linux-user/elfload: Update HWCAP bits from linux 5.7
[qemu.git] / linux-user / elfload.c
blob0836e72b5ac3157bec5db077a55f1a9b23b3eee3
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
52 * Personality types.
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 int info_is_fdpic(struct image_info *info)
90 return info->personality == PER_LINUX_FDPIC;
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA ELFDATA2MSB
105 #else
106 #define ELF_DATA ELFDATA2LSB
107 #endif
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong target_elf_greg_t;
111 #define tswapreg(ptr) tswap64(ptr)
112 #else
113 typedef abi_ulong target_elf_greg_t;
114 #define tswapreg(ptr) tswapal(ptr)
115 #endif
117 #ifdef USE_UID16
118 typedef abi_ushort target_uid_t;
119 typedef abi_ushort target_gid_t;
120 #else
121 typedef abi_uint target_uid_t;
122 typedef abi_uint target_gid_t;
123 #endif
124 typedef abi_int target_pid_t;
126 #ifdef TARGET_I386
128 #define ELF_PLATFORM get_elf_platform()
130 static const char *get_elf_platform(void)
132 static char elf_platform[] = "i386";
133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
141 #define ELF_HWCAP get_elf_hwcap()
143 static uint32_t get_elf_hwcap(void)
145 X86CPU *cpu = X86_CPU(thread_cpu);
147 return cpu->env.features[FEAT_1_EDX];
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
153 #define ELF_CLASS ELFCLASS64
154 #define ELF_ARCH EM_X86_64
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
163 #define ELF_NREG 27
164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
171 * See linux kernel: arch/x86/include/asm/elf.h
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
204 #else
206 #define ELF_START_MMAP 0x80000000
209 * This is used to ensure we don't load something for the wrong architecture.
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
214 * These are used to set parameters in the core dumps.
216 #define ELF_CLASS ELFCLASS32
217 #define ELF_ARCH EM_386
219 static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
235 #define ELF_NREG 17
236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
243 * See linux kernel: arch/x86/include/asm/elf.h
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
265 #endif
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE 4096
270 #endif
272 #ifdef TARGET_ARM
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
277 #define ELF_START_MMAP 0x80000000
279 #define ELF_ARCH EM_ARM
280 #define ELF_CLASS ELFCLASS32
282 static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
285 abi_long stack = infop->start_stack;
286 memset(regs, 0, sizeof(*regs));
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
294 /* FIXME - what to for failure of get_user()? */
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
297 /* XXX: it seems that r0 is zeroed after ! */
298 regs->uregs[0] = 0;
299 /* For uClinux PIC binaries. */
300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301 regs->uregs[10] = infop->start_data;
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
323 #define ELF_NREG 18
324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE 4096
352 enum
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
378 enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
386 /* The commpage only exists for 32 bit kernels */
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
390 static bool init_guest_commpage(void)
392 void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
400 if (addr != want) {
401 return false;
404 /* Set kernel helper versions; rest of page is 0. */
405 __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408 perror("Protecting guest commpage");
409 exit(EXIT_FAILURE);
411 return true;
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
417 static uint32_t get_elf_hwcap(void)
419 ARMCPU *cpu = ARM_CPU(thread_cpu);
420 uint32_t hwcaps = 0;
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
427 /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
431 #define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
475 #define ELF_PLATFORM get_elf_platform()
477 static const char *get_elf_platform(void)
479 CPUARMState *env = thread_cpu->env_ptr;
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END "b"
483 #else
484 # define END "l"
485 #endif
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
503 #undef END
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
510 #define ELF_ARCH EM_AARCH64
511 #define ELF_CLASS ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM "aarch64_be"
514 #else
515 # define ELF_PLATFORM "aarch64"
516 #endif
518 static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
528 #define ELF_NREG 34
529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
534 int i;
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE 4096
546 enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
591 #define ELF_HWCAP get_elf_hwcap()
592 #define ELF_HWCAP2 get_elf_hwcap2()
594 #define GET_FEATURE_ID(feat, hwcap) \
595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
597 static uint32_t get_elf_hwcap(void)
599 ARMCPU *cpu = ARM_CPU(thread_cpu);
600 uint32_t hwcaps = 0;
602 hwcaps |= ARM_HWCAP_A64_FP;
603 hwcaps |= ARM_HWCAP_A64_ASIMD;
604 hwcaps |= ARM_HWCAP_A64_CPUID;
606 /* probe for the extra features */
608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
632 return hwcaps;
635 static uint32_t get_elf_hwcap2(void)
637 ARMCPU *cpu = ARM_CPU(thread_cpu);
638 uint32_t hwcaps = 0;
640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
644 return hwcaps;
647 #undef GET_FEATURE_ID
649 #endif /* not TARGET_AARCH64 */
650 #endif /* TARGET_ARM */
652 #ifdef TARGET_SPARC
653 #ifdef TARGET_SPARC64
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
658 #ifndef TARGET_ABI32
659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
660 #else
661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #endif
664 #define ELF_CLASS ELFCLASS64
665 #define ELF_ARCH EM_SPARCV9
667 #define STACK_BIAS 2047
669 static inline void init_thread(struct target_pt_regs *regs,
670 struct image_info *infop)
672 #ifndef TARGET_ABI32
673 regs->tstate = 0;
674 #endif
675 regs->pc = infop->entry;
676 regs->npc = regs->pc + 4;
677 regs->y = 0;
678 #ifdef TARGET_ABI32
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680 #else
681 if (personality(infop->personality) == PER_LINUX32)
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 else
684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
685 #endif
688 #else
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV)
693 #define ELF_CLASS ELFCLASS32
694 #define ELF_ARCH EM_SPARC
696 static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
699 regs->psr = 0;
700 regs->pc = infop->entry;
701 regs->npc = regs->pc + 4;
702 regs->y = 0;
703 regs->u_regs[14] = infop->start_stack - 16 * 4;
706 #endif
707 #endif
709 #ifdef TARGET_PPC
711 #define ELF_MACHINE PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
718 #define ELF_CLASS ELFCLASS64
720 #else
722 #define ELF_CLASS ELFCLASS32
724 #endif
726 #define ELF_ARCH EM_PPC
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730 enum {
731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 #define ELF_HWCAP get_elf_hwcap()
779 static uint32_t get_elf_hwcap(void)
781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782 uint32_t features = 0;
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
786 #define GET_FEATURE(flag, feature) \
787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
793 } while (0)
794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
810 return features;
813 #define ELF_HWCAP2 get_elf_hwcap2()
815 static uint32_t get_elf_hwcap2(void)
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
820 #define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
836 return features;
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
848 #define DLINFO_ARCH_ITEMS 5
849 #define ARCH_DLINFO \
850 do { \
851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
852 /* \
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
861 } while (0)
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
865 _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867 if (get_ppc64_abi(infop) < 2) {
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
876 #endif
877 _regs->nip = infop->entry;
880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
886 int i;
887 target_ulong ccr = 0;
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890 (*regs)[i] = tswapreg(env->gpr[i]);
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
902 (*regs)[38] = tswapreg(ccr);
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE 4096
908 #endif
910 #ifdef TARGET_MIPS
912 #define ELF_START_MMAP 0x80000000
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS ELFCLASS64
916 #else
917 #define ELF_CLASS ELFCLASS32
918 #endif
919 #define ELF_ARCH EM_MIPS
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
929 static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
932 regs->cp0_status = 2 << CP0St_KSU;
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
937 /* See linux kernel: arch/mips/include/asm/elf.h. */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
941 /* See linux kernel: arch/mips/include/asm/reg.h. */
942 enum {
943 #ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945 #else
946 TARGET_EF_R0 = 6,
947 #endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
961 int i;
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
966 (*regs)[TARGET_EF_R0] = 0;
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 4096
985 /* See arch/mips/include/uapi/asm/hwcap.h. */
986 enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1004 #define ELF_HWCAP get_elf_hwcap()
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1017 } while (0)
1019 static uint32_t get_elf_hwcap(void)
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1028 return hwcaps;
1031 #undef GET_FEATURE_REG_EQU
1032 #undef GET_FEATURE_REG_SET
1033 #undef GET_FEATURE_INSN
1035 #endif /* TARGET_MIPS */
1037 #ifdef TARGET_MICROBLAZE
1039 #define ELF_START_MMAP 0x80000000
1041 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1043 #define ELF_CLASS ELFCLASS32
1044 #define ELF_ARCH EM_MICROBLAZE
1046 static inline void init_thread(struct target_pt_regs *regs,
1047 struct image_info *infop)
1049 regs->pc = infop->entry;
1050 regs->r1 = infop->start_stack;
1054 #define ELF_EXEC_PAGESIZE 4096
1056 #define USE_ELF_CORE_DUMP
1057 #define ELF_NREG 38
1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1061 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1063 int i, pos = 0;
1065 for (i = 0; i < 32; i++) {
1066 (*regs)[pos++] = tswapreg(env->regs[i]);
1069 (*regs)[pos++] = tswapreg(env->pc);
1070 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1071 (*regs)[pos++] = 0;
1072 (*regs)[pos++] = tswapreg(env->ear);
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->esr);
1077 #endif /* TARGET_MICROBLAZE */
1079 #ifdef TARGET_NIOS2
1081 #define ELF_START_MMAP 0x80000000
1083 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1085 #define ELF_CLASS ELFCLASS32
1086 #define ELF_ARCH EM_ALTERA_NIOS2
1088 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1090 regs->ea = infop->entry;
1091 regs->sp = infop->start_stack;
1092 regs->estatus = 0x3;
1095 #define ELF_EXEC_PAGESIZE 4096
1097 #define USE_ELF_CORE_DUMP
1098 #define ELF_NREG 49
1099 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1101 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1102 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1103 const CPUNios2State *env)
1105 int i;
1107 (*regs)[0] = -1;
1108 for (i = 1; i < 8; i++) /* r0-r7 */
1109 (*regs)[i] = tswapreg(env->regs[i + 7]);
1111 for (i = 8; i < 16; i++) /* r8-r15 */
1112 (*regs)[i] = tswapreg(env->regs[i - 8]);
1114 for (i = 16; i < 24; i++) /* r16-r23 */
1115 (*regs)[i] = tswapreg(env->regs[i + 7]);
1116 (*regs)[24] = -1; /* R_ET */
1117 (*regs)[25] = -1; /* R_BT */
1118 (*regs)[26] = tswapreg(env->regs[R_GP]);
1119 (*regs)[27] = tswapreg(env->regs[R_SP]);
1120 (*regs)[28] = tswapreg(env->regs[R_FP]);
1121 (*regs)[29] = tswapreg(env->regs[R_EA]);
1122 (*regs)[30] = -1; /* R_SSTATUS */
1123 (*regs)[31] = tswapreg(env->regs[R_RA]);
1125 (*regs)[32] = tswapreg(env->regs[R_PC]);
1127 (*regs)[33] = -1; /* R_STATUS */
1128 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1130 for (i = 35; i < 49; i++) /* ... */
1131 (*regs)[i] = -1;
1134 #endif /* TARGET_NIOS2 */
1136 #ifdef TARGET_OPENRISC
1138 #define ELF_START_MMAP 0x08000000
1140 #define ELF_ARCH EM_OPENRISC
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_DATA ELFDATA2MSB
1144 static inline void init_thread(struct target_pt_regs *regs,
1145 struct image_info *infop)
1147 regs->pc = infop->entry;
1148 regs->gpr[1] = infop->start_stack;
1151 #define USE_ELF_CORE_DUMP
1152 #define ELF_EXEC_PAGESIZE 8192
1154 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1155 #define ELF_NREG 34 /* gprs and pc, sr */
1156 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1159 const CPUOpenRISCState *env)
1161 int i;
1163 for (i = 0; i < 32; i++) {
1164 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1166 (*regs)[32] = tswapreg(env->pc);
1167 (*regs)[33] = tswapreg(cpu_get_sr(env));
1169 #define ELF_HWCAP 0
1170 #define ELF_PLATFORM NULL
1172 #endif /* TARGET_OPENRISC */
1174 #ifdef TARGET_SH4
1176 #define ELF_START_MMAP 0x80000000
1178 #define ELF_CLASS ELFCLASS32
1179 #define ELF_ARCH EM_SH
1181 static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
1184 /* Check other registers XXXXX */
1185 regs->pc = infop->entry;
1186 regs->regs[15] = infop->start_stack;
1189 /* See linux kernel: arch/sh/include/asm/elf.h. */
1190 #define ELF_NREG 23
1191 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1193 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1194 enum {
1195 TARGET_REG_PC = 16,
1196 TARGET_REG_PR = 17,
1197 TARGET_REG_SR = 18,
1198 TARGET_REG_GBR = 19,
1199 TARGET_REG_MACH = 20,
1200 TARGET_REG_MACL = 21,
1201 TARGET_REG_SYSCALL = 22
1204 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1205 const CPUSH4State *env)
1207 int i;
1209 for (i = 0; i < 16; i++) {
1210 (*regs)[i] = tswapreg(env->gregs[i]);
1213 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1214 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1215 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1216 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1217 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1218 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1219 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222 #define USE_ELF_CORE_DUMP
1223 #define ELF_EXEC_PAGESIZE 4096
1225 enum {
1226 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1227 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1228 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1229 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1230 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1231 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1232 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1233 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1234 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1235 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1238 #define ELF_HWCAP get_elf_hwcap()
1240 static uint32_t get_elf_hwcap(void)
1242 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1243 uint32_t hwcap = 0;
1245 hwcap |= SH_CPU_HAS_FPU;
1247 if (cpu->env.features & SH_FEATURE_SH4A) {
1248 hwcap |= SH_CPU_HAS_LLSC;
1251 return hwcap;
1254 #endif
1256 #ifdef TARGET_CRIS
1258 #define ELF_START_MMAP 0x80000000
1260 #define ELF_CLASS ELFCLASS32
1261 #define ELF_ARCH EM_CRIS
1263 static inline void init_thread(struct target_pt_regs *regs,
1264 struct image_info *infop)
1266 regs->erp = infop->entry;
1269 #define ELF_EXEC_PAGESIZE 8192
1271 #endif
1273 #ifdef TARGET_M68K
1275 #define ELF_START_MMAP 0x80000000
1277 #define ELF_CLASS ELFCLASS32
1278 #define ELF_ARCH EM_68K
1280 /* ??? Does this need to do anything?
1281 #define ELF_PLAT_INIT(_r) */
1283 static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
1286 regs->usp = infop->start_stack;
1287 regs->sr = 0;
1288 regs->pc = infop->entry;
1291 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1292 #define ELF_NREG 20
1293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1297 (*regs)[0] = tswapreg(env->dregs[1]);
1298 (*regs)[1] = tswapreg(env->dregs[2]);
1299 (*regs)[2] = tswapreg(env->dregs[3]);
1300 (*regs)[3] = tswapreg(env->dregs[4]);
1301 (*regs)[4] = tswapreg(env->dregs[5]);
1302 (*regs)[5] = tswapreg(env->dregs[6]);
1303 (*regs)[6] = tswapreg(env->dregs[7]);
1304 (*regs)[7] = tswapreg(env->aregs[0]);
1305 (*regs)[8] = tswapreg(env->aregs[1]);
1306 (*regs)[9] = tswapreg(env->aregs[2]);
1307 (*regs)[10] = tswapreg(env->aregs[3]);
1308 (*regs)[11] = tswapreg(env->aregs[4]);
1309 (*regs)[12] = tswapreg(env->aregs[5]);
1310 (*regs)[13] = tswapreg(env->aregs[6]);
1311 (*regs)[14] = tswapreg(env->dregs[0]);
1312 (*regs)[15] = tswapreg(env->aregs[7]);
1313 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1314 (*regs)[17] = tswapreg(env->sr);
1315 (*regs)[18] = tswapreg(env->pc);
1316 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1319 #define USE_ELF_CORE_DUMP
1320 #define ELF_EXEC_PAGESIZE 8192
1322 #endif
1324 #ifdef TARGET_ALPHA
1326 #define ELF_START_MMAP (0x30000000000ULL)
1328 #define ELF_CLASS ELFCLASS64
1329 #define ELF_ARCH EM_ALPHA
1331 static inline void init_thread(struct target_pt_regs *regs,
1332 struct image_info *infop)
1334 regs->pc = infop->entry;
1335 regs->ps = 8;
1336 regs->usp = infop->start_stack;
1339 #define ELF_EXEC_PAGESIZE 8192
1341 #endif /* TARGET_ALPHA */
1343 #ifdef TARGET_S390X
1345 #define ELF_START_MMAP (0x20000000000ULL)
1347 #define ELF_CLASS ELFCLASS64
1348 #define ELF_DATA ELFDATA2MSB
1349 #define ELF_ARCH EM_S390
1351 #include "elf.h"
1353 #define ELF_HWCAP get_elf_hwcap()
1355 #define GET_FEATURE(_feat, _hwcap) \
1356 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1358 static uint32_t get_elf_hwcap(void)
1361 * Let's assume we always have esan3 and zarch.
1362 * 31-bit processes can use 64-bit registers (high gprs).
1364 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1366 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1367 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1368 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1369 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1370 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1371 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1372 hwcap |= HWCAP_S390_ETF3EH;
1374 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1376 return hwcap;
1379 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1381 regs->psw.addr = infop->entry;
1382 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1383 regs->gprs[15] = infop->start_stack;
1386 #endif /* TARGET_S390X */
1388 #ifdef TARGET_TILEGX
1390 /* 42 bits real used address, a half for user mode */
1391 #define ELF_START_MMAP (0x00000020000000000ULL)
1393 #define elf_check_arch(x) ((x) == EM_TILEGX)
1395 #define ELF_CLASS ELFCLASS64
1396 #define ELF_DATA ELFDATA2LSB
1397 #define ELF_ARCH EM_TILEGX
1399 static inline void init_thread(struct target_pt_regs *regs,
1400 struct image_info *infop)
1402 regs->pc = infop->entry;
1403 regs->sp = infop->start_stack;
1407 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1409 #endif /* TARGET_TILEGX */
1411 #ifdef TARGET_RISCV
1413 #define ELF_START_MMAP 0x80000000
1414 #define ELF_ARCH EM_RISCV
1416 #ifdef TARGET_RISCV32
1417 #define ELF_CLASS ELFCLASS32
1418 #else
1419 #define ELF_CLASS ELFCLASS64
1420 #endif
1422 static inline void init_thread(struct target_pt_regs *regs,
1423 struct image_info *infop)
1425 regs->sepc = infop->entry;
1426 regs->sp = infop->start_stack;
1429 #define ELF_EXEC_PAGESIZE 4096
1431 #endif /* TARGET_RISCV */
1433 #ifdef TARGET_HPPA
1435 #define ELF_START_MMAP 0x80000000
1436 #define ELF_CLASS ELFCLASS32
1437 #define ELF_ARCH EM_PARISC
1438 #define ELF_PLATFORM "PARISC"
1439 #define STACK_GROWS_DOWN 0
1440 #define STACK_ALIGNMENT 64
1442 static inline void init_thread(struct target_pt_regs *regs,
1443 struct image_info *infop)
1445 regs->iaoq[0] = infop->entry;
1446 regs->iaoq[1] = infop->entry + 4;
1447 regs->gr[23] = 0;
1448 regs->gr[24] = infop->arg_start;
1449 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1450 /* The top-of-stack contains a linkage buffer. */
1451 regs->gr[30] = infop->start_stack + 64;
1452 regs->gr[31] = infop->entry;
1455 #endif /* TARGET_HPPA */
1457 #ifdef TARGET_XTENSA
1459 #define ELF_START_MMAP 0x20000000
1461 #define ELF_CLASS ELFCLASS32
1462 #define ELF_ARCH EM_XTENSA
1464 static inline void init_thread(struct target_pt_regs *regs,
1465 struct image_info *infop)
1467 regs->windowbase = 0;
1468 regs->windowstart = 1;
1469 regs->areg[1] = infop->start_stack;
1470 regs->pc = infop->entry;
1473 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1474 #define ELF_NREG 128
1475 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1477 enum {
1478 TARGET_REG_PC,
1479 TARGET_REG_PS,
1480 TARGET_REG_LBEG,
1481 TARGET_REG_LEND,
1482 TARGET_REG_LCOUNT,
1483 TARGET_REG_SAR,
1484 TARGET_REG_WINDOWSTART,
1485 TARGET_REG_WINDOWBASE,
1486 TARGET_REG_THREADPTR,
1487 TARGET_REG_AR0 = 64,
1490 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1491 const CPUXtensaState *env)
1493 unsigned i;
1495 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1496 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1497 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1498 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1499 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1500 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1501 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1502 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1503 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1504 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1505 for (i = 0; i < env->config->nareg; ++i) {
1506 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1510 #define USE_ELF_CORE_DUMP
1511 #define ELF_EXEC_PAGESIZE 4096
1513 #endif /* TARGET_XTENSA */
1515 #ifndef ELF_PLATFORM
1516 #define ELF_PLATFORM (NULL)
1517 #endif
1519 #ifndef ELF_MACHINE
1520 #define ELF_MACHINE ELF_ARCH
1521 #endif
1523 #ifndef elf_check_arch
1524 #define elf_check_arch(x) ((x) == ELF_ARCH)
1525 #endif
1527 #ifndef elf_check_abi
1528 #define elf_check_abi(x) (1)
1529 #endif
1531 #ifndef ELF_HWCAP
1532 #define ELF_HWCAP 0
1533 #endif
1535 #ifndef STACK_GROWS_DOWN
1536 #define STACK_GROWS_DOWN 1
1537 #endif
1539 #ifndef STACK_ALIGNMENT
1540 #define STACK_ALIGNMENT 16
1541 #endif
1543 #ifdef TARGET_ABI32
1544 #undef ELF_CLASS
1545 #define ELF_CLASS ELFCLASS32
1546 #undef bswaptls
1547 #define bswaptls(ptr) bswap32s(ptr)
1548 #endif
1550 #include "elf.h"
1552 /* We must delay the following stanzas until after "elf.h". */
1553 #if defined(TARGET_AARCH64)
1555 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1556 const uint32_t *data,
1557 struct image_info *info,
1558 Error **errp)
1560 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1561 if (pr_datasz != sizeof(uint32_t)) {
1562 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1563 return false;
1565 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1566 info->note_flags = *data;
1568 return true;
1570 #define ARCH_USE_GNU_PROPERTY 1
1572 #else
1574 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1575 const uint32_t *data,
1576 struct image_info *info,
1577 Error **errp)
1579 g_assert_not_reached();
1581 #define ARCH_USE_GNU_PROPERTY 0
1583 #endif
1585 struct exec
1587 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1588 unsigned int a_text; /* length of text, in bytes */
1589 unsigned int a_data; /* length of data, in bytes */
1590 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1591 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1592 unsigned int a_entry; /* start address */
1593 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1594 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1598 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1599 #define OMAGIC 0407
1600 #define NMAGIC 0410
1601 #define ZMAGIC 0413
1602 #define QMAGIC 0314
1604 /* Necessary parameters */
1605 #define TARGET_ELF_EXEC_PAGESIZE \
1606 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1607 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1608 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1609 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1610 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1611 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1613 #define DLINFO_ITEMS 16
1615 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1617 memcpy(to, from, n);
1620 #ifdef BSWAP_NEEDED
1621 static void bswap_ehdr(struct elfhdr *ehdr)
1623 bswap16s(&ehdr->e_type); /* Object file type */
1624 bswap16s(&ehdr->e_machine); /* Architecture */
1625 bswap32s(&ehdr->e_version); /* Object file version */
1626 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1627 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1628 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1629 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1630 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1631 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1632 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1633 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1634 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1635 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1638 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1640 int i;
1641 for (i = 0; i < phnum; ++i, ++phdr) {
1642 bswap32s(&phdr->p_type); /* Segment type */
1643 bswap32s(&phdr->p_flags); /* Segment flags */
1644 bswaptls(&phdr->p_offset); /* Segment file offset */
1645 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1646 bswaptls(&phdr->p_paddr); /* Segment physical address */
1647 bswaptls(&phdr->p_filesz); /* Segment size in file */
1648 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1649 bswaptls(&phdr->p_align); /* Segment alignment */
1653 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1655 int i;
1656 for (i = 0; i < shnum; ++i, ++shdr) {
1657 bswap32s(&shdr->sh_name);
1658 bswap32s(&shdr->sh_type);
1659 bswaptls(&shdr->sh_flags);
1660 bswaptls(&shdr->sh_addr);
1661 bswaptls(&shdr->sh_offset);
1662 bswaptls(&shdr->sh_size);
1663 bswap32s(&shdr->sh_link);
1664 bswap32s(&shdr->sh_info);
1665 bswaptls(&shdr->sh_addralign);
1666 bswaptls(&shdr->sh_entsize);
1670 static void bswap_sym(struct elf_sym *sym)
1672 bswap32s(&sym->st_name);
1673 bswaptls(&sym->st_value);
1674 bswaptls(&sym->st_size);
1675 bswap16s(&sym->st_shndx);
1678 #ifdef TARGET_MIPS
1679 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1681 bswap16s(&abiflags->version);
1682 bswap32s(&abiflags->ases);
1683 bswap32s(&abiflags->isa_ext);
1684 bswap32s(&abiflags->flags1);
1685 bswap32s(&abiflags->flags2);
1687 #endif
1688 #else
1689 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1690 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1691 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1692 static inline void bswap_sym(struct elf_sym *sym) { }
1693 #ifdef TARGET_MIPS
1694 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1695 #endif
1696 #endif
1698 #ifdef USE_ELF_CORE_DUMP
1699 static int elf_core_dump(int, const CPUArchState *);
1700 #endif /* USE_ELF_CORE_DUMP */
1701 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1703 /* Verify the portions of EHDR within E_IDENT for the target.
1704 This can be performed before bswapping the entire header. */
1705 static bool elf_check_ident(struct elfhdr *ehdr)
1707 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1708 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1709 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1710 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1711 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1712 && ehdr->e_ident[EI_DATA] == ELF_DATA
1713 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1716 /* Verify the portions of EHDR outside of E_IDENT for the target.
1717 This has to wait until after bswapping the header. */
1718 static bool elf_check_ehdr(struct elfhdr *ehdr)
1720 return (elf_check_arch(ehdr->e_machine)
1721 && elf_check_abi(ehdr->e_flags)
1722 && ehdr->e_ehsize == sizeof(struct elfhdr)
1723 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1724 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1728 * 'copy_elf_strings()' copies argument/envelope strings from user
1729 * memory to free pages in kernel mem. These are in a format ready
1730 * to be put directly into the top of new user memory.
1733 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1734 abi_ulong p, abi_ulong stack_limit)
1736 char *tmp;
1737 int len, i;
1738 abi_ulong top = p;
1740 if (!p) {
1741 return 0; /* bullet-proofing */
1744 if (STACK_GROWS_DOWN) {
1745 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1746 for (i = argc - 1; i >= 0; --i) {
1747 tmp = argv[i];
1748 if (!tmp) {
1749 fprintf(stderr, "VFS: argc is wrong");
1750 exit(-1);
1752 len = strlen(tmp) + 1;
1753 tmp += len;
1755 if (len > (p - stack_limit)) {
1756 return 0;
1758 while (len) {
1759 int bytes_to_copy = (len > offset) ? offset : len;
1760 tmp -= bytes_to_copy;
1761 p -= bytes_to_copy;
1762 offset -= bytes_to_copy;
1763 len -= bytes_to_copy;
1765 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1767 if (offset == 0) {
1768 memcpy_to_target(p, scratch, top - p);
1769 top = p;
1770 offset = TARGET_PAGE_SIZE;
1774 if (p != top) {
1775 memcpy_to_target(p, scratch + offset, top - p);
1777 } else {
1778 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1779 for (i = 0; i < argc; ++i) {
1780 tmp = argv[i];
1781 if (!tmp) {
1782 fprintf(stderr, "VFS: argc is wrong");
1783 exit(-1);
1785 len = strlen(tmp) + 1;
1786 if (len > (stack_limit - p)) {
1787 return 0;
1789 while (len) {
1790 int bytes_to_copy = (len > remaining) ? remaining : len;
1792 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1794 tmp += bytes_to_copy;
1795 remaining -= bytes_to_copy;
1796 p += bytes_to_copy;
1797 len -= bytes_to_copy;
1799 if (remaining == 0) {
1800 memcpy_to_target(top, scratch, p - top);
1801 top = p;
1802 remaining = TARGET_PAGE_SIZE;
1806 if (p != top) {
1807 memcpy_to_target(top, scratch, p - top);
1811 return p;
1814 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1815 * argument/environment space. Newer kernels (>2.6.33) allow more,
1816 * dependent on stack size, but guarantee at least 32 pages for
1817 * backwards compatibility.
1819 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1821 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1822 struct image_info *info)
1824 abi_ulong size, error, guard;
1826 size = guest_stack_size;
1827 if (size < STACK_LOWER_LIMIT) {
1828 size = STACK_LOWER_LIMIT;
1830 guard = TARGET_PAGE_SIZE;
1831 if (guard < qemu_real_host_page_size) {
1832 guard = qemu_real_host_page_size;
1835 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1836 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1837 if (error == -1) {
1838 perror("mmap stack");
1839 exit(-1);
1842 /* We reserve one extra page at the top of the stack as guard. */
1843 if (STACK_GROWS_DOWN) {
1844 target_mprotect(error, guard, PROT_NONE);
1845 info->stack_limit = error + guard;
1846 return info->stack_limit + size - sizeof(void *);
1847 } else {
1848 target_mprotect(error + size, guard, PROT_NONE);
1849 info->stack_limit = error + size;
1850 return error;
1854 /* Map and zero the bss. We need to explicitly zero any fractional pages
1855 after the data section (i.e. bss). */
1856 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1858 uintptr_t host_start, host_map_start, host_end;
1860 last_bss = TARGET_PAGE_ALIGN(last_bss);
1862 /* ??? There is confusion between qemu_real_host_page_size and
1863 qemu_host_page_size here and elsewhere in target_mmap, which
1864 may lead to the end of the data section mapping from the file
1865 not being mapped. At least there was an explicit test and
1866 comment for that here, suggesting that "the file size must
1867 be known". The comment probably pre-dates the introduction
1868 of the fstat system call in target_mmap which does in fact
1869 find out the size. What isn't clear is if the workaround
1870 here is still actually needed. For now, continue with it,
1871 but merge it with the "normal" mmap that would allocate the bss. */
1873 host_start = (uintptr_t) g2h(elf_bss);
1874 host_end = (uintptr_t) g2h(last_bss);
1875 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1877 if (host_map_start < host_end) {
1878 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1879 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1880 if (p == MAP_FAILED) {
1881 perror("cannot mmap brk");
1882 exit(-1);
1886 /* Ensure that the bss page(s) are valid */
1887 if ((page_get_flags(last_bss-1) & prot) != prot) {
1888 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1891 if (host_start < host_map_start) {
1892 memset((void *)host_start, 0, host_map_start - host_start);
1896 #ifdef TARGET_ARM
1897 static int elf_is_fdpic(struct elfhdr *exec)
1899 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1901 #else
1902 /* Default implementation, always false. */
1903 static int elf_is_fdpic(struct elfhdr *exec)
1905 return 0;
1907 #endif
1909 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1911 uint16_t n;
1912 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1914 /* elf32_fdpic_loadseg */
1915 n = info->nsegs;
1916 while (n--) {
1917 sp -= 12;
1918 put_user_u32(loadsegs[n].addr, sp+0);
1919 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1920 put_user_u32(loadsegs[n].p_memsz, sp+8);
1923 /* elf32_fdpic_loadmap */
1924 sp -= 4;
1925 put_user_u16(0, sp+0); /* version */
1926 put_user_u16(info->nsegs, sp+2); /* nsegs */
1928 info->personality = PER_LINUX_FDPIC;
1929 info->loadmap_addr = sp;
1931 return sp;
1934 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1935 struct elfhdr *exec,
1936 struct image_info *info,
1937 struct image_info *interp_info)
1939 abi_ulong sp;
1940 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1941 int size;
1942 int i;
1943 abi_ulong u_rand_bytes;
1944 uint8_t k_rand_bytes[16];
1945 abi_ulong u_platform;
1946 const char *k_platform;
1947 const int n = sizeof(elf_addr_t);
1949 sp = p;
1951 /* Needs to be before we load the env/argc/... */
1952 if (elf_is_fdpic(exec)) {
1953 /* Need 4 byte alignment for these structs */
1954 sp &= ~3;
1955 sp = loader_build_fdpic_loadmap(info, sp);
1956 info->other_info = interp_info;
1957 if (interp_info) {
1958 interp_info->other_info = info;
1959 sp = loader_build_fdpic_loadmap(interp_info, sp);
1960 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1961 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1962 } else {
1963 info->interpreter_loadmap_addr = 0;
1964 info->interpreter_pt_dynamic_addr = 0;
1968 u_platform = 0;
1969 k_platform = ELF_PLATFORM;
1970 if (k_platform) {
1971 size_t len = strlen(k_platform) + 1;
1972 if (STACK_GROWS_DOWN) {
1973 sp -= (len + n - 1) & ~(n - 1);
1974 u_platform = sp;
1975 /* FIXME - check return value of memcpy_to_target() for failure */
1976 memcpy_to_target(sp, k_platform, len);
1977 } else {
1978 memcpy_to_target(sp, k_platform, len);
1979 u_platform = sp;
1980 sp += len + 1;
1984 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1985 * the argv and envp pointers.
1987 if (STACK_GROWS_DOWN) {
1988 sp = QEMU_ALIGN_DOWN(sp, 16);
1989 } else {
1990 sp = QEMU_ALIGN_UP(sp, 16);
1994 * Generate 16 random bytes for userspace PRNG seeding.
1996 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1997 if (STACK_GROWS_DOWN) {
1998 sp -= 16;
1999 u_rand_bytes = sp;
2000 /* FIXME - check return value of memcpy_to_target() for failure */
2001 memcpy_to_target(sp, k_rand_bytes, 16);
2002 } else {
2003 memcpy_to_target(sp, k_rand_bytes, 16);
2004 u_rand_bytes = sp;
2005 sp += 16;
2008 size = (DLINFO_ITEMS + 1) * 2;
2009 if (k_platform)
2010 size += 2;
2011 #ifdef DLINFO_ARCH_ITEMS
2012 size += DLINFO_ARCH_ITEMS * 2;
2013 #endif
2014 #ifdef ELF_HWCAP2
2015 size += 2;
2016 #endif
2017 info->auxv_len = size * n;
2019 size += envc + argc + 2;
2020 size += 1; /* argc itself */
2021 size *= n;
2023 /* Allocate space and finalize stack alignment for entry now. */
2024 if (STACK_GROWS_DOWN) {
2025 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2026 sp = u_argc;
2027 } else {
2028 u_argc = sp;
2029 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2032 u_argv = u_argc + n;
2033 u_envp = u_argv + (argc + 1) * n;
2034 u_auxv = u_envp + (envc + 1) * n;
2035 info->saved_auxv = u_auxv;
2036 info->arg_start = u_argv;
2037 info->arg_end = u_argv + argc * n;
2039 /* This is correct because Linux defines
2040 * elf_addr_t as Elf32_Off / Elf64_Off
2042 #define NEW_AUX_ENT(id, val) do { \
2043 put_user_ual(id, u_auxv); u_auxv += n; \
2044 put_user_ual(val, u_auxv); u_auxv += n; \
2045 } while(0)
2047 #ifdef ARCH_DLINFO
2049 * ARCH_DLINFO must come first so platform specific code can enforce
2050 * special alignment requirements on the AUXV if necessary (eg. PPC).
2052 ARCH_DLINFO;
2053 #endif
2054 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2055 * on info->auxv_len will trigger.
2057 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2058 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2059 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2060 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2061 /* Target doesn't support host page size alignment */
2062 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2063 } else {
2064 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2065 qemu_host_page_size)));
2067 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2068 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2069 NEW_AUX_ENT(AT_ENTRY, info->entry);
2070 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2071 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2072 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2073 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2074 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2075 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2076 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2077 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2078 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2080 #ifdef ELF_HWCAP2
2081 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2082 #endif
2084 if (u_platform) {
2085 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2087 NEW_AUX_ENT (AT_NULL, 0);
2088 #undef NEW_AUX_ENT
2090 /* Check that our initial calculation of the auxv length matches how much
2091 * we actually put into it.
2093 assert(info->auxv_len == u_auxv - info->saved_auxv);
2095 put_user_ual(argc, u_argc);
2097 p = info->arg_strings;
2098 for (i = 0; i < argc; ++i) {
2099 put_user_ual(p, u_argv);
2100 u_argv += n;
2101 p += target_strlen(p) + 1;
2103 put_user_ual(0, u_argv);
2105 p = info->env_strings;
2106 for (i = 0; i < envc; ++i) {
2107 put_user_ual(p, u_envp);
2108 u_envp += n;
2109 p += target_strlen(p) + 1;
2111 put_user_ual(0, u_envp);
2113 return sp;
2116 #ifndef ARM_COMMPAGE
2117 #define ARM_COMMPAGE 0
2118 #define init_guest_commpage() true
2119 #endif
2121 static void pgb_fail_in_use(const char *image_name)
2123 error_report("%s: requires virtual address space that is in use "
2124 "(omit the -B option or choose a different value)",
2125 image_name);
2126 exit(EXIT_FAILURE);
2129 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2130 abi_ulong guest_hiaddr, long align)
2132 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2133 void *addr, *test;
2135 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2136 fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2137 "host minimum alignment (0x%lx)\n",
2138 guest_base, align);
2139 exit(EXIT_FAILURE);
2142 /* Sanity check the guest binary. */
2143 if (reserved_va) {
2144 if (guest_hiaddr > reserved_va) {
2145 error_report("%s: requires more than reserved virtual "
2146 "address space (0x%" PRIx64 " > 0x%lx)",
2147 image_name, (uint64_t)guest_hiaddr, reserved_va);
2148 exit(EXIT_FAILURE);
2150 } else {
2151 #if HOST_LONG_BITS < TARGET_ABI_BITS
2152 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2153 error_report("%s: requires more virtual address space "
2154 "than the host can provide (0x%" PRIx64 ")",
2155 image_name, (uint64_t)guest_hiaddr - guest_base);
2156 exit(EXIT_FAILURE);
2158 #endif
2162 * Expand the allocation to the entire reserved_va.
2163 * Exclude the mmap_min_addr hole.
2165 if (reserved_va) {
2166 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2167 : mmap_min_addr - guest_base);
2168 guest_hiaddr = reserved_va;
2171 /* Reserve the address space for the binary, or reserved_va. */
2172 test = g2h(guest_loaddr);
2173 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2174 if (test != addr) {
2175 pgb_fail_in_use(image_name);
2180 * pgd_find_hole_fallback: potential mmap address
2181 * @guest_size: size of available space
2182 * @brk: location of break
2183 * @align: memory alignment
2185 * This is a fallback method for finding a hole in the host address
2186 * space if we don't have the benefit of being able to access
2187 * /proc/self/map. It can potentially take a very long time as we can
2188 * only dumbly iterate up the host address space seeing if the
2189 * allocation would work.
2191 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2192 long align, uintptr_t offset)
2194 uintptr_t base;
2196 /* Start (aligned) at the bottom and work our way up */
2197 base = ROUND_UP(mmap_min_addr, align);
2199 while (true) {
2200 uintptr_t align_start, end;
2201 align_start = ROUND_UP(base, align);
2202 end = align_start + guest_size + offset;
2204 /* if brk is anywhere in the range give ourselves some room to grow. */
2205 if (align_start <= brk && brk < end) {
2206 base = brk + (16 * MiB);
2207 continue;
2208 } else if (align_start + guest_size < align_start) {
2209 /* we have run out of space */
2210 return -1;
2211 } else {
2212 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2213 MAP_FIXED_NOREPLACE;
2214 void * mmap_start = mmap((void *) align_start, guest_size,
2215 PROT_NONE, flags, -1, 0);
2216 if (mmap_start != MAP_FAILED) {
2217 munmap((void *) align_start, guest_size);
2218 if (MAP_FIXED_NOREPLACE != 0 ||
2219 mmap_start == (void *) align_start) {
2220 return (uintptr_t) mmap_start + offset;
2223 base += qemu_host_page_size;
2228 /* Return value for guest_base, or -1 if no hole found. */
2229 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2230 long align, uintptr_t offset)
2232 GSList *maps, *iter;
2233 uintptr_t this_start, this_end, next_start, brk;
2234 intptr_t ret = -1;
2236 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2238 maps = read_self_maps();
2240 /* Read brk after we've read the maps, which will malloc. */
2241 brk = (uintptr_t)sbrk(0);
2243 if (!maps) {
2244 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2247 /* The first hole is before the first map entry. */
2248 this_start = mmap_min_addr;
2250 for (iter = maps; iter;
2251 this_start = next_start, iter = g_slist_next(iter)) {
2252 uintptr_t align_start, hole_size;
2254 this_end = ((MapInfo *)iter->data)->start;
2255 next_start = ((MapInfo *)iter->data)->end;
2256 align_start = ROUND_UP(this_start + offset, align);
2258 /* Skip holes that are too small. */
2259 if (align_start >= this_end) {
2260 continue;
2262 hole_size = this_end - align_start;
2263 if (hole_size < guest_size) {
2264 continue;
2267 /* If this hole contains brk, give ourselves some room to grow. */
2268 if (this_start <= brk && brk < this_end) {
2269 hole_size -= guest_size;
2270 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2271 align_start += 1 * GiB;
2272 } else if (hole_size >= 16 * MiB) {
2273 align_start += 16 * MiB;
2274 } else {
2275 align_start = (this_end - guest_size) & -align;
2276 if (align_start < this_start) {
2277 continue;
2282 /* Record the lowest successful match. */
2283 if (ret < 0) {
2284 ret = align_start - guest_loaddr;
2286 /* If this hole contains the identity map, select it. */
2287 if (align_start <= guest_loaddr &&
2288 guest_loaddr + guest_size <= this_end) {
2289 ret = 0;
2291 /* If this hole ends above the identity map, stop looking. */
2292 if (this_end >= guest_loaddr) {
2293 break;
2296 free_self_maps(maps);
2298 return ret;
2301 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2302 abi_ulong orig_hiaddr, long align)
2304 uintptr_t loaddr = orig_loaddr;
2305 uintptr_t hiaddr = orig_hiaddr;
2306 uintptr_t offset = 0;
2307 uintptr_t addr;
2309 if (hiaddr != orig_hiaddr) {
2310 error_report("%s: requires virtual address space that the "
2311 "host cannot provide (0x%" PRIx64 ")",
2312 image_name, (uint64_t)orig_hiaddr);
2313 exit(EXIT_FAILURE);
2316 loaddr &= -align;
2317 if (ARM_COMMPAGE) {
2319 * Extend the allocation to include the commpage.
2320 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2321 * need to ensure there is space bellow the guest_base so we
2322 * can map the commpage in the place needed when the address
2323 * arithmetic wraps around.
2325 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2326 hiaddr = (uintptr_t) 4 << 30;
2327 } else {
2328 offset = -(ARM_COMMPAGE & -align);
2332 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2333 if (addr == -1) {
2335 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2336 * that can satisfy both. But as the normal arm32 link base address
2337 * is ~32k, and we extend down to include the commpage, making the
2338 * overhead only ~96k, this is unlikely.
2340 error_report("%s: Unable to allocate %#zx bytes of "
2341 "virtual address space", image_name,
2342 (size_t)(hiaddr - loaddr));
2343 exit(EXIT_FAILURE);
2346 guest_base = addr;
2349 static void pgb_dynamic(const char *image_name, long align)
2352 * The executable is dynamic and does not require a fixed address.
2353 * All we need is a commpage that satisfies align.
2354 * If we do not need a commpage, leave guest_base == 0.
2356 if (ARM_COMMPAGE) {
2357 uintptr_t addr, commpage;
2359 /* 64-bit hosts should have used reserved_va. */
2360 assert(sizeof(uintptr_t) == 4);
2363 * By putting the commpage at the first hole, that puts guest_base
2364 * just above that, and maximises the positive guest addresses.
2366 commpage = ARM_COMMPAGE & -align;
2367 addr = pgb_find_hole(commpage, -commpage, align, 0);
2368 assert(addr != -1);
2369 guest_base = addr;
2373 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2374 abi_ulong guest_hiaddr, long align)
2376 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2377 void *addr, *test;
2379 if (guest_hiaddr > reserved_va) {
2380 error_report("%s: requires more than reserved virtual "
2381 "address space (0x%" PRIx64 " > 0x%lx)",
2382 image_name, (uint64_t)guest_hiaddr, reserved_va);
2383 exit(EXIT_FAILURE);
2386 /* Widen the "image" to the entire reserved address space. */
2387 pgb_static(image_name, 0, reserved_va, align);
2389 /* osdep.h defines this as 0 if it's missing */
2390 flags |= MAP_FIXED_NOREPLACE;
2392 /* Reserve the memory on the host. */
2393 assert(guest_base != 0);
2394 test = g2h(0);
2395 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2396 if (addr == MAP_FAILED || addr != test) {
2397 error_report("Unable to reserve 0x%lx bytes of virtual address "
2398 "space at %p (%s) for use as guest address space (check your"
2399 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2400 "using -R option)", reserved_va, test, strerror(errno));
2401 exit(EXIT_FAILURE);
2405 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2406 abi_ulong guest_hiaddr)
2408 /* In order to use host shmat, we must be able to honor SHMLBA. */
2409 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2411 if (have_guest_base) {
2412 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2413 } else if (reserved_va) {
2414 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2415 } else if (guest_loaddr) {
2416 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2417 } else {
2418 pgb_dynamic(image_name, align);
2421 /* Reserve and initialize the commpage. */
2422 if (!init_guest_commpage()) {
2424 * With have_guest_base, the user has selected the address and
2425 * we are trying to work with that. Otherwise, we have selected
2426 * free space and init_guest_commpage must succeeded.
2428 assert(have_guest_base);
2429 pgb_fail_in_use(image_name);
2432 assert(QEMU_IS_ALIGNED(guest_base, align));
2433 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2434 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2437 enum {
2438 /* The string "GNU\0" as a magic number. */
2439 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2440 NOTE_DATA_SZ = 1 * KiB,
2441 NOTE_NAME_SZ = 4,
2442 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2446 * Process a single gnu_property entry.
2447 * Return false for error.
2449 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2450 struct image_info *info, bool have_prev_type,
2451 uint32_t *prev_type, Error **errp)
2453 uint32_t pr_type, pr_datasz, step;
2455 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2456 goto error_data;
2458 datasz -= *off;
2459 data += *off / sizeof(uint32_t);
2461 if (datasz < 2 * sizeof(uint32_t)) {
2462 goto error_data;
2464 pr_type = data[0];
2465 pr_datasz = data[1];
2466 data += 2;
2467 datasz -= 2 * sizeof(uint32_t);
2468 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2469 if (step > datasz) {
2470 goto error_data;
2473 /* Properties are supposed to be unique and sorted on pr_type. */
2474 if (have_prev_type && pr_type <= *prev_type) {
2475 if (pr_type == *prev_type) {
2476 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2477 } else {
2478 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2480 return false;
2482 *prev_type = pr_type;
2484 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2485 return false;
2488 *off += 2 * sizeof(uint32_t) + step;
2489 return true;
2491 error_data:
2492 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2493 return false;
2496 /* Process NT_GNU_PROPERTY_TYPE_0. */
2497 static bool parse_elf_properties(int image_fd,
2498 struct image_info *info,
2499 const struct elf_phdr *phdr,
2500 char bprm_buf[BPRM_BUF_SIZE],
2501 Error **errp)
2503 union {
2504 struct elf_note nhdr;
2505 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2506 } note;
2508 int n, off, datasz;
2509 bool have_prev_type;
2510 uint32_t prev_type;
2512 /* Unless the arch requires properties, ignore them. */
2513 if (!ARCH_USE_GNU_PROPERTY) {
2514 return true;
2517 /* If the properties are crazy large, that's too bad. */
2518 n = phdr->p_filesz;
2519 if (n > sizeof(note)) {
2520 error_setg(errp, "PT_GNU_PROPERTY too large");
2521 return false;
2523 if (n < sizeof(note.nhdr)) {
2524 error_setg(errp, "PT_GNU_PROPERTY too small");
2525 return false;
2528 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2529 memcpy(&note, bprm_buf + phdr->p_offset, n);
2530 } else {
2531 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2532 if (len != n) {
2533 error_setg_errno(errp, errno, "Error reading file header");
2534 return false;
2539 * The contents of a valid PT_GNU_PROPERTY is a sequence
2540 * of uint32_t -- swap them all now.
2542 #ifdef BSWAP_NEEDED
2543 for (int i = 0; i < n / 4; i++) {
2544 bswap32s(note.data + i);
2546 #endif
2549 * Note that nhdr is 3 words, and that the "name" described by namesz
2550 * immediately follows nhdr and is thus at the 4th word. Further, all
2551 * of the inputs to the kernel's round_up are multiples of 4.
2553 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2554 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2555 note.data[3] != GNU0_MAGIC) {
2556 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2557 return false;
2559 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2561 datasz = note.nhdr.n_descsz + off;
2562 if (datasz > n) {
2563 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2564 return false;
2567 have_prev_type = false;
2568 prev_type = 0;
2569 while (1) {
2570 if (off == datasz) {
2571 return true; /* end, exit ok */
2573 if (!parse_elf_property(note.data, &off, datasz, info,
2574 have_prev_type, &prev_type, errp)) {
2575 return false;
2577 have_prev_type = true;
2581 /* Load an ELF image into the address space.
2583 IMAGE_NAME is the filename of the image, to use in error messages.
2584 IMAGE_FD is the open file descriptor for the image.
2586 BPRM_BUF is a copy of the beginning of the file; this of course
2587 contains the elf file header at offset 0. It is assumed that this
2588 buffer is sufficiently aligned to present no problems to the host
2589 in accessing data at aligned offsets within the buffer.
2591 On return: INFO values will be filled in, as necessary or available. */
2593 static void load_elf_image(const char *image_name, int image_fd,
2594 struct image_info *info, char **pinterp_name,
2595 char bprm_buf[BPRM_BUF_SIZE])
2597 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2598 struct elf_phdr *phdr;
2599 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2600 int i, retval, prot_exec;
2601 Error *err = NULL;
2603 /* First of all, some simple consistency checks */
2604 if (!elf_check_ident(ehdr)) {
2605 error_setg(&err, "Invalid ELF image for this architecture");
2606 goto exit_errmsg;
2608 bswap_ehdr(ehdr);
2609 if (!elf_check_ehdr(ehdr)) {
2610 error_setg(&err, "Invalid ELF image for this architecture");
2611 goto exit_errmsg;
2614 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2615 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2616 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2617 } else {
2618 phdr = (struct elf_phdr *) alloca(i);
2619 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2620 if (retval != i) {
2621 goto exit_read;
2624 bswap_phdr(phdr, ehdr->e_phnum);
2626 info->nsegs = 0;
2627 info->pt_dynamic_addr = 0;
2629 mmap_lock();
2632 * Find the maximum size of the image and allocate an appropriate
2633 * amount of memory to handle that. Locate the interpreter, if any.
2635 loaddr = -1, hiaddr = 0;
2636 info->alignment = 0;
2637 for (i = 0; i < ehdr->e_phnum; ++i) {
2638 struct elf_phdr *eppnt = phdr + i;
2639 if (eppnt->p_type == PT_LOAD) {
2640 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2641 if (a < loaddr) {
2642 loaddr = a;
2644 a = eppnt->p_vaddr + eppnt->p_memsz;
2645 if (a > hiaddr) {
2646 hiaddr = a;
2648 ++info->nsegs;
2649 info->alignment |= eppnt->p_align;
2650 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2651 g_autofree char *interp_name = NULL;
2653 if (*pinterp_name) {
2654 error_setg(&err, "Multiple PT_INTERP entries");
2655 goto exit_errmsg;
2658 interp_name = g_malloc(eppnt->p_filesz);
2660 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2661 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2662 eppnt->p_filesz);
2663 } else {
2664 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2665 eppnt->p_offset);
2666 if (retval != eppnt->p_filesz) {
2667 goto exit_read;
2670 if (interp_name[eppnt->p_filesz - 1] != 0) {
2671 error_setg(&err, "Invalid PT_INTERP entry");
2672 goto exit_errmsg;
2674 *pinterp_name = g_steal_pointer(&interp_name);
2675 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2676 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2677 goto exit_errmsg;
2682 if (pinterp_name != NULL) {
2684 * This is the main executable.
2686 * Reserve extra space for brk.
2687 * We hold on to this space while placing the interpreter
2688 * and the stack, lest they be placed immediately after
2689 * the data segment and block allocation from the brk.
2691 * 16MB is chosen as "large enough" without being so large
2692 * as to allow the result to not fit with a 32-bit guest on
2693 * a 32-bit host.
2695 info->reserve_brk = 16 * MiB;
2696 hiaddr += info->reserve_brk;
2698 if (ehdr->e_type == ET_EXEC) {
2700 * Make sure that the low address does not conflict with
2701 * MMAP_MIN_ADDR or the QEMU application itself.
2703 probe_guest_base(image_name, loaddr, hiaddr);
2704 } else {
2706 * The binary is dynamic, but we still need to
2707 * select guest_base. In this case we pass a size.
2709 probe_guest_base(image_name, 0, hiaddr - loaddr);
2714 * Reserve address space for all of this.
2716 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2717 * exactly the address range that is required.
2719 * Otherwise this is ET_DYN, and we are searching for a location
2720 * that can hold the memory space required. If the image is
2721 * pre-linked, LOADDR will be non-zero, and the kernel should
2722 * honor that address if it happens to be free.
2724 * In both cases, we will overwrite pages in this range with mappings
2725 * from the executable.
2727 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2728 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2729 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2730 -1, 0);
2731 if (load_addr == -1) {
2732 goto exit_mmap;
2734 load_bias = load_addr - loaddr;
2736 if (elf_is_fdpic(ehdr)) {
2737 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2738 g_malloc(sizeof(*loadsegs) * info->nsegs);
2740 for (i = 0; i < ehdr->e_phnum; ++i) {
2741 switch (phdr[i].p_type) {
2742 case PT_DYNAMIC:
2743 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2744 break;
2745 case PT_LOAD:
2746 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2747 loadsegs->p_vaddr = phdr[i].p_vaddr;
2748 loadsegs->p_memsz = phdr[i].p_memsz;
2749 ++loadsegs;
2750 break;
2755 info->load_bias = load_bias;
2756 info->code_offset = load_bias;
2757 info->data_offset = load_bias;
2758 info->load_addr = load_addr;
2759 info->entry = ehdr->e_entry + load_bias;
2760 info->start_code = -1;
2761 info->end_code = 0;
2762 info->start_data = -1;
2763 info->end_data = 0;
2764 info->brk = 0;
2765 info->elf_flags = ehdr->e_flags;
2767 prot_exec = PROT_EXEC;
2768 #ifdef TARGET_AARCH64
2770 * If the BTI feature is present, this indicates that the executable
2771 * pages of the startup binary should be mapped with PROT_BTI, so that
2772 * branch targets are enforced.
2774 * The startup binary is either the interpreter or the static executable.
2775 * The interpreter is responsible for all pages of a dynamic executable.
2777 * Elf notes are backward compatible to older cpus.
2778 * Do not enable BTI unless it is supported.
2780 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2781 && (pinterp_name == NULL || *pinterp_name == 0)
2782 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2783 prot_exec |= TARGET_PROT_BTI;
2785 #endif
2787 for (i = 0; i < ehdr->e_phnum; i++) {
2788 struct elf_phdr *eppnt = phdr + i;
2789 if (eppnt->p_type == PT_LOAD) {
2790 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2791 int elf_prot = 0;
2793 if (eppnt->p_flags & PF_R) {
2794 elf_prot |= PROT_READ;
2796 if (eppnt->p_flags & PF_W) {
2797 elf_prot |= PROT_WRITE;
2799 if (eppnt->p_flags & PF_X) {
2800 elf_prot |= prot_exec;
2803 vaddr = load_bias + eppnt->p_vaddr;
2804 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2805 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2806 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2809 * Some segments may be completely empty without any backing file
2810 * segment, in that case just let zero_bss allocate an empty buffer
2811 * for it.
2813 if (eppnt->p_filesz != 0) {
2814 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2815 MAP_PRIVATE | MAP_FIXED,
2816 image_fd, eppnt->p_offset - vaddr_po);
2818 if (error == -1) {
2819 goto exit_mmap;
2823 vaddr_ef = vaddr + eppnt->p_filesz;
2824 vaddr_em = vaddr + eppnt->p_memsz;
2826 /* If the load segment requests extra zeros (e.g. bss), map it. */
2827 if (vaddr_ef < vaddr_em) {
2828 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2831 /* Find the full program boundaries. */
2832 if (elf_prot & PROT_EXEC) {
2833 if (vaddr < info->start_code) {
2834 info->start_code = vaddr;
2836 if (vaddr_ef > info->end_code) {
2837 info->end_code = vaddr_ef;
2840 if (elf_prot & PROT_WRITE) {
2841 if (vaddr < info->start_data) {
2842 info->start_data = vaddr;
2844 if (vaddr_ef > info->end_data) {
2845 info->end_data = vaddr_ef;
2848 if (vaddr_em > info->brk) {
2849 info->brk = vaddr_em;
2851 #ifdef TARGET_MIPS
2852 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2853 Mips_elf_abiflags_v0 abiflags;
2854 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2855 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2856 goto exit_errmsg;
2858 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2859 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2860 sizeof(Mips_elf_abiflags_v0));
2861 } else {
2862 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2863 eppnt->p_offset);
2864 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2865 goto exit_read;
2868 bswap_mips_abiflags(&abiflags);
2869 info->fp_abi = abiflags.fp_abi;
2870 #endif
2874 if (info->end_data == 0) {
2875 info->start_data = info->end_code;
2876 info->end_data = info->end_code;
2879 if (qemu_log_enabled()) {
2880 load_symbols(ehdr, image_fd, load_bias);
2883 mmap_unlock();
2885 close(image_fd);
2886 return;
2888 exit_read:
2889 if (retval >= 0) {
2890 error_setg(&err, "Incomplete read of file header");
2891 } else {
2892 error_setg_errno(&err, errno, "Error reading file header");
2894 goto exit_errmsg;
2895 exit_mmap:
2896 error_setg_errno(&err, errno, "Error mapping file");
2897 goto exit_errmsg;
2898 exit_errmsg:
2899 error_reportf_err(err, "%s: ", image_name);
2900 exit(-1);
2903 static void load_elf_interp(const char *filename, struct image_info *info,
2904 char bprm_buf[BPRM_BUF_SIZE])
2906 int fd, retval;
2907 Error *err = NULL;
2909 fd = open(path(filename), O_RDONLY);
2910 if (fd < 0) {
2911 error_setg_file_open(&err, errno, filename);
2912 error_report_err(err);
2913 exit(-1);
2916 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2917 if (retval < 0) {
2918 error_setg_errno(&err, errno, "Error reading file header");
2919 error_reportf_err(err, "%s: ", filename);
2920 exit(-1);
2923 if (retval < BPRM_BUF_SIZE) {
2924 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2927 load_elf_image(filename, fd, info, NULL, bprm_buf);
2930 static int symfind(const void *s0, const void *s1)
2932 target_ulong addr = *(target_ulong *)s0;
2933 struct elf_sym *sym = (struct elf_sym *)s1;
2934 int result = 0;
2935 if (addr < sym->st_value) {
2936 result = -1;
2937 } else if (addr >= sym->st_value + sym->st_size) {
2938 result = 1;
2940 return result;
2943 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2945 #if ELF_CLASS == ELFCLASS32
2946 struct elf_sym *syms = s->disas_symtab.elf32;
2947 #else
2948 struct elf_sym *syms = s->disas_symtab.elf64;
2949 #endif
2951 // binary search
2952 struct elf_sym *sym;
2954 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2955 if (sym != NULL) {
2956 return s->disas_strtab + sym->st_name;
2959 return "";
2962 /* FIXME: This should use elf_ops.h */
2963 static int symcmp(const void *s0, const void *s1)
2965 struct elf_sym *sym0 = (struct elf_sym *)s0;
2966 struct elf_sym *sym1 = (struct elf_sym *)s1;
2967 return (sym0->st_value < sym1->st_value)
2968 ? -1
2969 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2972 /* Best attempt to load symbols from this ELF object. */
2973 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2975 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2976 uint64_t segsz;
2977 struct elf_shdr *shdr;
2978 char *strings = NULL;
2979 struct syminfo *s = NULL;
2980 struct elf_sym *new_syms, *syms = NULL;
2982 shnum = hdr->e_shnum;
2983 i = shnum * sizeof(struct elf_shdr);
2984 shdr = (struct elf_shdr *)alloca(i);
2985 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2986 return;
2989 bswap_shdr(shdr, shnum);
2990 for (i = 0; i < shnum; ++i) {
2991 if (shdr[i].sh_type == SHT_SYMTAB) {
2992 sym_idx = i;
2993 str_idx = shdr[i].sh_link;
2994 goto found;
2998 /* There will be no symbol table if the file was stripped. */
2999 return;
3001 found:
3002 /* Now know where the strtab and symtab are. Snarf them. */
3003 s = g_try_new(struct syminfo, 1);
3004 if (!s) {
3005 goto give_up;
3008 segsz = shdr[str_idx].sh_size;
3009 s->disas_strtab = strings = g_try_malloc(segsz);
3010 if (!strings ||
3011 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3012 goto give_up;
3015 segsz = shdr[sym_idx].sh_size;
3016 syms = g_try_malloc(segsz);
3017 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3018 goto give_up;
3021 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3022 /* Implausibly large symbol table: give up rather than ploughing
3023 * on with the number of symbols calculation overflowing
3025 goto give_up;
3027 nsyms = segsz / sizeof(struct elf_sym);
3028 for (i = 0; i < nsyms; ) {
3029 bswap_sym(syms + i);
3030 /* Throw away entries which we do not need. */
3031 if (syms[i].st_shndx == SHN_UNDEF
3032 || syms[i].st_shndx >= SHN_LORESERVE
3033 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3034 if (i < --nsyms) {
3035 syms[i] = syms[nsyms];
3037 } else {
3038 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3039 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3040 syms[i].st_value &= ~(target_ulong)1;
3041 #endif
3042 syms[i].st_value += load_bias;
3043 i++;
3047 /* No "useful" symbol. */
3048 if (nsyms == 0) {
3049 goto give_up;
3052 /* Attempt to free the storage associated with the local symbols
3053 that we threw away. Whether or not this has any effect on the
3054 memory allocation depends on the malloc implementation and how
3055 many symbols we managed to discard. */
3056 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3057 if (new_syms == NULL) {
3058 goto give_up;
3060 syms = new_syms;
3062 qsort(syms, nsyms, sizeof(*syms), symcmp);
3064 s->disas_num_syms = nsyms;
3065 #if ELF_CLASS == ELFCLASS32
3066 s->disas_symtab.elf32 = syms;
3067 #else
3068 s->disas_symtab.elf64 = syms;
3069 #endif
3070 s->lookup_symbol = lookup_symbolxx;
3071 s->next = syminfos;
3072 syminfos = s;
3074 return;
3076 give_up:
3077 g_free(s);
3078 g_free(strings);
3079 g_free(syms);
3082 uint32_t get_elf_eflags(int fd)
3084 struct elfhdr ehdr;
3085 off_t offset;
3086 int ret;
3088 /* Read ELF header */
3089 offset = lseek(fd, 0, SEEK_SET);
3090 if (offset == (off_t) -1) {
3091 return 0;
3093 ret = read(fd, &ehdr, sizeof(ehdr));
3094 if (ret < sizeof(ehdr)) {
3095 return 0;
3097 offset = lseek(fd, offset, SEEK_SET);
3098 if (offset == (off_t) -1) {
3099 return 0;
3102 /* Check ELF signature */
3103 if (!elf_check_ident(&ehdr)) {
3104 return 0;
3107 /* check header */
3108 bswap_ehdr(&ehdr);
3109 if (!elf_check_ehdr(&ehdr)) {
3110 return 0;
3113 /* return architecture id */
3114 return ehdr.e_flags;
3117 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3119 struct image_info interp_info;
3120 struct elfhdr elf_ex;
3121 char *elf_interpreter = NULL;
3122 char *scratch;
3124 memset(&interp_info, 0, sizeof(interp_info));
3125 #ifdef TARGET_MIPS
3126 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3127 #endif
3129 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3131 load_elf_image(bprm->filename, bprm->fd, info,
3132 &elf_interpreter, bprm->buf);
3134 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3135 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3136 when we load the interpreter. */
3137 elf_ex = *(struct elfhdr *)bprm->buf;
3139 /* Do this so that we can load the interpreter, if need be. We will
3140 change some of these later */
3141 bprm->p = setup_arg_pages(bprm, info);
3143 scratch = g_new0(char, TARGET_PAGE_SIZE);
3144 if (STACK_GROWS_DOWN) {
3145 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3146 bprm->p, info->stack_limit);
3147 info->file_string = bprm->p;
3148 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3149 bprm->p, info->stack_limit);
3150 info->env_strings = bprm->p;
3151 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3152 bprm->p, info->stack_limit);
3153 info->arg_strings = bprm->p;
3154 } else {
3155 info->arg_strings = bprm->p;
3156 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3157 bprm->p, info->stack_limit);
3158 info->env_strings = bprm->p;
3159 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3160 bprm->p, info->stack_limit);
3161 info->file_string = bprm->p;
3162 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3163 bprm->p, info->stack_limit);
3166 g_free(scratch);
3168 if (!bprm->p) {
3169 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3170 exit(-1);
3173 if (elf_interpreter) {
3174 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3176 /* If the program interpreter is one of these two, then assume
3177 an iBCS2 image. Otherwise assume a native linux image. */
3179 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3180 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3181 info->personality = PER_SVR4;
3183 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3184 and some applications "depend" upon this behavior. Since
3185 we do not have the power to recompile these, we emulate
3186 the SVr4 behavior. Sigh. */
3187 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3188 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3190 #ifdef TARGET_MIPS
3191 info->interp_fp_abi = interp_info.fp_abi;
3192 #endif
3195 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3196 info, (elf_interpreter ? &interp_info : NULL));
3197 info->start_stack = bprm->p;
3199 /* If we have an interpreter, set that as the program's entry point.
3200 Copy the load_bias as well, to help PPC64 interpret the entry
3201 point as a function descriptor. Do this after creating elf tables
3202 so that we copy the original program entry point into the AUXV. */
3203 if (elf_interpreter) {
3204 info->load_bias = interp_info.load_bias;
3205 info->entry = interp_info.entry;
3206 g_free(elf_interpreter);
3209 #ifdef USE_ELF_CORE_DUMP
3210 bprm->core_dump = &elf_core_dump;
3211 #endif
3214 * If we reserved extra space for brk, release it now.
3215 * The implementation of do_brk in syscalls.c expects to be able
3216 * to mmap pages in this space.
3218 if (info->reserve_brk) {
3219 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3220 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3221 target_munmap(start_brk, end_brk - start_brk);
3224 return 0;
3227 #ifdef USE_ELF_CORE_DUMP
3229 * Definitions to generate Intel SVR4-like core files.
3230 * These mostly have the same names as the SVR4 types with "target_elf_"
3231 * tacked on the front to prevent clashes with linux definitions,
3232 * and the typedef forms have been avoided. This is mostly like
3233 * the SVR4 structure, but more Linuxy, with things that Linux does
3234 * not support and which gdb doesn't really use excluded.
3236 * Fields we don't dump (their contents is zero) in linux-user qemu
3237 * are marked with XXX.
3239 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3241 * Porting ELF coredump for target is (quite) simple process. First you
3242 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3243 * the target resides):
3245 * #define USE_ELF_CORE_DUMP
3247 * Next you define type of register set used for dumping. ELF specification
3248 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3250 * typedef <target_regtype> target_elf_greg_t;
3251 * #define ELF_NREG <number of registers>
3252 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3254 * Last step is to implement target specific function that copies registers
3255 * from given cpu into just specified register set. Prototype is:
3257 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3258 * const CPUArchState *env);
3260 * Parameters:
3261 * regs - copy register values into here (allocated and zeroed by caller)
3262 * env - copy registers from here
3264 * Example for ARM target is provided in this file.
3267 /* An ELF note in memory */
3268 struct memelfnote {
3269 const char *name;
3270 size_t namesz;
3271 size_t namesz_rounded;
3272 int type;
3273 size_t datasz;
3274 size_t datasz_rounded;
3275 void *data;
3276 size_t notesz;
3279 struct target_elf_siginfo {
3280 abi_int si_signo; /* signal number */
3281 abi_int si_code; /* extra code */
3282 abi_int si_errno; /* errno */
3285 struct target_elf_prstatus {
3286 struct target_elf_siginfo pr_info; /* Info associated with signal */
3287 abi_short pr_cursig; /* Current signal */
3288 abi_ulong pr_sigpend; /* XXX */
3289 abi_ulong pr_sighold; /* XXX */
3290 target_pid_t pr_pid;
3291 target_pid_t pr_ppid;
3292 target_pid_t pr_pgrp;
3293 target_pid_t pr_sid;
3294 struct target_timeval pr_utime; /* XXX User time */
3295 struct target_timeval pr_stime; /* XXX System time */
3296 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3297 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3298 target_elf_gregset_t pr_reg; /* GP registers */
3299 abi_int pr_fpvalid; /* XXX */
3302 #define ELF_PRARGSZ (80) /* Number of chars for args */
3304 struct target_elf_prpsinfo {
3305 char pr_state; /* numeric process state */
3306 char pr_sname; /* char for pr_state */
3307 char pr_zomb; /* zombie */
3308 char pr_nice; /* nice val */
3309 abi_ulong pr_flag; /* flags */
3310 target_uid_t pr_uid;
3311 target_gid_t pr_gid;
3312 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3313 /* Lots missing */
3314 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3315 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3318 /* Here is the structure in which status of each thread is captured. */
3319 struct elf_thread_status {
3320 QTAILQ_ENTRY(elf_thread_status) ets_link;
3321 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3322 #if 0
3323 elf_fpregset_t fpu; /* NT_PRFPREG */
3324 struct task_struct *thread;
3325 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3326 #endif
3327 struct memelfnote notes[1];
3328 int num_notes;
3331 struct elf_note_info {
3332 struct memelfnote *notes;
3333 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3334 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3336 QTAILQ_HEAD(, elf_thread_status) thread_list;
3337 #if 0
3339 * Current version of ELF coredump doesn't support
3340 * dumping fp regs etc.
3342 elf_fpregset_t *fpu;
3343 elf_fpxregset_t *xfpu;
3344 int thread_status_size;
3345 #endif
3346 int notes_size;
3347 int numnote;
3350 struct vm_area_struct {
3351 target_ulong vma_start; /* start vaddr of memory region */
3352 target_ulong vma_end; /* end vaddr of memory region */
3353 abi_ulong vma_flags; /* protection etc. flags for the region */
3354 QTAILQ_ENTRY(vm_area_struct) vma_link;
3357 struct mm_struct {
3358 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3359 int mm_count; /* number of mappings */
3362 static struct mm_struct *vma_init(void);
3363 static void vma_delete(struct mm_struct *);
3364 static int vma_add_mapping(struct mm_struct *, target_ulong,
3365 target_ulong, abi_ulong);
3366 static int vma_get_mapping_count(const struct mm_struct *);
3367 static struct vm_area_struct *vma_first(const struct mm_struct *);
3368 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3369 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3370 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3371 unsigned long flags);
3373 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3374 static void fill_note(struct memelfnote *, const char *, int,
3375 unsigned int, void *);
3376 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3377 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3378 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3379 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3380 static size_t note_size(const struct memelfnote *);
3381 static void free_note_info(struct elf_note_info *);
3382 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3383 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3384 static int core_dump_filename(const TaskState *, char *, size_t);
3386 static int dump_write(int, const void *, size_t);
3387 static int write_note(struct memelfnote *, int);
3388 static int write_note_info(struct elf_note_info *, int);
3390 #ifdef BSWAP_NEEDED
3391 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3393 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3394 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3395 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3396 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3397 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3398 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3399 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3400 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3401 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3402 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3403 /* cpu times are not filled, so we skip them */
3404 /* regs should be in correct format already */
3405 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3408 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3410 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3411 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3412 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3413 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3414 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3415 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3416 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3419 static void bswap_note(struct elf_note *en)
3421 bswap32s(&en->n_namesz);
3422 bswap32s(&en->n_descsz);
3423 bswap32s(&en->n_type);
3425 #else
3426 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3427 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3428 static inline void bswap_note(struct elf_note *en) { }
3429 #endif /* BSWAP_NEEDED */
3432 * Minimal support for linux memory regions. These are needed
3433 * when we are finding out what memory exactly belongs to
3434 * emulated process. No locks needed here, as long as
3435 * thread that received the signal is stopped.
3438 static struct mm_struct *vma_init(void)
3440 struct mm_struct *mm;
3442 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3443 return (NULL);
3445 mm->mm_count = 0;
3446 QTAILQ_INIT(&mm->mm_mmap);
3448 return (mm);
3451 static void vma_delete(struct mm_struct *mm)
3453 struct vm_area_struct *vma;
3455 while ((vma = vma_first(mm)) != NULL) {
3456 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3457 g_free(vma);
3459 g_free(mm);
3462 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3463 target_ulong end, abi_ulong flags)
3465 struct vm_area_struct *vma;
3467 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3468 return (-1);
3470 vma->vma_start = start;
3471 vma->vma_end = end;
3472 vma->vma_flags = flags;
3474 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3475 mm->mm_count++;
3477 return (0);
3480 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3482 return (QTAILQ_FIRST(&mm->mm_mmap));
3485 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3487 return (QTAILQ_NEXT(vma, vma_link));
3490 static int vma_get_mapping_count(const struct mm_struct *mm)
3492 return (mm->mm_count);
3496 * Calculate file (dump) size of given memory region.
3498 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3500 /* if we cannot even read the first page, skip it */
3501 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3502 return (0);
3505 * Usually we don't dump executable pages as they contain
3506 * non-writable code that debugger can read directly from
3507 * target library etc. However, thread stacks are marked
3508 * also executable so we read in first page of given region
3509 * and check whether it contains elf header. If there is
3510 * no elf header, we dump it.
3512 if (vma->vma_flags & PROT_EXEC) {
3513 char page[TARGET_PAGE_SIZE];
3515 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3516 return 0;
3518 if ((page[EI_MAG0] == ELFMAG0) &&
3519 (page[EI_MAG1] == ELFMAG1) &&
3520 (page[EI_MAG2] == ELFMAG2) &&
3521 (page[EI_MAG3] == ELFMAG3)) {
3523 * Mappings are possibly from ELF binary. Don't dump
3524 * them.
3526 return (0);
3530 return (vma->vma_end - vma->vma_start);
3533 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3534 unsigned long flags)
3536 struct mm_struct *mm = (struct mm_struct *)priv;
3538 vma_add_mapping(mm, start, end, flags);
3539 return (0);
3542 static void fill_note(struct memelfnote *note, const char *name, int type,
3543 unsigned int sz, void *data)
3545 unsigned int namesz;
3547 namesz = strlen(name) + 1;
3548 note->name = name;
3549 note->namesz = namesz;
3550 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3551 note->type = type;
3552 note->datasz = sz;
3553 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3555 note->data = data;
3558 * We calculate rounded up note size here as specified by
3559 * ELF document.
3561 note->notesz = sizeof (struct elf_note) +
3562 note->namesz_rounded + note->datasz_rounded;
3565 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3566 uint32_t flags)
3568 (void) memset(elf, 0, sizeof(*elf));
3570 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3571 elf->e_ident[EI_CLASS] = ELF_CLASS;
3572 elf->e_ident[EI_DATA] = ELF_DATA;
3573 elf->e_ident[EI_VERSION] = EV_CURRENT;
3574 elf->e_ident[EI_OSABI] = ELF_OSABI;
3576 elf->e_type = ET_CORE;
3577 elf->e_machine = machine;
3578 elf->e_version = EV_CURRENT;
3579 elf->e_phoff = sizeof(struct elfhdr);
3580 elf->e_flags = flags;
3581 elf->e_ehsize = sizeof(struct elfhdr);
3582 elf->e_phentsize = sizeof(struct elf_phdr);
3583 elf->e_phnum = segs;
3585 bswap_ehdr(elf);
3588 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3590 phdr->p_type = PT_NOTE;
3591 phdr->p_offset = offset;
3592 phdr->p_vaddr = 0;
3593 phdr->p_paddr = 0;
3594 phdr->p_filesz = sz;
3595 phdr->p_memsz = 0;
3596 phdr->p_flags = 0;
3597 phdr->p_align = 0;
3599 bswap_phdr(phdr, 1);
3602 static size_t note_size(const struct memelfnote *note)
3604 return (note->notesz);
3607 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3608 const TaskState *ts, int signr)
3610 (void) memset(prstatus, 0, sizeof (*prstatus));
3611 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3612 prstatus->pr_pid = ts->ts_tid;
3613 prstatus->pr_ppid = getppid();
3614 prstatus->pr_pgrp = getpgrp();
3615 prstatus->pr_sid = getsid(0);
3617 bswap_prstatus(prstatus);
3620 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3622 char *base_filename;
3623 unsigned int i, len;
3625 (void) memset(psinfo, 0, sizeof (*psinfo));
3627 len = ts->info->arg_end - ts->info->arg_start;
3628 if (len >= ELF_PRARGSZ)
3629 len = ELF_PRARGSZ - 1;
3630 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3631 return -EFAULT;
3632 for (i = 0; i < len; i++)
3633 if (psinfo->pr_psargs[i] == 0)
3634 psinfo->pr_psargs[i] = ' ';
3635 psinfo->pr_psargs[len] = 0;
3637 psinfo->pr_pid = getpid();
3638 psinfo->pr_ppid = getppid();
3639 psinfo->pr_pgrp = getpgrp();
3640 psinfo->pr_sid = getsid(0);
3641 psinfo->pr_uid = getuid();
3642 psinfo->pr_gid = getgid();
3644 base_filename = g_path_get_basename(ts->bprm->filename);
3646 * Using strncpy here is fine: at max-length,
3647 * this field is not NUL-terminated.
3649 (void) strncpy(psinfo->pr_fname, base_filename,
3650 sizeof(psinfo->pr_fname));
3652 g_free(base_filename);
3653 bswap_psinfo(psinfo);
3654 return (0);
3657 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3659 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3660 elf_addr_t orig_auxv = auxv;
3661 void *ptr;
3662 int len = ts->info->auxv_len;
3665 * Auxiliary vector is stored in target process stack. It contains
3666 * {type, value} pairs that we need to dump into note. This is not
3667 * strictly necessary but we do it here for sake of completeness.
3670 /* read in whole auxv vector and copy it to memelfnote */
3671 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3672 if (ptr != NULL) {
3673 fill_note(note, "CORE", NT_AUXV, len, ptr);
3674 unlock_user(ptr, auxv, len);
3679 * Constructs name of coredump file. We have following convention
3680 * for the name:
3681 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3683 * Returns 0 in case of success, -1 otherwise (errno is set).
3685 static int core_dump_filename(const TaskState *ts, char *buf,
3686 size_t bufsize)
3688 char timestamp[64];
3689 char *base_filename = NULL;
3690 struct timeval tv;
3691 struct tm tm;
3693 assert(bufsize >= PATH_MAX);
3695 if (gettimeofday(&tv, NULL) < 0) {
3696 (void) fprintf(stderr, "unable to get current timestamp: %s",
3697 strerror(errno));
3698 return (-1);
3701 base_filename = g_path_get_basename(ts->bprm->filename);
3702 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3703 localtime_r(&tv.tv_sec, &tm));
3704 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3705 base_filename, timestamp, (int)getpid());
3706 g_free(base_filename);
3708 return (0);
3711 static int dump_write(int fd, const void *ptr, size_t size)
3713 const char *bufp = (const char *)ptr;
3714 ssize_t bytes_written, bytes_left;
3715 struct rlimit dumpsize;
3716 off_t pos;
3718 bytes_written = 0;
3719 getrlimit(RLIMIT_CORE, &dumpsize);
3720 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3721 if (errno == ESPIPE) { /* not a seekable stream */
3722 bytes_left = size;
3723 } else {
3724 return pos;
3726 } else {
3727 if (dumpsize.rlim_cur <= pos) {
3728 return -1;
3729 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3730 bytes_left = size;
3731 } else {
3732 size_t limit_left=dumpsize.rlim_cur - pos;
3733 bytes_left = limit_left >= size ? size : limit_left ;
3738 * In normal conditions, single write(2) should do but
3739 * in case of socket etc. this mechanism is more portable.
3741 do {
3742 bytes_written = write(fd, bufp, bytes_left);
3743 if (bytes_written < 0) {
3744 if (errno == EINTR)
3745 continue;
3746 return (-1);
3747 } else if (bytes_written == 0) { /* eof */
3748 return (-1);
3750 bufp += bytes_written;
3751 bytes_left -= bytes_written;
3752 } while (bytes_left > 0);
3754 return (0);
3757 static int write_note(struct memelfnote *men, int fd)
3759 struct elf_note en;
3761 en.n_namesz = men->namesz;
3762 en.n_type = men->type;
3763 en.n_descsz = men->datasz;
3765 bswap_note(&en);
3767 if (dump_write(fd, &en, sizeof(en)) != 0)
3768 return (-1);
3769 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3770 return (-1);
3771 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3772 return (-1);
3774 return (0);
3777 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3779 CPUState *cpu = env_cpu((CPUArchState *)env);
3780 TaskState *ts = (TaskState *)cpu->opaque;
3781 struct elf_thread_status *ets;
3783 ets = g_malloc0(sizeof (*ets));
3784 ets->num_notes = 1; /* only prstatus is dumped */
3785 fill_prstatus(&ets->prstatus, ts, 0);
3786 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3787 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3788 &ets->prstatus);
3790 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3792 info->notes_size += note_size(&ets->notes[0]);
3795 static void init_note_info(struct elf_note_info *info)
3797 /* Initialize the elf_note_info structure so that it is at
3798 * least safe to call free_note_info() on it. Must be
3799 * called before calling fill_note_info().
3801 memset(info, 0, sizeof (*info));
3802 QTAILQ_INIT(&info->thread_list);
3805 static int fill_note_info(struct elf_note_info *info,
3806 long signr, const CPUArchState *env)
3808 #define NUMNOTES 3
3809 CPUState *cpu = env_cpu((CPUArchState *)env);
3810 TaskState *ts = (TaskState *)cpu->opaque;
3811 int i;
3813 info->notes = g_new0(struct memelfnote, NUMNOTES);
3814 if (info->notes == NULL)
3815 return (-ENOMEM);
3816 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3817 if (info->prstatus == NULL)
3818 return (-ENOMEM);
3819 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3820 if (info->prstatus == NULL)
3821 return (-ENOMEM);
3824 * First fill in status (and registers) of current thread
3825 * including process info & aux vector.
3827 fill_prstatus(info->prstatus, ts, signr);
3828 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3829 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3830 sizeof (*info->prstatus), info->prstatus);
3831 fill_psinfo(info->psinfo, ts);
3832 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3833 sizeof (*info->psinfo), info->psinfo);
3834 fill_auxv_note(&info->notes[2], ts);
3835 info->numnote = 3;
3837 info->notes_size = 0;
3838 for (i = 0; i < info->numnote; i++)
3839 info->notes_size += note_size(&info->notes[i]);
3841 /* read and fill status of all threads */
3842 cpu_list_lock();
3843 CPU_FOREACH(cpu) {
3844 if (cpu == thread_cpu) {
3845 continue;
3847 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3849 cpu_list_unlock();
3851 return (0);
3854 static void free_note_info(struct elf_note_info *info)
3856 struct elf_thread_status *ets;
3858 while (!QTAILQ_EMPTY(&info->thread_list)) {
3859 ets = QTAILQ_FIRST(&info->thread_list);
3860 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3861 g_free(ets);
3864 g_free(info->prstatus);
3865 g_free(info->psinfo);
3866 g_free(info->notes);
3869 static int write_note_info(struct elf_note_info *info, int fd)
3871 struct elf_thread_status *ets;
3872 int i, error = 0;
3874 /* write prstatus, psinfo and auxv for current thread */
3875 for (i = 0; i < info->numnote; i++)
3876 if ((error = write_note(&info->notes[i], fd)) != 0)
3877 return (error);
3879 /* write prstatus for each thread */
3880 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3881 if ((error = write_note(&ets->notes[0], fd)) != 0)
3882 return (error);
3885 return (0);
3889 * Write out ELF coredump.
3891 * See documentation of ELF object file format in:
3892 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3894 * Coredump format in linux is following:
3896 * 0 +----------------------+ \
3897 * | ELF header | ET_CORE |
3898 * +----------------------+ |
3899 * | ELF program headers | |--- headers
3900 * | - NOTE section | |
3901 * | - PT_LOAD sections | |
3902 * +----------------------+ /
3903 * | NOTEs: |
3904 * | - NT_PRSTATUS |
3905 * | - NT_PRSINFO |
3906 * | - NT_AUXV |
3907 * +----------------------+ <-- aligned to target page
3908 * | Process memory dump |
3909 * : :
3910 * . .
3911 * : :
3912 * | |
3913 * +----------------------+
3915 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3916 * NT_PRSINFO -> struct elf_prpsinfo
3917 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3919 * Format follows System V format as close as possible. Current
3920 * version limitations are as follows:
3921 * - no floating point registers are dumped
3923 * Function returns 0 in case of success, negative errno otherwise.
3925 * TODO: make this work also during runtime: it should be
3926 * possible to force coredump from running process and then
3927 * continue processing. For example qemu could set up SIGUSR2
3928 * handler (provided that target process haven't registered
3929 * handler for that) that does the dump when signal is received.
3931 static int elf_core_dump(int signr, const CPUArchState *env)
3933 const CPUState *cpu = env_cpu((CPUArchState *)env);
3934 const TaskState *ts = (const TaskState *)cpu->opaque;
3935 struct vm_area_struct *vma = NULL;
3936 char corefile[PATH_MAX];
3937 struct elf_note_info info;
3938 struct elfhdr elf;
3939 struct elf_phdr phdr;
3940 struct rlimit dumpsize;
3941 struct mm_struct *mm = NULL;
3942 off_t offset = 0, data_offset = 0;
3943 int segs = 0;
3944 int fd = -1;
3946 init_note_info(&info);
3948 errno = 0;
3949 getrlimit(RLIMIT_CORE, &dumpsize);
3950 if (dumpsize.rlim_cur == 0)
3951 return 0;
3953 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3954 return (-errno);
3956 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3957 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3958 return (-errno);
3961 * Walk through target process memory mappings and
3962 * set up structure containing this information. After
3963 * this point vma_xxx functions can be used.
3965 if ((mm = vma_init()) == NULL)
3966 goto out;
3968 walk_memory_regions(mm, vma_walker);
3969 segs = vma_get_mapping_count(mm);
3972 * Construct valid coredump ELF header. We also
3973 * add one more segment for notes.
3975 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3976 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3977 goto out;
3979 /* fill in the in-memory version of notes */
3980 if (fill_note_info(&info, signr, env) < 0)
3981 goto out;
3983 offset += sizeof (elf); /* elf header */
3984 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3986 /* write out notes program header */
3987 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3989 offset += info.notes_size;
3990 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3991 goto out;
3994 * ELF specification wants data to start at page boundary so
3995 * we align it here.
3997 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4000 * Write program headers for memory regions mapped in
4001 * the target process.
4003 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4004 (void) memset(&phdr, 0, sizeof (phdr));
4006 phdr.p_type = PT_LOAD;
4007 phdr.p_offset = offset;
4008 phdr.p_vaddr = vma->vma_start;
4009 phdr.p_paddr = 0;
4010 phdr.p_filesz = vma_dump_size(vma);
4011 offset += phdr.p_filesz;
4012 phdr.p_memsz = vma->vma_end - vma->vma_start;
4013 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4014 if (vma->vma_flags & PROT_WRITE)
4015 phdr.p_flags |= PF_W;
4016 if (vma->vma_flags & PROT_EXEC)
4017 phdr.p_flags |= PF_X;
4018 phdr.p_align = ELF_EXEC_PAGESIZE;
4020 bswap_phdr(&phdr, 1);
4021 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4022 goto out;
4027 * Next we write notes just after program headers. No
4028 * alignment needed here.
4030 if (write_note_info(&info, fd) < 0)
4031 goto out;
4033 /* align data to page boundary */
4034 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4035 goto out;
4038 * Finally we can dump process memory into corefile as well.
4040 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4041 abi_ulong addr;
4042 abi_ulong end;
4044 end = vma->vma_start + vma_dump_size(vma);
4046 for (addr = vma->vma_start; addr < end;
4047 addr += TARGET_PAGE_SIZE) {
4048 char page[TARGET_PAGE_SIZE];
4049 int error;
4052 * Read in page from target process memory and
4053 * write it to coredump file.
4055 error = copy_from_user(page, addr, sizeof (page));
4056 if (error != 0) {
4057 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4058 addr);
4059 errno = -error;
4060 goto out;
4062 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4063 goto out;
4067 out:
4068 free_note_info(&info);
4069 if (mm != NULL)
4070 vma_delete(mm);
4071 (void) close(fd);
4073 if (errno != 0)
4074 return (-errno);
4075 return (0);
4077 #endif /* USE_ELF_CORE_DUMP */
4079 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4081 init_thread(regs, infop);