifndef CONFIG_USER_ONLY
656 env
->thread_id
= qemu_get_thread_id();
659 #if defined(CONFIG_USER_ONLY)
662 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
663 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
664 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
665 cpu_save
, cpu_load
, env
);
669 /* Allocate a new translation block. Flush the translation buffer if
670 too many translation blocks or too much generated code. */
671 static TranslationBlock
*tb_alloc(target_ulong pc
)
673 TranslationBlock
*tb
;
675 if (nb_tbs
>= code_gen_max_blocks
||
676 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
684 void tb_free(TranslationBlock
*tb
)
686 /* In practice this is mostly used for single use temporary TB
687 Ignore the hard cases and just back up if this TB happens to
688 be the last one generated. */
689 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
690 code_gen_ptr
= tb
->tc_ptr
;
695 static inline void invalidate_page_bitmap(PageDesc
*p
)
697 if (p
->code_bitmap
) {
698 g_free(p
->code_bitmap
);
699 p
->code_bitmap
= NULL
;
701 p
->code_write_count
= 0;
704 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
706 static void page_flush_tb_1 (int level
, void **lp
)
715 for (i
= 0; i
< L2_SIZE
; ++i
) {
716 pd
[i
].first_tb
= NULL
;
717 invalidate_page_bitmap(pd
+ i
);
721 for (i
= 0; i
< L2_SIZE
; ++i
) {
722 page_flush_tb_1 (level
- 1, pp
+ i
);
727 static void page_flush_tb(void)
730 for (i
= 0; i
< V_L1_SIZE
; i
++) {
731 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
735 /* flush all the translation blocks */
736 /* XXX: tb_flush is currently not thread safe */
737 void tb_flush(CPUState
*env1
)
740 #if defined(DEBUG_FLUSH)
741 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
742 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
744 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
746 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
747 cpu_abort(env1
, "Internal error: code buffer overflow\n");
751 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
752 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
755 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
758 code_gen_ptr
= code_gen_buffer
;
759 /* XXX: flush processor icache at this point if cache flush is
764 #ifdef DEBUG_TB_CHECK
766 static void tb_invalidate_check(target_ulong address
)
768 TranslationBlock
*tb
;
770 address
&= TARGET_PAGE_MASK
;
771 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
772 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
773 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
774 address
>= tb
->pc
+ tb
->size
)) {
775 printf("ERROR invalidate: address=" TARGET_FMT_lx
776 " PC=%08lx size=%04x\n",
777 address
, (long)tb
->pc
, tb
->size
);
783 /* verify that all the pages have correct rights for code */
784 static void tb_page_check(void)
786 TranslationBlock
*tb
;
787 int i
, flags1
, flags2
;
789 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
790 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
791 flags1
= page_get_flags(tb
->pc
);
792 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
793 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
794 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
795 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
803 /* invalidate one TB */
804 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
807 TranslationBlock
*tb1
;
811 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
814 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
818 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
820 TranslationBlock
*tb1
;
826 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
828 *ptb
= tb1
->page_next
[n1
];
831 ptb
= &tb1
->page_next
[n1
];
835 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
837 TranslationBlock
*tb1
, **ptb
;
840 ptb
= &tb
->jmp_next
[n
];
843 /* find tb(n) in circular list */
847 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
848 if (n1
== n
&& tb1
== tb
)
851 ptb
= &tb1
->jmp_first
;
853 ptb
= &tb1
->jmp_next
[n1
];
856 /* now we can suppress tb(n) from the list */
857 *ptb
= tb
->jmp_next
[n
];
859 tb
->jmp_next
[n
] = NULL
;
863 /* reset the jump entry 'n' of a TB so that it is not chained to
865 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
867 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
870 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
875 tb_page_addr_t phys_pc
;
876 TranslationBlock
*tb1
, *tb2
;
878 /* remove the TB from the hash list */
879 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
880 h
= tb_phys_hash_func(phys_pc
);
881 tb_remove(&tb_phys_hash
[h
], tb
,
882 offsetof(TranslationBlock
, phys_hash_next
));
884 /* remove the TB from the page list */
885 if (tb
->page_addr
[0] != page_addr
) {
886 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
887 tb_page_remove(&p
->first_tb
, tb
);
888 invalidate_page_bitmap(p
);
890 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
891 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
892 tb_page_remove(&p
->first_tb
, tb
);
893 invalidate_page_bitmap(p
);
896 tb_invalidated_flag
= 1;
898 /* remove the TB from the hash list */
899 h
= tb_jmp_cache_hash_func(tb
->pc
);
900 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
901 if (env
->tb_jmp_cache
[h
] == tb
)
902 env
->tb_jmp_cache
[h
] = NULL
;
905 /* suppress this TB from the two jump lists */
906 tb_jmp_remove(tb
, 0);
907 tb_jmp_remove(tb
, 1);
909 /* suppress any remaining jumps to this TB */
915 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
916 tb2
= tb1
->jmp_next
[n1
];
917 tb_reset_jump(tb1
, n1
);
918 tb1
->jmp_next
[n1
] = NULL
;
921 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
923 tb_phys_invalidate_count
++;
926 static inline void set_bits(uint8_t *tab
, int start
, int len
)
932 mask
= 0xff << (start
& 7);
933 if ((start
& ~7) == (end
& ~7)) {
935 mask
&= ~(0xff << (end
& 7));
940 start
= (start
+ 8) & ~7;
942 while (start
< end1
) {
947 mask
= ~(0xff << (end
& 7));
953 static void build_page_bitmap(PageDesc
*p
)
955 int n
, tb_start
, tb_end
;
956 TranslationBlock
*tb
;
958 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
963 tb
= (TranslationBlock
*)((long)tb
& ~3);
964 /* NOTE: this is subtle as a TB may span two physical pages */
966 /* NOTE: tb_end may be after the end of the page, but
967 it is not a problem */
968 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
969 tb_end
= tb_start
+ tb
->size
;
970 if (tb_end
> TARGET_PAGE_SIZE
)
971 tb_end
= TARGET_PAGE_SIZE
;
974 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
976 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
977 tb
= tb
->page_next
[n
];
981 TranslationBlock
*tb_gen_code(CPUState
*env
,
982 target_ulong pc
, target_ulong cs_base
,
983 int flags
, int cflags
)
985 TranslationBlock
*tb
;
987 tb_page_addr_t phys_pc
, phys_page2
;
988 target_ulong virt_page2
;
991 phys_pc
= get_page_addr_code(env
, pc
);
994 /* flush must be done */
996 /* cannot fail at this point */
998 /* Don't forget to invalidate previous TB info. */
999 tb_invalidated_flag
= 1;
1001 tc_ptr
= code_gen_ptr
;
1002 tb
->tc_ptr
= tc_ptr
;
1003 tb
->cs_base
= cs_base
;
1005 tb
->cflags
= cflags
;
1006 cpu_gen_code(env
, tb
, &code_gen_size
);
1007 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1009 /* check next page if needed */
1010 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1012 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1013 phys_page2
= get_page_addr_code(env
, virt_page2
);
1015 tb_link_page(tb
, phys_pc
, phys_page2
);
1019 /* invalidate all TBs which intersect with the target physical page
1020 starting in range [start;end[. NOTE: start and end must refer to
1021 the same physical page. 'is_cpu_write_access' should be true if called
1022 from a real cpu write access: the virtual CPU will exit the current
1023 TB if code is modified inside this TB. */
1024 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1025 int is_cpu_write_access
)
1027 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1028 CPUState
*env
= cpu_single_env
;
1029 tb_page_addr_t tb_start
, tb_end
;
1032 #ifdef TARGET_HAS_PRECISE_SMC
1033 int current_tb_not_found
= is_cpu_write_access
;
1034 TranslationBlock
*current_tb
= NULL
;
1035 int current_tb_modified
= 0;
1036 target_ulong current_pc
= 0;
1037 target_ulong current_cs_base
= 0;
1038 int current_flags
= 0;
1039 #endif /* TARGET_HAS_PRECISE_SMC */
1041 p
= page_find(start
>> TARGET_PAGE_BITS
);
1044 if (!p
->code_bitmap
&&
1045 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1046 is_cpu_write_access
) {
1047 /* build code bitmap */
1048 build_page_bitmap(p
);
1051 /* we remove all the TBs in the range [start, end[ */
1052 /* XXX: see if in some cases it could be faster to invalidate all the code */
1054 while (tb
!= NULL
) {
1056 tb
= (TranslationBlock
*)((long)tb
& ~3);
1057 tb_next
= tb
->page_next
[n
];
1058 /* NOTE: this is subtle as a TB may span two physical pages */
1060 /* NOTE: tb_end may be after the end of the page, but
1061 it is not a problem */
1062 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1063 tb_end
= tb_start
+ tb
->size
;
1065 tb_start
= tb
->page_addr
[1];
1066 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1068 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1069 #ifdef TARGET_HAS_PRECISE_SMC
1070 if (current_tb_not_found
) {
1071 current_tb_not_found
= 0;
1073 if (env
->mem_io_pc
) {
1074 /* now we have a real cpu fault */
1075 current_tb
= tb_find_pc(env
->mem_io_pc
);
1078 if (current_tb
== tb
&&
1079 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1080 /* If we are modifying the current TB, we must stop
1081 its execution. We could be more precise by checking
1082 that the modification is after the current PC, but it
1083 would require a specialized function to partially
1084 restore the CPU state */
1086 current_tb_modified
= 1;
1087 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1088 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1091 #endif /* TARGET_HAS_PRECISE_SMC */
1092 /* we need to do that to handle the case where a signal
1093 occurs while doing tb_phys_invalidate() */
1096 saved_tb
= env
->current_tb
;
1097 env
->current_tb
= NULL
;
1099 tb_phys_invalidate(tb
, -1);
1101 env
->current_tb
= saved_tb
;
1102 if (env
->interrupt_request
&& env
->current_tb
)
1103 cpu_interrupt(env
, env
->interrupt_request
);
1108 #if !defined(CONFIG_USER_ONLY)
1109 /* if no code remaining, no need to continue to use slow writes */
1111 invalidate_page_bitmap(p
);
1112 if (is_cpu_write_access
) {
1113 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1117 #ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_modified
) {
1119 /* we generate a block containing just the instruction
1120 modifying the memory. It will ensure that it cannot modify
1122 env
->current_tb
= NULL
;
1123 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1124 cpu_resume_from_signal(env
, NULL
);
1129 /* len must be <= 8 and start must be a multiple of len */
1130 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1136 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1137 cpu_single_env
->mem_io_vaddr
, len
,
1138 cpu_single_env
->eip
,
1139 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1142 p
= page_find(start
>> TARGET_PAGE_BITS
);
1145 if (p
->code_bitmap
) {
1146 offset
= start
& ~TARGET_PAGE_MASK
;
1147 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1148 if (b
& ((1 << len
) - 1))
1152 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1156 #if !defined(CONFIG_SOFTMMU)
1157 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1158 unsigned long pc
, void *puc
)
1160 TranslationBlock
*tb
;
1163 #ifdef TARGET_HAS_PRECISE_SMC
1164 TranslationBlock
*current_tb
= NULL
;
1165 CPUState
*env
= cpu_single_env
;
1166 int current_tb_modified
= 0;
1167 target_ulong current_pc
= 0;
1168 target_ulong current_cs_base
= 0;
1169 int current_flags
= 0;
1172 addr
&= TARGET_PAGE_MASK
;
1173 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1177 #ifdef TARGET_HAS_PRECISE_SMC
1178 if (tb
&& pc
!= 0) {
1179 current_tb
= tb_find_pc(pc
);
1182 while (tb
!= NULL
) {
1184 tb
= (TranslationBlock
*)((long)tb
& ~3);
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb
== tb
&&
1187 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1188 /* If we are modifying the current TB, we must stop
1189 its execution. We could be more precise by checking
1190 that the modification is after the current PC, but it
1191 would require a specialized function to partially
1192 restore the CPU state */
1194 current_tb_modified
= 1;
1195 cpu_restore_state(current_tb
, env
, pc
);
1196 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1199 #endif /* TARGET_HAS_PRECISE_SMC */
1200 tb_phys_invalidate(tb
, addr
);
1201 tb
= tb
->page_next
[n
];
1204 #ifdef TARGET_HAS_PRECISE_SMC
1205 if (current_tb_modified
) {
1206 /* we generate a block containing just the instruction
1207 modifying the memory. It will ensure that it cannot modify
1209 env
->current_tb
= NULL
;
1210 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1211 cpu_resume_from_signal(env
, puc
);
1217 /* add the tb in the target page and protect it if necessary */
1218 static inline void tb_alloc_page(TranslationBlock
*tb
,
1219 unsigned int n
, tb_page_addr_t page_addr
)
1222 #ifndef CONFIG_USER_ONLY
1223 bool page_already_protected
;
1226 tb
->page_addr
[n
] = page_addr
;
1227 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1228 tb
->page_next
[n
] = p
->first_tb
;
1229 #ifndef CONFIG_USER_ONLY
1230 page_already_protected
= p
->first_tb
!= NULL
;
1232 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1233 invalidate_page_bitmap(p
);
1235 #if defined(TARGET_HAS_SMC) || 1
1237 #if defined(CONFIG_USER_ONLY)
1238 if (p
->flags
& PAGE_WRITE
) {
1243 /* force the host page as non writable (writes will have a
1244 page fault + mprotect overhead) */
1245 page_addr
&= qemu_host_page_mask
;
1247 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1248 addr
+= TARGET_PAGE_SIZE
) {
1250 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1254 p2
->flags
&= ~PAGE_WRITE
;
1256 mprotect(g2h(page_addr
), qemu_host_page_size
,
1257 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1258 #ifdef DEBUG_TB_INVALIDATE
1259 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1264 /* if some code is already present, then the pages are already
1265 protected. So we handle the case where only the first TB is
1266 allocated in a physical page */
1267 if (!page_already_protected
) {
1268 tlb_protect_code(page_addr
);
1272 #endif /* TARGET_HAS_SMC */
1275 /* add a new TB and link it to the physical page tables. phys_page2 is
1276 (-1) to indicate that only one page contains the TB. */
1277 void tb_link_page(TranslationBlock
*tb
,
1278 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1281 TranslationBlock
**ptb
;
1283 /* Grab the mmap lock to stop another thread invalidating this TB
1284 before we are done. */
1286 /* add in the physical hash table */
1287 h
= tb_phys_hash_func(phys_pc
);
1288 ptb
= &tb_phys_hash
[h
];
1289 tb
->phys_hash_next
= *ptb
;
1292 /* add in the page list */
1293 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1294 if (phys_page2
!= -1)
1295 tb_alloc_page(tb
, 1, phys_page2
);
1297 tb
->page_addr
[1] = -1;
1299 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1300 tb
->jmp_next
[0] = NULL
;
1301 tb
->jmp_next
[1] = NULL
;
1303 /* init original jump addresses */
1304 if (tb
->tb_next_offset
[0] != 0xffff)
1305 tb_reset_jump(tb
, 0);
1306 if (tb
->tb_next_offset
[1] != 0xffff)
1307 tb_reset_jump(tb
, 1);
1309 #ifdef DEBUG_TB_CHECK
1315 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1316 tb[1].tc_ptr. Return NULL if not found */
1317 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1319 int m_min
, m_max
, m
;
1321 TranslationBlock
*tb
;
1325 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1326 tc_ptr
>= (unsigned long)code_gen_ptr
)
1328 /* binary search (cf Knuth) */
1331 while (m_min
<= m_max
) {
1332 m
= (m_min
+ m_max
) >> 1;
1334 v
= (unsigned long)tb
->tc_ptr
;
1337 else if (tc_ptr
< v
) {
1346 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1348 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1350 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1353 tb1
= tb
->jmp_next
[n
];
1355 /* find head of list */
1358 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1361 tb1
= tb1
->jmp_next
[n1
];
1363 /* we are now sure now that tb jumps to tb1 */
1366 /* remove tb from the jmp_first list */
1367 ptb
= &tb_next
->jmp_first
;
1371 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1372 if (n1
== n
&& tb1
== tb
)
1374 ptb
= &tb1
->jmp_next
[n1
];
1376 *ptb
= tb
->jmp_next
[n
];
1377 tb
->jmp_next
[n
] = NULL
;
1379 /* suppress the jump to next tb in generated code */
1380 tb_reset_jump(tb
, n
);
1382 /* suppress jumps in the tb on which we could have jumped */
1383 tb_reset_jump_recursive(tb_next
);
1387 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1389 tb_reset_jump_recursive2(tb
, 0);
1390 tb_reset_jump_recursive2(tb
, 1);
1393 #if defined(TARGET_HAS_ICE)
1394 #if defined(CONFIG_USER_ONLY)
1395 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1397 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1400 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1402 target_phys_addr_t addr
;
1404 ram_addr_t ram_addr
;
1407 addr
= cpu_get_phys_page_debug(env
, pc
);
1408 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1410 pd
= IO_MEM_UNASSIGNED
;
1412 pd
= p
->phys_offset
;
1414 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1415 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1418 #endif /* TARGET_HAS_ICE */
1420 #if defined(CONFIG_USER_ONLY)
1421 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1426 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1427 int flags
, CPUWatchpoint
**watchpoint
)
1432 /* Add a watchpoint. */
1433 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1434 int flags
, CPUWatchpoint
**watchpoint
)
1436 target_ulong len_mask
= ~(len
- 1);
1439 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1440 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1441 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1442 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1445 wp
= g_malloc(sizeof(*wp
));
1448 wp
->len_mask
= len_mask
;
1451 /* keep all GDB-injected watchpoints in front */
1453 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1455 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1457 tlb_flush_page(env
, addr
);
1464 /* Remove a specific watchpoint. */
1465 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1468 target_ulong len_mask
= ~(len
- 1);
1471 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1472 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1473 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1474 cpu_watchpoint_remove_by_ref(env
, wp
);
1481 /* Remove a specific watchpoint by reference. */
1482 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1484 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1486 tlb_flush_page(env
, watchpoint
->vaddr
);
1491 /* Remove all matching watchpoints. */
1492 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1494 CPUWatchpoint
*wp
, *next
;
1496 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1497 if (wp
->flags
& mask
)
1498 cpu_watchpoint_remove_by_ref(env
, wp
);
1503 /* Add a breakpoint. */
1504 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1505 CPUBreakpoint
**breakpoint
)
1507 #if defined(TARGET_HAS_ICE)
1510 bp
= g_malloc(sizeof(*bp
));
1515 /* keep all GDB-injected breakpoints in front */
1517 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1519 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1521 breakpoint_invalidate(env
, pc
);
1531 /* Remove a specific breakpoint. */
1532 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1534 #if defined(TARGET_HAS_ICE)
1537 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1538 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1539 cpu_breakpoint_remove_by_ref(env
, bp
);
1549 /* Remove a specific breakpoint by reference. */
1550 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1552 #if defined(TARGET_HAS_ICE)
1553 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1555 breakpoint_invalidate(env
, breakpoint
->pc
);
1561 /* Remove all matching breakpoints. */
1562 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1564 #if defined(TARGET_HAS_ICE)
1565 CPUBreakpoint
*bp
, *next
;
1567 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1568 if (bp
->flags
& mask
)
1569 cpu_breakpoint_remove_by_ref(env
, bp
);
1574 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1575 CPU loop after each instruction */
1576 void cpu_single_step(CPUState
*env
, int enabled
)
1578 #if defined(TARGET_HAS_ICE)
1579 if (env
->singlestep_enabled
!= enabled
) {
1580 env
->singlestep_enabled
= enabled
;
1582 kvm_update_guest_debug(env
, 0);
1584 /* must flush all the translated code to avoid inconsistencies */
1585 /* XXX: only flush what is necessary */
1592 /* enable or disable low levels log */
1593 void cpu_set_log(int log_flags
)
1595 loglevel
= log_flags
;
1596 if (loglevel
&& !logfile
) {
1597 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1599 perror(logfilename
);
1602 #if !defined(CONFIG_SOFTMMU)
1603 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1605 static char logfile_buf
[4096];
1606 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1608 #elif defined(_WIN32)
1609 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1610 setvbuf(logfile
, NULL
, _IONBF
, 0);
1612 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1616 if (!loglevel
&& logfile
) {
1622 void cpu_set_log_filename(const char *filename
)
1624 logfilename
= strdup(filename
);
1629 cpu_set_log(loglevel
);
1632 static void cpu_unlink_tb(CPUState
*env
)
1634 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1635 problem and hope the cpu will stop of its own accord. For userspace
1636 emulation this often isn't actually as bad as it sounds. Often
1637 signals are used primarily to interrupt blocking syscalls. */
1638 TranslationBlock
*tb
;
1639 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1641 spin_lock(&interrupt_lock
);
1642 tb
= env
->current_tb
;
1643 /* if the cpu is currently executing code, we must unlink it and
1644 all the potentially executing TB */
1646 env
->current_tb
= NULL
;
1647 tb_reset_jump_recursive(tb
);
1649 spin_unlock(&interrupt_lock
);
1652 #ifndef CONFIG_USER_ONLY
1653 /* mask must never be zero, except for A20 change call */
1654 static void tcg_handle_interrupt(CPUState
*env
, int mask
)
1658 old_mask
= env
->interrupt_request
;
1659 env
->interrupt_request
|= mask
;
1662 * If called from iothread context, wake the target cpu in
1665 if (!qemu_cpu_is_self(env
)) {
1671 env
->icount_decr
.u16
.high
= 0xffff;
1673 && (mask
& ~old_mask
) != 0) {
1674 cpu_abort(env
, "Raised interrupt while not in I/O function");
1681 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1683 #else /* CONFIG_USER_ONLY */
1685 void cpu_interrupt(CPUState
*env
, int mask
)
1687 env
->interrupt_request
|= mask
;
1690 #endif /* CONFIG_USER_ONLY */
1692 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1694 env
->interrupt_request
&= ~mask
;
1697 void cpu_exit(CPUState
*env
)
1699 env
->exit_request
= 1;
1703 const CPULogItem cpu_log_items
[] = {
1704 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1705 "show generated host assembly code for each compiled TB" },
1706 { CPU_LOG_TB_IN_ASM
, "in_asm",
1707 "show target assembly code for each compiled TB" },
1708 { CPU_LOG_TB_OP
, "op",
1709 "show micro ops for each compiled TB" },
1710 { CPU_LOG_TB_OP_OPT
, "op_opt",
1713 "before eflags optimization and "
1715 "after liveness analysis" },
1716 { CPU_LOG_INT
, "int",
1717 "show interrupts/exceptions in short format" },
1718 { CPU_LOG_EXEC
, "exec",
1719 "show trace before each executed TB (lots of logs)" },
1720 { CPU_LOG_TB_CPU
, "cpu",
1721 "show CPU state before block translation" },
1723 { CPU_LOG_PCALL
, "pcall",
1724 "show protected mode far calls/returns/exceptions" },
1725 { CPU_LOG_RESET
, "cpu_reset",
1726 "show CPU state before CPU resets" },
1729 { CPU_LOG_IOPORT
, "ioport",
1730 "show all i/o ports accesses" },
1735 #ifndef CONFIG_USER_ONLY
1736 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1737 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1739 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1741 ram_addr_t phys_offset
,
1744 CPUPhysMemoryClient
*client
;
1745 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1746 client
->set_memory(client
, start_addr
, size
, phys_offset
, log_dirty
);
1750 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1751 target_phys_addr_t end
)
1753 CPUPhysMemoryClient
*client
;
1754 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1755 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1762 static int cpu_notify_migration_log(int enable
)
1764 CPUPhysMemoryClient
*client
;
1766 memory_global_dirty_log_start();
1768 memory_global_dirty_log_stop();
1770 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1771 int r
= client
->migration_log(client
, enable
);
1779 target_phys_addr_t start_addr
;
1781 ram_addr_t phys_offset
;
1784 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1785 * address. Each intermediate table provides the next L2_BITs of guest
1786 * physical address space. The number of levels vary based on host and
1787 * guest configuration, making it efficient to build the final guest
1788 * physical address by seeding the L1 offset and shifting and adding in
1789 * each L2 offset as we recurse through them. */
1790 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
, int level
,
1791 void **lp
, target_phys_addr_t addr
,
1792 struct last_map
*map
)
1800 PhysPageDesc
*pd
= *lp
;
1801 addr
<<= L2_BITS
+ TARGET_PAGE_BITS
;
1802 for (i
= 0; i
< L2_SIZE
; ++i
) {
1803 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1804 target_phys_addr_t start_addr
= addr
| i
<< TARGET_PAGE_BITS
;
1807 start_addr
== map
->start_addr
+ map
->size
&&
1808 pd
[i
].phys_offset
== map
->phys_offset
+ map
->size
) {
1810 map
->size
+= TARGET_PAGE_SIZE
;
1812 } else if (map
->size
) {
1813 client
->set_memory(client
, map
->start_addr
,
1814 map
->size
, map
->phys_offset
, false);
1817 map
->start_addr
= start_addr
;
1818 map
->size
= TARGET_PAGE_SIZE
;
1819 map
->phys_offset
= pd
[i
].phys_offset
;
1824 for (i
= 0; i
< L2_SIZE
; ++i
) {
1825 phys_page_for_each_1(client
, level
- 1, pp
+ i
,
1826 (addr
<< L2_BITS
) | i
, map
);
1831 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1834 struct last_map map
= { };
1836 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1837 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1838 l1_phys_map
+ i
, i
, &map
);
1841 client
->set_memory(client
, map
.start_addr
, map
.size
, map
.phys_offset
,
1846 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1848 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1849 phys_page_for_each(client
);
1852 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1854 QLIST_REMOVE(client
, list
);
1858 static int cmp1(const char *s1
, int n
, const char *s2
)
1860 if (strlen(s2
) != n
)
1862 return memcmp(s1
, s2
, n
) == 0;
1865 /* takes a comma separated list of log masks. Return 0 if error. */
1866 int cpu_str_to_log_mask(const char *str
)
1868 const CPULogItem
*item
;
1875 p1
= strchr(p
, ',');
1878 if(cmp1(p
,p1
-p
,"all")) {
1879 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1883 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1884 if (cmp1(p
, p1
- p
, item
->name
))
1898 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1905 fprintf(stderr
, "qemu: fatal: ");
1906 vfprintf(stderr
, fmt
, ap
);
1907 fprintf(stderr
, "\n");
1909 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1911 cpu_dump_state(env
, stderr
, fprintf
, 0);
1913 if (qemu_log_enabled()) {
1914 qemu_log("qemu: fatal: ");
1915 qemu_log_vprintf(fmt
, ap2
);
1918 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1920 log_cpu_state(env
, 0);
1927 #if defined(CONFIG_USER_ONLY)
1929 struct sigaction act
;
1930 sigfillset(&act
.sa_mask
);
1931 act
.sa_handler
= SIG_DFL
;
1932 sigaction(SIGABRT
, &act
, NULL
);
1938 CPUState
*cpu_copy(CPUState
*env
)
1940 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1941 CPUState
*next_cpu
= new_env
->next_cpu
;
1942 int cpu_index
= new_env
->cpu_index
;
1943 #if defined(TARGET_HAS_ICE)
1948 memcpy(new_env
, env
, sizeof(CPUState
));
1950 /* Preserve chaining and index. */
1951 new_env
->next_cpu
= next_cpu
;
1952 new_env
->cpu_index
= cpu_index
;
1954 /* Clone all break/watchpoints.
1955 Note: Once we support ptrace with hw-debug register access, make sure
1956 BP_CPU break/watchpoints are handled correctly on clone. */
1957 QTAILQ_INIT(&env
->breakpoints
);
1958 QTAILQ_INIT(&env
->watchpoints
);
1959 #if defined(TARGET_HAS_ICE)
1960 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1961 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1963 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1964 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1972 #if !defined(CONFIG_USER_ONLY)
1974 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1978 /* Discard jump cache entries for any tb which might potentially
1979 overlap the flushed page. */
1980 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1981 memset (&env
->tb_jmp_cache
[i
], 0,
1982 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1984 i
= tb_jmp_cache_hash_page(addr
);
1985 memset (&env
->tb_jmp_cache
[i
], 0,
1986 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1989 static CPUTLBEntry s_cputlb_empty_entry
= {
1996 /* NOTE: if flush_global is true, also flush global entries (not
1998 void tlb_flush(CPUState
*env
, int flush_global
)
2002 #if defined(DEBUG_TLB)
2003 printf("tlb_flush:\n");
2005 /* must reset current TB so that interrupts cannot modify the
2006 links while we are modifying them */
2007 env
->current_tb
= NULL
;
2009 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
2011 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2012 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
2016 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
2018 env
->tlb_flush_addr
= -1;
2019 env
->tlb_flush_mask
= 0;
2023 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
2025 if (addr
== (tlb_entry
->addr_read
&
2026 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
2027 addr
== (tlb_entry
->addr_write
&
2028 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
2029 addr
== (tlb_entry
->addr_code
&
2030 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
2031 *tlb_entry
= s_cputlb_empty_entry
;
2035 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2040 #if defined(DEBUG_TLB)
2041 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
2043 /* Check if we need to flush due to large pages. */
2044 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
2045 #if defined(DEBUG_TLB)
2046 printf("tlb_flush_page: forced full flush ("
2047 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
2048 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
2053 /* must reset current TB so that interrupts cannot modify the
2054 links while we are modifying them */
2055 env
->current_tb
= NULL
;
2057 addr
&= TARGET_PAGE_MASK
;
2058 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2059 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2060 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
2062 tlb_flush_jmp_cache(env
, addr
);
2065 /* update the TLBs so that writes to code in the virtual page 'addr'
2067 static void tlb_protect_code(ram_addr_t ram_addr
)
2069 cpu_physical_memory_reset_dirty(ram_addr
,
2070 ram_addr
+ TARGET_PAGE_SIZE
,
2074 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2075 tested for self modifying code */
2076 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2079 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2082 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2083 unsigned long start
, unsigned long length
)
2086 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2087 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2088 if ((addr
- start
) < length
) {
2089 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2094 /* Note: start and end must be within the same ram block. */
2095 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2099 unsigned long length
, start1
;
2102 start
&= TARGET_PAGE_MASK
;
2103 end
= TARGET_PAGE_ALIGN(end
);
2105 length
= end
- start
;
2108 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2110 /* we modify the TLB cache so that the dirty bit will be set again
2111 when accessing the range */
2112 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2113 /* Check that we don't span multiple blocks - this breaks the
2114 address comparisons below. */
2115 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2116 != (end
- 1) - start
) {
2120 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2122 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2123 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2124 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2130 int cpu_physical_memory_set_dirty_tracking(int enable
)
2133 in_migration
= enable
;
2134 ret
= cpu_notify_migration_log(!!enable
);
2138 int cpu_physical_memory_get_dirty_tracking(void)
2140 return in_migration
;
2143 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2144 target_phys_addr_t end_addr
)
2148 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2152 int cpu_physical_log_start(target_phys_addr_t start_addr
,
2155 CPUPhysMemoryClient
*client
;
2156 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2157 if (client
->log_start
) {
2158 int r
= client
->log_start(client
, start_addr
, size
);
2167 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
2170 CPUPhysMemoryClient
*client
;
2171 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2172 if (client
->log_stop
) {
2173 int r
= client
->log_stop(client
, start_addr
, size
);
2182 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2184 ram_addr_t ram_addr
;
2187 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2188 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2189 + tlb_entry
->addend
);
2190 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2191 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2192 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2197 /* update the TLB according to the current state of the dirty bits */
2198 void cpu_tlb_update_dirty(CPUState
*env
)
2202 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2203 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2204 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2208 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2210 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2211 tlb_entry
->addr_write
= vaddr
;
2214 /* update the TLB corresponding to virtual page vaddr
2215 so that it is no longer dirty */
2216 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2221 vaddr
&= TARGET_PAGE_MASK
;
2222 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2223 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2224 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2227 /* Our TLB does not support large pages, so remember the area covered by
2228 large pages and trigger a full TLB flush if these are invalidated. */
2229 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2232 target_ulong mask
= ~(size
- 1);
2234 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2235 env
->tlb_flush_addr
= vaddr
& mask
;
2236 env
->tlb_flush_mask
= mask
;
2239 /* Extend the existing region to include the new page.
2240 This is a compromise between unnecessary flushes and the cost
2241 of maintaining a full variable size TLB. */
2242 mask
&= env
->tlb_flush_mask
;
2243 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2246 env
->tlb_flush_addr
&= mask
;
2247 env
->tlb_flush_mask
= mask
;
2250 /* Add a new TLB entry. At most one entry for a given virtual address
2251 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2252 supplied size is only used by tlb_flush_page. */
2253 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2254 target_phys_addr_t paddr
, int prot
,
2255 int mmu_idx
, target_ulong size
)
2260 target_ulong address
;
2261 target_ulong code_address
;
2262 unsigned long addend
;
2265 target_phys_addr_t iotlb
;
2267 assert(size
>= TARGET_PAGE_SIZE
);
2268 if (size
!= TARGET_PAGE_SIZE
) {
2269 tlb_add_large_page(env
, vaddr
, size
);
2271 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2273 pd
= IO_MEM_UNASSIGNED
;
2275 pd
= p
->phys_offset
;
2277 #if defined(DEBUG_TLB)
2278 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2279 " prot=%x idx=%d pd=0x%08lx\n",
2280 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2284 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2285 /* IO memory case (romd handled later) */
2286 address
|= TLB_MMIO
;
2288 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2289 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2291 iotlb
= pd
& TARGET_PAGE_MASK
;
2292 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2293 iotlb
|= IO_MEM_NOTDIRTY
;
2295 iotlb
|= IO_MEM_ROM
;
2297 /* IO handlers are currently passed a physical address.
2298 It would be nice to pass an offset from the base address
2299 of that region. This would avoid having to special case RAM,
2300 and avoid full address decoding in every device.
2301 We can't use the high bits of pd for this because
2302 IO_MEM_ROMD uses these as a ram address. */
2303 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2305 iotlb
+= p
->region_offset
;
2311 code_address
= address
;
2312 /* Make accesses to pages with watchpoints go via the
2313 watchpoint trap routines. */
2314 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2315 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2316 /* Avoid trapping reads of pages with a write breakpoint. */
2317 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2318 iotlb
= io_mem_watch
+ paddr
;
2319 address
|= TLB_MMIO
;
2325 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2326 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2327 te
= &env
->tlb_table
[mmu_idx
][index
];
2328 te
->addend
= addend
- vaddr
;
2329 if (prot
& PAGE_READ
) {
2330 te
->addr_read
= address
;
2335 if (prot
& PAGE_EXEC
) {
2336 te
->addr_code
= code_address
;
2340 if (prot
& PAGE_WRITE
) {
2341 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2342 (pd
& IO_MEM_ROMD
)) {
2343 /* Write access calls the I/O callback. */
2344 te
->addr_write
= address
| TLB_MMIO
;
2345 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2346 !cpu_physical_memory_is_dirty(pd
)) {
2347 te
->addr_write
= address
| TLB_NOTDIRTY
;
2349 te
->addr_write
= address
;
2352 te
->addr_write
= -1;
2358 void tlb_flush(CPUState
*env
, int flush_global
)
2362 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2367 * Walks guest process memory "regions" one by one
2368 * and calls callback function 'fn' for each region.
2371 struct walk_memory_regions_data
2373 walk_memory_regions_fn fn
;
2375 unsigned long start
;
2379 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2380 abi_ulong end
, int new_prot
)
2382 if (data
->start
!= -1ul) {
2383 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2389 data
->start
= (new_prot
? end
: -1ul);
2390 data
->prot
= new_prot
;
2395 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2396 abi_ulong base
, int level
, void **lp
)
2402 return walk_memory_regions_end(data
, base
, 0);
2407 for (i
= 0; i
< L2_SIZE
; ++i
) {
2408 int prot
= pd
[i
].flags
;
2410 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2411 if (prot
!= data
->prot
) {
2412 rc
= walk_memory_regions_end(data
, pa
, prot
);
2420 for (i
= 0; i
< L2_SIZE
; ++i
) {
2421 pa
= base
| ((abi_ulong
)i
<<
2422 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2423 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2433 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2435 struct walk_memory_regions_data data
;
2443 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2444 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2445 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2451 return walk_memory_regions_end(&data
, 0, 0);
2454 static int dump_region(void *priv
, abi_ulong start
,
2455 abi_ulong end
, unsigned long prot
)
2457 FILE *f
= (FILE *)priv
;
2459 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2460 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2461 start
, end
, end
- start
,
2462 ((prot
& PAGE_READ
) ? 'r' : '-'),
2463 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2464 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2469 /* dump memory mappings */
2470 void page_dump(FILE *f
)
2472 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2473 "start", "end", "size", "prot");
2474 walk_memory_regions(f
, dump_region
);
2477 int page_get_flags(target_ulong address
)
2481 p
= page_find(address
>> TARGET_PAGE_BITS
);
2487 /* Modify the flags of a page and invalidate the code if necessary.
2488 The flag PAGE_WRITE_ORG is positioned automatically depending
2489 on PAGE_WRITE. The mmap_lock should already be held. */
2490 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2492 target_ulong addr
, len
;
2494 /* This function should never be called with addresses outside the
2495 guest address space. If this assert fires, it probably indicates
2496 a missing call to h2g_valid. */
2497 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2498 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2500 assert(start
< end
);
2502 start
= start
& TARGET_PAGE_MASK
;
2503 end
= TARGET_PAGE_ALIGN(end
);
2505 if (flags
& PAGE_WRITE
) {
2506 flags
|= PAGE_WRITE_ORG
;
2509 for (addr
= start
, len
= end
- start
;
2511 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2512 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2514 /* If the write protection bit is set, then we invalidate
2516 if (!(p
->flags
& PAGE_WRITE
) &&
2517 (flags
& PAGE_WRITE
) &&
2519 tb_invalidate_phys_page(addr
, 0, NULL
);
2525 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2531 /* This function should never be called with addresses outside the
2532 guest address space. If this assert fires, it probably indicates
2533 a missing call to h2g_valid. */
2534 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2535 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2541 if (start
+ len
- 1 < start
) {
2542 /* We've wrapped around. */
2546 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2547 start
= start
& TARGET_PAGE_MASK
;
2549 for (addr
= start
, len
= end
- start
;
2551 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2552 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2555 if( !(p
->flags
& PAGE_VALID
) )
2558 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2560 if (flags
& PAGE_WRITE
) {
2561 if (!(p
->flags
& PAGE_WRITE_ORG
))
2563 /* unprotect the page if it was put read-only because it
2564 contains translated code */
2565 if (!(p
->flags
& PAGE_WRITE
)) {
2566 if (!page_unprotect(addr
, 0, NULL
))
2575 /* called from signal handler: invalidate the code and unprotect the
2576 page. Return TRUE if the fault was successfully handled. */
2577 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2581 target_ulong host_start
, host_end
, addr
;
2583 /* Technically this isn't safe inside a signal handler. However we
2584 know this only ever happens in a synchronous SEGV handler, so in
2585 practice it seems to be ok. */
2588 p
= page_find(address
>> TARGET_PAGE_BITS
);
2594 /* if the page was really writable, then we change its
2595 protection back to writable */
2596 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2597 host_start
= address
& qemu_host_page_mask
;
2598 host_end
= host_start
+ qemu_host_page_size
;
2601 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2602 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2603 p
->flags
|= PAGE_WRITE
;
2606 /* and since the content will be modified, we must invalidate
2607 the corresponding translated code. */
2608 tb_invalidate_phys_page(addr
, pc
, puc
);
2609 #ifdef DEBUG_TB_CHECK
2610 tb_invalidate_check(addr
);
2613 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2623 static inline void tlb_set_dirty(CPUState
*env
,
2624 unsigned long addr
, target_ulong vaddr
)
2627 #endif /* defined(CONFIG_USER_ONLY) */
2629 #if !defined(CONFIG_USER_ONLY)
2631 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2632 typedef struct subpage_t
{
2633 target_phys_addr_t base
;
2634 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2635 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2638 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2639 ram_addr_t memory
, ram_addr_t region_offset
);
2640 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2641 ram_addr_t orig_memory
,
2642 ram_addr_t region_offset
);
2643 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2646 if (addr > start_addr) \
2649 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2650 if (start_addr2 > 0) \
2654 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2655 end_addr2 = TARGET_PAGE_SIZE - 1; \
2657 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2658 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2663 /* register physical memory.
2664 For RAM, 'size' must be a multiple of the target page size.
2665 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2666 io memory page. The address used when calling the IO function is
2667 the offset from the start of the region, plus region_offset. Both
2668 start_addr and region_offset are rounded down to a page boundary
2669 before calculating this offset. This should not be a problem unless
2670 the low bits of start_addr and region_offset differ. */
2671 void cpu_register_physical_memory_log(target_phys_addr_t start_addr
,
2673 ram_addr_t phys_offset
,
2674 ram_addr_t region_offset
,
2677 target_phys_addr_t addr
, end_addr
;
2680 ram_addr_t orig_size
= size
;
2684 cpu_notify_set_memory(start_addr
, size
, phys_offset
, log_dirty
);
2686 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2687 region_offset
= start_addr
;
2689 region_offset
&= TARGET_PAGE_MASK
;
2690 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2691 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2695 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2696 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2697 ram_addr_t orig_memory
= p
->phys_offset
;
2698 target_phys_addr_t start_addr2
, end_addr2
;
2699 int need_subpage
= 0;
2701 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2704 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2705 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2706 &p
->phys_offset
, orig_memory
,
2709 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2712 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2714 p
->region_offset
= 0;
2716 p
->phys_offset
= phys_offset
;
2717 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2718 (phys_offset
& IO_MEM_ROMD
))
2719 phys_offset
+= TARGET_PAGE_SIZE
;
2722 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2723 p
->phys_offset
= phys_offset
;
2724 p
->region_offset
= region_offset
;
2725 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2726 (phys_offset
& IO_MEM_ROMD
)) {
2727 phys_offset
+= TARGET_PAGE_SIZE
;
2729 target_phys_addr_t start_addr2
, end_addr2
;
2730 int need_subpage
= 0;
2732 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2733 end_addr2
, need_subpage
);
2736 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2737 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2738 addr
& TARGET_PAGE_MASK
);
2739 subpage_register(subpage
, start_addr2
, end_addr2
,
2740 phys_offset
, region_offset
);
2741 p
->region_offset
= 0;
2745 region_offset
+= TARGET_PAGE_SIZE
;
2746 addr
+= TARGET_PAGE_SIZE
;
2747 } while (addr
!= end_addr
);
2749 /* since each CPU stores ram addresses in its TLB cache, we must
2750 reset the modified entries */
2752 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2757 /* XXX: temporary until new memory mapping API */
2758 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2762 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2764 return IO_MEM_UNASSIGNED
;
2765 return p
->phys_offset
;
2768 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2771 kvm_coalesce_mmio_region(addr
, size
);
2774 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2777 kvm_uncoalesce_mmio_region(addr
, size
);
2780 void qemu_flush_coalesced_mmio_buffer(void)
2783 kvm_flush_coalesced_mmio_buffer();
2786 #if defined(__linux__) && !defined(TARGET_S390X)
2788 #include <sys/vfs.h>
2790 #define HUGETLBFS_MAGIC 0x958458f6
2792 static long gethugepagesize(const char *path
)
2798 ret
= statfs(path
, &fs
);
2799 } while (ret
!= 0 && errno
== EINTR
);
2806 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2807 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2812 static void *file_ram_alloc(RAMBlock
*block
,
2822 unsigned long hpagesize
;
2824 hpagesize
= gethugepagesize(path
);
2829 if (memory
< hpagesize
) {
2833 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2834 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2838 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2842 fd
= mkstemp(filename
);
2844 perror("unable to create backing store for hugepages");
2851 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2854 * ftruncate is not supported by hugetlbfs in older
2855 * hosts, so don't bother bailing out on errors.
2856 * If anything goes wrong with it under other filesystems,
2859 if (ftruncate(fd
, memory
))
2860 perror("ftruncate");
2863 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2864 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2865 * to sidestep this quirk.
2867 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2868 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2870 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2872 if (area
== MAP_FAILED
) {
2873 perror("file_ram_alloc: can't mmap RAM pages");
2882 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2884 RAMBlock
*block
, *next_block
;
2885 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
2887 if (QLIST_EMPTY(&ram_list
.blocks
))
2890 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2891 ram_addr_t end
, next
= RAM_ADDR_MAX
;
2893 end
= block
->offset
+ block
->length
;
2895 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2896 if (next_block
->offset
>= end
) {
2897 next
= MIN(next
, next_block
->offset
);
2900 if (next
- end
>= size
&& next
- end
< mingap
) {
2902 mingap
= next
- end
;
2906 if (offset
== RAM_ADDR_MAX
) {
2907 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2915 static ram_addr_t
last_ram_offset(void)
2918 ram_addr_t last
= 0;
2920 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2921 last
= MAX(last
, block
->offset
+ block
->length
);
2926 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2927 ram_addr_t size
, void *host
,
2930 RAMBlock
*new_block
, *block
;
2932 size
= TARGET_PAGE_ALIGN(size
);
2933 new_block
= g_malloc0(sizeof(*new_block
));
2935 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2936 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2938 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2942 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2944 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2945 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2946 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2952 new_block
->offset
= find_ram_offset(size
);
2954 new_block
->host
= host
;
2955 new_block
->flags
|= RAM_PREALLOC_MASK
;
2958 #if defined (__linux__) && !defined(TARGET_S390X)
2959 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2960 if (!new_block
->host
) {
2961 new_block
->host
= qemu_vmalloc(size
);
2962 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2965 fprintf(stderr
, "-mem-path option unsupported\n");
2969 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2970 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2971 an system defined value, which is at least 256GB. Larger systems
2972 have larger values. We put the guest between the end of data
2973 segment (system break) and this value. We use 32GB as a base to
2974 have enough room for the system break to grow. */
2975 new_block
->host
= mmap((void*)0x800000000, size
,
2976 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2977 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
2978 if (new_block
->host
== MAP_FAILED
) {
2979 fprintf(stderr
, "Allocating RAM failed\n");
2983 if (xen_enabled()) {
2984 xen_ram_alloc(new_block
->offset
, size
, mr
);
2986 new_block
->host
= qemu_vmalloc(size
);
2989 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2992 new_block
->length
= size
;
2994 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2996 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
2997 last_ram_offset() >> TARGET_PAGE_BITS
);
2998 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2999 0xff, size
>> TARGET_PAGE_BITS
);
3002 kvm_setup_guest_memory(new_block
->host
, size
);
3004 return new_block
->offset
;
3007 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
,
3010 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
, mr
);
3013 void qemu_ram_free_from_ptr(ram_addr_t addr
)
3017 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3018 if (addr
== block
->offset
) {
3019 QLIST_REMOVE(block
, next
);
3026 void qemu_ram_free(ram_addr_t addr
)
3030 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3031 if (addr
== block
->offset
) {
3032 QLIST_REMOVE(block
, next
);
3033 if (block
->flags
& RAM_PREALLOC_MASK
) {
3035 } else if (mem_path
) {
3036 #if defined (__linux__) && !defined(TARGET_S390X)
3038 munmap(block
->host
, block
->length
);
3041 qemu_vfree(block
->host
);
3047 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3048 munmap(block
->host
, block
->length
);
3050 if (xen_enabled()) {
3051 xen_invalidate_map_cache_entry(block
->host
);
3053 qemu_vfree(block
->host
);
3065 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
3072 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3073 offset
= addr
- block
->offset
;
3074 if (offset
< block
->length
) {
3075 vaddr
= block
->host
+ offset
;
3076 if (block
->flags
& RAM_PREALLOC_MASK
) {
3080 munmap(vaddr
, length
);
3082 #if defined(__linux__) && !defined(TARGET_S390X)
3085 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
3088 flags
|= MAP_PRIVATE
;
3090 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3091 flags
, block
->fd
, offset
);
3093 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3094 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3101 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3102 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
3103 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
3106 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3107 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3111 if (area
!= vaddr
) {
3112 fprintf(stderr
, "Could not remap addr: "
3113 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
3117 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3123 #endif /* !_WIN32 */
3125 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3126 With the exception of the softmmu code in this file, this should
3127 only be used for local memory (e.g. video ram) that the device owns,
3128 and knows it isn't going to access beyond the end of the block.
3130 It should not be used for general purpose DMA.
3131 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3133 void *qemu_get_ram_ptr(ram_addr_t addr
)
3137 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3138 if (addr
- block
->offset
< block
->length
) {
3139 /* Move this entry to to start of the list. */
3140 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3141 QLIST_REMOVE(block
, next
);
3142 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3144 if (xen_enabled()) {
3145 /* We need to check if the requested address is in the RAM
3146 * because we don't want to map the entire memory in QEMU.
3147 * In that case just map until the end of the page.
3149 if (block
->offset
== 0) {
3150 return xen_map_cache(addr
, 0, 0);
3151 } else if (block
->host
== NULL
) {
3153 xen_map_cache(block
->offset
, block
->length
, 1);
3156 return block
->host
+ (addr
- block
->offset
);
3160 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3166 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3167 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3169 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3173 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3174 if (addr
- block
->offset
< block
->length
) {
3175 if (xen_enabled()) {
3176 /* We need to check if the requested address is in the RAM
3177 * because we don't want to map the entire memory in QEMU.
3178 * In that case just map until the end of the page.
3180 if (block
->offset
== 0) {
3181 return xen_map_cache(addr
, 0, 0);
3182 } else if (block
->host
== NULL
) {
3184 xen_map_cache(block
->offset
, block
->length
, 1);
3187 return block
->host
+ (addr
- block
->offset
);
3191 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3197 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3198 * but takes a size argument */
3199 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
3204 if (xen_enabled()) {
3205 return xen_map_cache(addr
, *size
, 1);
3209 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3210 if (addr
- block
->offset
< block
->length
) {
3211 if (addr
- block
->offset
+ *size
> block
->length
)
3212 *size
= block
->length
- addr
+ block
->offset
;
3213 return block
->host
+ (addr
- block
->offset
);
3217 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3222 void qemu_put_ram_ptr(void *addr
)
3224 trace_qemu_put_ram_ptr(addr
);
3227 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3230 uint8_t *host
= ptr
;
3232 if (xen_enabled()) {
3233 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
3237 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3238 /* This case append when the block is not mapped. */
3239 if (block
->host
== NULL
) {
3242 if (host
- block
->host
< block
->length
) {
3243 *ram_addr
= block
->offset
+ (host
- block
->host
);
3251 /* Some of the softmmu routines need to translate from a host pointer
3252 (typically a TLB entry) back to a ram offset. */
3253 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3255 ram_addr_t ram_addr
;
3257 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3258 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3264 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
3266 #ifdef DEBUG_UNASSIGNED
3267 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3269 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3270 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, 1);
3275 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
3277 #ifdef DEBUG_UNASSIGNED
3278 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3280 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3281 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, 2);
3286 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3288 #ifdef DEBUG_UNASSIGNED
3289 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3291 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3292 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, 4);
3297 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3299 #ifdef DEBUG_UNASSIGNED
3300 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3302 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3303 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, 1);
3307 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3309 #ifdef DEBUG_UNASSIGNED
3310 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3312 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3313 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, 2);
3317 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3319 #ifdef DEBUG_UNASSIGNED
3320 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3322 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3323 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, 4);
3327 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3328 unassigned_mem_readb
,
3329 unassigned_mem_readw
,
3330 unassigned_mem_readl
,
3333 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3334 unassigned_mem_writeb
,
3335 unassigned_mem_writew
,
3336 unassigned_mem_writel
,
3339 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3343 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3344 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3345 #if !defined(CONFIG_USER_ONLY)
3346 tb_invalidate_phys_page_fast(ram_addr
, 1);
3347 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3350 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3351 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3352 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3353 /* we remove the notdirty callback only if the code has been
3355 if (dirty_flags
== 0xff)
3356 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3359 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3363 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3364 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3365 #if !defined(CONFIG_USER_ONLY)
3366 tb_invalidate_phys_page_fast(ram_addr
, 2);
3367 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3370 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3371 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3372 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3373 /* we remove the notdirty callback only if the code has been
3375 if (dirty_flags
== 0xff)
3376 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3379 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3383 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3384 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3385 #if !defined(CONFIG_USER_ONLY)
3386 tb_invalidate_phys_page_fast(ram_addr
, 4);
3387 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3390 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3391 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3392 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3393 /* we remove the notdirty callback only if the code has been
3395 if (dirty_flags
== 0xff)
3396 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3399 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3400 NULL
, /* never used */
3401 NULL
, /* never used */
3402 NULL
, /* never used */
3405 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3406 notdirty_mem_writeb
,
3407 notdirty_mem_writew
,
3408 notdirty_mem_writel
,
3411 /* Generate a debug exception if a watchpoint has been hit. */
3412 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3414 CPUState
*env
= cpu_single_env
;
3415 target_ulong pc
, cs_base
;
3416 TranslationBlock
*tb
;
3421 if (env
->watchpoint_hit
) {
3422 /* We re-entered the check after replacing the TB. Now raise
3423 * the debug interrupt so that is will trigger after the
3424 * current instruction. */
3425 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3428 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3429 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3430 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3431 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3432 wp
->flags
|= BP_WATCHPOINT_HIT
;
3433 if (!env
->watchpoint_hit
) {
3434 env
->watchpoint_hit
= wp
;
3435 tb
= tb_find_pc(env
->mem_io_pc
);
3437 cpu_abort(env
, "check_watchpoint: could not find TB for "
3438 "pc=%p", (void *)env
->mem_io_pc
);
3440 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
3441 tb_phys_invalidate(tb
, -1);
3442 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3443 env
->exception_index
= EXCP_DEBUG
;
3445 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3446 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3448 cpu_resume_from_signal(env
, NULL
);
3451 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3456 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3457 so these check for a hit then pass through to the normal out-of-line
3459 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3461 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3462 return ldub_phys(addr
);
3465 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3467 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3468 return lduw_phys(addr
);
3471 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3473 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3474 return ldl_phys(addr
);
3477 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3480 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3481 stb_phys(addr
, val
);
3484 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3487 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3488 stw_phys(addr
, val
);
3491 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3494 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3495 stl_phys(addr
, val
);
3498 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3504 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3510 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3511 target_phys_addr_t addr
,
3514 unsigned int idx
= SUBPAGE_IDX(addr
);
3515 #if defined(DEBUG_SUBPAGE)
3516 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3517 mmio
, len
, addr
, idx
);
3520 addr
+= mmio
->region_offset
[idx
];
3521 idx
= mmio
->sub_io_index
[idx
];
3522 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3525 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3526 uint32_t value
, unsigned int len
)
3528 unsigned int idx
= SUBPAGE_IDX(addr
);
3529 #if defined(DEBUG_SUBPAGE)
3530 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3531 __func__
, mmio
, len
, addr
, idx
, value
);
3534 addr
+= mmio
->region_offset
[idx
];
3535 idx
= mmio
->sub_io_index
[idx
];
3536 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3539 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3541 return subpage_readlen(opaque
, addr
, 0);
3544 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3547 subpage_writelen(opaque
, addr
, value
, 0);
3550 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3552 return subpage_readlen(opaque
, addr
, 1);
3555 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3558 subpage_writelen(opaque
, addr
, value
, 1);
3561 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3563 return subpage_readlen(opaque
, addr
, 2);
3566 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3569 subpage_writelen(opaque
, addr
, value
, 2);
3572 static CPUReadMemoryFunc
* const subpage_read
[] = {
3578 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3584 static uint32_t subpage_ram_readb(void *opaque
, target_phys_addr_t addr
)
3586 ram_addr_t raddr
= addr
;
3587 void *ptr
= qemu_get_ram_ptr(raddr
);
3591 static void subpage_ram_writeb(void *opaque
, target_phys_addr_t addr
,
3594 ram_addr_t raddr
= addr
;
3595 void *ptr
= qemu_get_ram_ptr(raddr
);
3599 static uint32_t subpage_ram_readw(void *opaque
, target_phys_addr_t addr
)
3601 ram_addr_t raddr
= addr
;
3602 void *ptr
= qemu_get_ram_ptr(raddr
);
3606 static void subpage_ram_writew(void *opaque
, target_phys_addr_t addr
,
3609 ram_addr_t raddr
= addr
;
3610 void *ptr
= qemu_get_ram_ptr(raddr
);
3614 static uint32_t subpage_ram_readl(void *opaque
, target_phys_addr_t addr
)
3616 ram_addr_t raddr
= addr
;
3617 void *ptr
= qemu_get_ram_ptr(raddr
);
3621 static void subpage_ram_writel(void *opaque
, target_phys_addr_t addr
,
3624 ram_addr_t raddr
= addr
;
3625 void *ptr
= qemu_get_ram_ptr(raddr
);
3629 static CPUReadMemoryFunc
* const subpage_ram_read
[] = {
3635 static CPUWriteMemoryFunc
* const subpage_ram_write
[] = {
3636 &subpage_ram_writeb
,
3637 &subpage_ram_writew
,
3638 &subpage_ram_writel
,
3641 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3642 ram_addr_t memory
, ram_addr_t region_offset
)
3646 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3648 idx
= SUBPAGE_IDX(start
);
3649 eidx
= SUBPAGE_IDX(end
);
3650 #if defined(DEBUG_SUBPAGE)
3651 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3652 mmio
, start
, end
, idx
, eidx
, memory
);
3654 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
3655 memory
= IO_MEM_SUBPAGE_RAM
;
3657 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3658 for (; idx
<= eidx
; idx
++) {
3659 mmio
->sub_io_index
[idx
] = memory
;
3660 mmio
->region_offset
[idx
] = region_offset
;
3666 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3667 ram_addr_t orig_memory
,
3668 ram_addr_t region_offset
)
3673 mmio
= g_malloc0(sizeof(subpage_t
));
3676 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3677 DEVICE_NATIVE_ENDIAN
);
3678 #if defined(DEBUG_SUBPAGE)
3679 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3680 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3682 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3683 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3688 static int get_free_io_mem_idx(void)
3692 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3693 if (!io_mem_used
[i
]) {
3697 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3702 * Usually, devices operate in little endian mode. There are devices out
3703 * there that operate in big endian too. Each device gets byte swapped
3704 * mmio if plugged onto a CPU that does the other endianness.
3714 typedef struct SwapEndianContainer
{
3715 CPUReadMemoryFunc
*read
[3];
3716 CPUWriteMemoryFunc
*write
[3];
3718 } SwapEndianContainer
;
3720 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3723 SwapEndianContainer
*c
= opaque
;
3724 val
= c
->read
[0](c
->opaque
, addr
);
3728 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3731 SwapEndianContainer
*c
= opaque
;
3732 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3736 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3739 SwapEndianContainer
*c
= opaque
;
3740 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3744 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3745 swapendian_mem_readb
,
3746 swapendian_mem_readw
,
3747 swapendian_mem_readl
3750 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3753 SwapEndianContainer
*c
= opaque
;
3754 c
->write
[0](c
->opaque
, addr
, val
);
3757 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3760 SwapEndianContainer
*c
= opaque
;
3761 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3764 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3767 SwapEndianContainer
*c
= opaque
;
3768 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3771 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3772 swapendian_mem_writeb
,
3773 swapendian_mem_writew
,
3774 swapendian_mem_writel
3777 static void swapendian_init(int io_index
)
3779 SwapEndianContainer
*c
= g_malloc(sizeof(SwapEndianContainer
));
3782 /* Swap mmio for big endian targets */
3783 c
->opaque
= io_mem_opaque
[io_index
];
3784 for (i
= 0; i
< 3; i
++) {
3785 c
->read
[i
] = io_mem_read
[io_index
][i
];
3786 c
->write
[i
] = io_mem_write
[io_index
][i
];
3788 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3789 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3791 io_mem_opaque
[io_index
] = c
;
3794 static void swapendian_del(int io_index
)
3796 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3797 g_free(io_mem_opaque
[io_index
]);
3801 /* mem_read and mem_write are arrays of functions containing the
3802 function to access byte (index 0), word (index 1) and dword (index
3803 2). Functions can be omitted with a NULL function pointer.
3804 If io_index is non zero, the corresponding io zone is
3805 modified. If it is zero, a new io zone is allocated. The return
3806 value can be used with cpu_register_physical_memory(). (-1) is
3807 returned if error. */
3808 static int cpu_register_io_memory_fixed(int io_index
,
3809 CPUReadMemoryFunc
* const *mem_read
,
3810 CPUWriteMemoryFunc
* const *mem_write
,
3811 void *opaque
, enum device_endian endian
)
3815 if (io_index
<= 0) {
3816 io_index
= get_free_io_mem_idx();
3820 io_index
>>= IO_MEM_SHIFT
;
3821 if (io_index
>= IO_MEM_NB_ENTRIES
)
3825 for (i
= 0; i
< 3; ++i
) {
3826 io_mem_read
[io_index
][i
]
3827 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3829 for (i
= 0; i
< 3; ++i
) {
3830 io_mem_write
[io_index
][i
]
3831 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3833 io_mem_opaque
[io_index
] = opaque
;
3836 case DEVICE_BIG_ENDIAN
:
3837 #ifndef TARGET_WORDS_BIGENDIAN
3838 swapendian_init(io_index
);
3841 case DEVICE_LITTLE_ENDIAN
:
3842 #ifdef TARGET_WORDS_BIGENDIAN
3843 swapendian_init(io_index
);
3846 case DEVICE_NATIVE_ENDIAN
:
3851 return (io_index
<< IO_MEM_SHIFT
);
3854 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3855 CPUWriteMemoryFunc
* const *mem_write
,
3856 void *opaque
, enum device_endian endian
)
3858 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3861 void cpu_unregister_io_memory(int io_table_address
)
3864 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3866 swapendian_del(io_index
);
3868 for (i
=0;i
< 3; i
++) {
3869 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3870 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3872 io_mem_opaque
[io_index
] = NULL
;
3873 io_mem_used
[io_index
] = 0;
3876 static void io_mem_init(void)
3880 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3881 unassigned_mem_write
, NULL
,
3882 DEVICE_NATIVE_ENDIAN
);
3883 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3884 unassigned_mem_write
, NULL
,
3885 DEVICE_NATIVE_ENDIAN
);
3886 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3887 notdirty_mem_write
, NULL
,
3888 DEVICE_NATIVE_ENDIAN
);
3889 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM
, subpage_ram_read
,
3890 subpage_ram_write
, NULL
,
3891 DEVICE_NATIVE_ENDIAN
);
3895 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3896 watch_mem_write
, NULL
,
3897 DEVICE_NATIVE_ENDIAN
);
3900 static void memory_map_init(void)
3902 system_memory
= g_malloc(sizeof(*system_memory
));
3903 memory_region_init(system_memory
, "system", INT64_MAX
);
3904 set_system_memory_map(system_memory
);
3906 system_io
= g_malloc(sizeof(*system_io
));
3907 memory_region_init(system_io
, "io", 65536);
3908 set_system_io_map(system_io
);
3911 MemoryRegion
*get_system_memory(void)
3913 return system_memory
;
3916 MemoryRegion
*get_system_io(void)
3921 #endif /* !defined(CONFIG_USER_ONLY) */
3923 /* physical memory access (slow version, mainly for debug) */
3924 #if defined(CONFIG_USER_ONLY)
3925 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3926 uint8_t *buf
, int len
, int is_write
)
3933 page
= addr
& TARGET_PAGE_MASK
;
3934 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3937 flags
= page_get_flags(page
);
3938 if (!(flags
& PAGE_VALID
))
3941 if (!(flags
& PAGE_WRITE
))
3943 /* XXX: this code should not depend on lock_user */
3944 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3947 unlock_user(p
, addr
, l
);
3949 if (!(flags
& PAGE_READ
))
3951 /* XXX: this code should not depend on lock_user */
3952 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3955 unlock_user(p
, addr
, 0);
3965 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3966 int len
, int is_write
)
3971 target_phys_addr_t page
;
3976 page
= addr
& TARGET_PAGE_MASK
;
3977 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3980 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3982 pd
= IO_MEM_UNASSIGNED
;
3984 pd
= p
->phys_offset
;
3988 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3989 target_phys_addr_t addr1
= addr
;
3990 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3992 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3993 /* XXX: could force cpu_single_env to NULL to avoid
3995 if (l
>= 4 && ((addr1
& 3) == 0)) {
3996 /* 32 bit write access */
3998 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
4000 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
4001 /* 16 bit write access */
4003 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
4006 /* 8 bit write access */
4008 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
4013 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4015 ptr
= qemu_get_ram_ptr(addr1
);
4016 memcpy(ptr
, buf
, l
);
4017 if (!cpu_physical_memory_is_dirty(addr1
)) {
4018 /* invalidate code */
4019 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
4021 cpu_physical_memory_set_dirty_flags(
4022 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4024 qemu_put_ram_ptr(ptr
);
4027 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4028 !(pd
& IO_MEM_ROMD
)) {
4029 target_phys_addr_t addr1
= addr
;
4031 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4033 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4034 if (l
>= 4 && ((addr1
& 3) == 0)) {
4035 /* 32 bit read access */
4036 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
4039 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
4040 /* 16 bit read access */
4041 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
4045 /* 8 bit read access */
4046 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
4052 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
4053 memcpy(buf
, ptr
+ (addr
& ~TARGET_PAGE_MASK
), l
);
4054 qemu_put_ram_ptr(ptr
);
4063 /* used for ROM loading : can write in RAM and ROM */
4064 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
4065 const uint8_t *buf
, int len
)
4069 target_phys_addr_t page
;
4074 page
= addr
& TARGET_PAGE_MASK
;
4075 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4078 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
4080 pd
= IO_MEM_UNASSIGNED
;
4082 pd
= p
->phys_offset
;
4085 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
4086 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
4087 !(pd
& IO_MEM_ROMD
)) {
4090 unsigned long addr1
;
4091 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4093 ptr
= qemu_get_ram_ptr(addr1
);
4094 memcpy(ptr
, buf
, l
);
4095 qemu_put_ram_ptr(ptr
);
4105 target_phys_addr_t addr
;
4106 target_phys_addr_t len
;
4109 static BounceBuffer bounce
;
4111 typedef struct MapClient
{
4113 void (*callback
)(void *opaque
);
4114 QLIST_ENTRY(MapClient
) link
;
4117 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
4118 = QLIST_HEAD_INITIALIZER(map_client_list
);
4120 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
4122 MapClient
*client
= g_malloc(sizeof(*client
));
4124 client
->opaque
= opaque
;
4125 client
->callback
= callback
;
4126 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
4130 void cpu_unregister_map_client(void *_client
)
4132 MapClient
*client
= (MapClient
*)_client
;
4134 QLIST_REMOVE(client
, link
);
4138 static void cpu_notify_map_clients(void)
4142 while (!QLIST_EMPTY(&map_client_list
)) {
4143 client
= QLIST_FIRST(&map_client_list
);
4144 client
->callback(client
->opaque
);
4145 cpu_unregister_map_client(client
);
4149 /* Map a physical memory region into a host virtual address.
4150 * May map a subset of the requested range, given by and returned in *plen.
4151 * May return NULL if resources needed to perform the mapping are exhausted.
4152 * Use only for reads OR writes - not for read-modify-write operations.
4153 * Use cpu_register_map_client() to know when retrying the map operation is
4154 * likely to succeed.
4156 void *cpu_physical_memory_map(target_phys_addr_t addr
,
4157 target_phys_addr_t
*plen
,
4160 target_phys_addr_t len
= *plen
;
4161 target_phys_addr_t todo
= 0;
4163 target_phys_addr_t page
;
4166 ram_addr_t raddr
= RAM_ADDR_MAX
;
4171 page
= addr
& TARGET_PAGE_MASK
;
4172 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4175 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
4177 pd
= IO_MEM_UNASSIGNED
;
4179 pd
= p
->phys_offset
;
4182 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4183 if (todo
|| bounce
.buffer
) {
4186 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
4190 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
4194 return bounce
.buffer
;
4197 raddr
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4205 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
4210 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4211 * Will also mark the memory as dirty if is_write == 1. access_len gives
4212 * the amount of memory that was actually read or written by the caller.
4214 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
4215 int is_write
, target_phys_addr_t access_len
)
4217 if (buffer
!= bounce
.buffer
) {
4219 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
4220 while (access_len
) {
4222 l
= TARGET_PAGE_SIZE
;
4225 if (!cpu_physical_memory_is_dirty(addr1
)) {
4226 /* invalidate code */
4227 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
4229 cpu_physical_memory_set_dirty_flags(
4230 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4236 if (xen_enabled()) {
4237 xen_invalidate_map_cache_entry(buffer
);
4242 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
4244 qemu_vfree(bounce
.buffer
);
4245 bounce
.buffer
= NULL
;
4246 cpu_notify_map_clients();
4249 /* warning: addr must be aligned */
4250 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr
,
4251 enum device_endian endian
)
4259 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4261 pd
= IO_MEM_UNASSIGNED
;
4263 pd
= p
->phys_offset
;
4266 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4267 !(pd
& IO_MEM_ROMD
)) {
4269 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4271 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4272 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4273 #if defined(TARGET_WORDS_BIGENDIAN)
4274 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4278 if (endian
== DEVICE_BIG_ENDIAN
) {
4284 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4285 (addr
& ~TARGET_PAGE_MASK
);
4287 case DEVICE_LITTLE_ENDIAN
:
4288 val
= ldl_le_p(ptr
);
4290 case DEVICE_BIG_ENDIAN
:
4291 val
= ldl_be_p(ptr
);
4301 uint32_t ldl_phys(target_phys_addr_t addr
)
4303 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4306 uint32_t ldl_le_phys(target_phys_addr_t addr
)
4308 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4311 uint32_t ldl_be_phys(target_phys_addr_t addr
)
4313 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4316 /* warning: addr must be aligned */
4317 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr
,
4318 enum device_endian endian
)
4326 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4328 pd
= IO_MEM_UNASSIGNED
;
4330 pd
= p
->phys_offset
;
4333 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4334 !(pd
& IO_MEM_ROMD
)) {
4336 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4338 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4340 /* XXX This is broken when device endian != cpu endian.
4341 Fix and add "endian" variable check */
4342 #ifdef TARGET_WORDS_BIGENDIAN
4343 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
4344 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
4346 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4347 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
4351 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4352 (addr
& ~TARGET_PAGE_MASK
);
4354 case DEVICE_LITTLE_ENDIAN
:
4355 val
= ldq_le_p(ptr
);
4357 case DEVICE_BIG_ENDIAN
:
4358 val
= ldq_be_p(ptr
);
4368 uint64_t ldq_phys(target_phys_addr_t addr
)
4370 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4373 uint64_t ldq_le_phys(target_phys_addr_t addr
)
4375 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4378 uint64_t ldq_be_phys(target_phys_addr_t addr
)
4380 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4384 uint32_t ldub_phys(target_phys_addr_t addr
)
4387 cpu_physical_memory_read(addr
, &val
, 1);
4391 /* warning: addr must be aligned */
4392 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr
,
4393 enum device_endian endian
)
4401 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4403 pd
= IO_MEM_UNASSIGNED
;
4405 pd
= p
->phys_offset
;
4408 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4409 !(pd
& IO_MEM_ROMD
)) {
4411 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4413 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4414 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
4415 #if defined(TARGET_WORDS_BIGENDIAN)
4416 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4420 if (endian
== DEVICE_BIG_ENDIAN
) {
4426 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4427 (addr
& ~TARGET_PAGE_MASK
);
4429 case DEVICE_LITTLE_ENDIAN
:
4430 val
= lduw_le_p(ptr
);
4432 case DEVICE_BIG_ENDIAN
:
4433 val
= lduw_be_p(ptr
);
4443 uint32_t lduw_phys(target_phys_addr_t addr
)
4445 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4448 uint32_t lduw_le_phys(target_phys_addr_t addr
)
4450 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4453 uint32_t lduw_be_phys(target_phys_addr_t addr
)
4455 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4458 /* warning: addr must be aligned. The ram page is not masked as dirty
4459 and the code inside is not invalidated. It is useful if the dirty
4460 bits are used to track modified PTEs */
4461 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4468 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4470 pd
= IO_MEM_UNASSIGNED
;
4472 pd
= p
->phys_offset
;
4475 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4476 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4478 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4479 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4481 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4482 ptr
= qemu_get_ram_ptr(addr1
);
4485 if (unlikely(in_migration
)) {
4486 if (!cpu_physical_memory_is_dirty(addr1
)) {
4487 /* invalidate code */
4488 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4490 cpu_physical_memory_set_dirty_flags(
4491 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4497 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4504 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4506 pd
= IO_MEM_UNASSIGNED
;
4508 pd
= p
->phys_offset
;
4511 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4512 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4514 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4515 #ifdef TARGET_WORDS_BIGENDIAN
4516 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4517 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4519 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4520 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4523 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4524 (addr
& ~TARGET_PAGE_MASK
);
4529 /* warning: addr must be aligned */
4530 static inline void stl_phys_internal(target_phys_addr_t addr
, uint32_t val
,
4531 enum device_endian endian
)
4538 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4540 pd
= IO_MEM_UNASSIGNED
;
4542 pd
= p
->phys_offset
;
4545 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4546 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4548 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4549 #if defined(TARGET_WORDS_BIGENDIAN)
4550 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4554 if (endian
== DEVICE_BIG_ENDIAN
) {
4558 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4560 unsigned long addr1
;
4561 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4563 ptr
= qemu_get_ram_ptr(addr1
);
4565 case DEVICE_LITTLE_ENDIAN
:
4568 case DEVICE_BIG_ENDIAN
:
4575 if (!cpu_physical_memory_is_dirty(addr1
)) {
4576 /* invalidate code */
4577 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4579 cpu_physical_memory_set_dirty_flags(addr1
,
4580 (0xff & ~CODE_DIRTY_FLAG
));
4585 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4587 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4590 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
)
4592 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4595 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
)
4597 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4601 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4604 cpu_physical_memory_write(addr
, &v
, 1);
4607 /* warning: addr must be aligned */
4608 static inline void stw_phys_internal(target_phys_addr_t addr
, uint32_t val
,
4609 enum device_endian endian
)
4616 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4618 pd
= IO_MEM_UNASSIGNED
;
4620 pd
= p
->phys_offset
;
4623 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4624 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4626 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4627 #if defined(TARGET_WORDS_BIGENDIAN)
4628 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4632 if (endian
== DEVICE_BIG_ENDIAN
) {
4636 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4638 unsigned long addr1
;
4639 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4641 ptr
= qemu_get_ram_ptr(addr1
);
4643 case DEVICE_LITTLE_ENDIAN
:
4646 case DEVICE_BIG_ENDIAN
:
4653 if (!cpu_physical_memory_is_dirty(addr1
)) {
4654 /* invalidate code */
4655 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4657 cpu_physical_memory_set_dirty_flags(addr1
,
4658 (0xff & ~CODE_DIRTY_FLAG
));
4663 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4665 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4668 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
)
4670 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4673 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
)
4675 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4679 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4682 cpu_physical_memory_write(addr
, &val
, 8);
4685 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
)
4687 val
= cpu_to_le64(val
);
4688 cpu_physical_memory_write(addr
, &val
, 8);
4691 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
)
4693 val
= cpu_to_be64(val
);
4694 cpu_physical_memory_write(addr
, &val
, 8);
4697 /* virtual memory access for debug (includes writing to ROM) */
4698 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4699 uint8_t *buf
, int len
, int is_write
)
4702 target_phys_addr_t phys_addr
;
4706 page
= addr
& TARGET_PAGE_MASK
;
4707 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4708 /* if no physical page mapped, return an error */
4709 if (phys_addr
== -1)
4711 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4714 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4716 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4718 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4727 /* in deterministic execution mode, instructions doing device I/Os
4728 must be at the end of the TB */
4729 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4731 TranslationBlock
*tb
;
4733 target_ulong pc
, cs_base
;
4736 tb
= tb_find_pc((unsigned long)retaddr
);
4738 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4741 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4742 cpu_restore_state(tb
, env
, (unsigned long)retaddr
);
4743 /* Calculate how many instructions had been executed before the fault
4745 n
= n
- env
->icount_decr
.u16
.low
;
4746 /* Generate a new TB ending on the I/O insn. */
4748 /* On MIPS and SH, delay slot instructions can only be restarted if
4749 they were already the first instruction in the TB. If this is not
4750 the first instruction in a TB then re-execute the preceding
4752 #if defined(TARGET_MIPS)
4753 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4754 env
->active_tc
.PC
-= 4;
4755 env
->icount_decr
.u16
.low
++;
4756 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4758 #elif defined(TARGET_SH4)
4759 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4762 env
->icount_decr
.u16
.low
++;
4763 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4766 /* This should never happen. */
4767 if (n
> CF_COUNT_MASK
)
4768 cpu_abort(env
, "TB too big during recompile");
4770 cflags
= n
| CF_LAST_IO
;
4772 cs_base
= tb
->cs_base
;
4774 tb_phys_invalidate(tb
, -1);
4775 /* FIXME: In theory this could raise an exception. In practice
4776 we have already translated the block once so it's probably ok. */
4777 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4778 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4779 the first in the TB) then we end up generating a whole new TB and
4780 repeating the fault, which is horribly inefficient.
4781 Better would be to execute just this insn uncached, or generate a
4783 cpu_resume_from_signal(env
, NULL
);
4786 #if !defined(CONFIG_USER_ONLY)
4788 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4790 int i
, target_code_size
, max_target_code_size
;
4791 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4792 TranslationBlock
*tb
;
4794 target_code_size
= 0;
4795 max_target_code_size
= 0;
4797 direct_jmp_count
= 0;
4798 direct_jmp2_count
= 0;
4799 for(i
= 0; i
< nb_tbs
; i
++) {
4801 target_code_size
+= tb
->size
;
4802 if (tb
->size
> max_target_code_size
)
4803 max_target_code_size
= tb
->size
;
4804 if (tb
->page_addr
[1] != -1)
4806 if (tb
->tb_next_offset
[0] != 0xffff) {
4808 if (tb
->tb_next_offset
[1] != 0xffff) {
4809 direct_jmp2_count
++;
4813 /* XXX: avoid using doubles ? */
4814 cpu_fprintf(f
, "Translation buffer state:\n");
4815 cpu_fprintf(f
, "gen code size %td/%ld\n",
4816 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4817 cpu_fprintf(f
, "TB count %d/%d\n",
4818 nb_tbs
, code_gen_max_blocks
);
4819 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4820 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4821 max_target_code_size
);
4822 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4823 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4824 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4825 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4827 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4828 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4830 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4832 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4833 cpu_fprintf(f
, "\nStatistics:\n");
4834 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4835 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4836 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4837 tcg_dump_info(f
, cpu_fprintf
);
4840 #define MMUSUFFIX _cmmu
4842 #define GETPC() NULL
4843 #define env cpu_single_env
4844 #define SOFTMMU_CODE_ACCESS
4847 #include "softmmu_template.h"
4850 #include "softmmu_template.h"
4853 #include "softmmu_template.h"
4856 #include "softmmu_template.h"