Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / target-sh4 / op_helper.c
blob30f98422957d747e67bff7d063602496cca94c44
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "exec.h"
22 #include "helper.h"
24 static void cpu_restore_state_from_retaddr(void *retaddr)
26 TranslationBlock *tb;
27 unsigned long pc;
29 if (retaddr) {
30 pc = (unsigned long) retaddr;
31 tb = tb_find_pc(pc);
32 if (tb) {
33 /* the PC is inside the translated code. It means that we have
34 a virtual CPU fault */
35 cpu_restore_state(tb, env, pc, NULL);
40 #ifndef CONFIG_USER_ONLY
42 #define MMUSUFFIX _mmu
44 #define SHIFT 0
45 #include "softmmu_template.h"
47 #define SHIFT 1
48 #include "softmmu_template.h"
50 #define SHIFT 2
51 #include "softmmu_template.h"
53 #define SHIFT 3
54 #include "softmmu_template.h"
56 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
58 CPUState *saved_env;
59 int ret;
61 /* XXX: hack to restore env in all cases, even if not called from
62 generated code */
63 saved_env = env;
64 env = cpu_single_env;
65 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
66 if (ret) {
67 /* now we have a real cpu fault */
68 cpu_restore_state_from_retaddr(retaddr);
69 cpu_loop_exit();
71 env = saved_env;
74 #endif
76 void helper_ldtlb(void)
78 #ifdef CONFIG_USER_ONLY
79 /* XXXXX */
80 cpu_abort(env, "Unhandled ldtlb");
81 #else
82 cpu_load_tlb(env);
83 #endif
86 static inline void raise_exception(int index, void *retaddr)
88 env->exception_index = index;
89 cpu_restore_state_from_retaddr(retaddr);
90 cpu_loop_exit();
93 void helper_raise_illegal_instruction(void)
95 raise_exception(0x180, GETPC());
98 void helper_raise_slot_illegal_instruction(void)
100 raise_exception(0x1a0, GETPC());
103 void helper_raise_fpu_disable(void)
105 raise_exception(0x800, GETPC());
108 void helper_raise_slot_fpu_disable(void)
110 raise_exception(0x820, GETPC());
113 void helper_debug(void)
115 env->exception_index = EXCP_DEBUG;
116 cpu_loop_exit();
119 void helper_sleep(uint32_t next_pc)
121 env->halted = 1;
122 env->exception_index = EXCP_HLT;
123 env->pc = next_pc;
124 cpu_loop_exit();
127 void helper_trapa(uint32_t tra)
129 env->tra = tra << 2;
130 raise_exception(0x160, GETPC());
133 void helper_movcal(uint32_t address, uint32_t value)
135 if (cpu_sh4_is_cached (env, address))
137 memory_content *r = malloc (sizeof(memory_content));
138 r->address = address;
139 r->value = value;
140 r->next = NULL;
142 *(env->movcal_backup_tail) = r;
143 env->movcal_backup_tail = &(r->next);
147 void helper_discard_movcal_backup(void)
149 memory_content *current = env->movcal_backup;
151 while(current)
153 memory_content *next = current->next;
154 free (current);
155 env->movcal_backup = current = next;
156 if (current == NULL)
157 env->movcal_backup_tail = &(env->movcal_backup);
161 void helper_ocbi(uint32_t address)
163 memory_content **current = &(env->movcal_backup);
164 while (*current)
166 uint32_t a = (*current)->address;
167 if ((a & ~0x1F) == (address & ~0x1F))
169 memory_content *next = (*current)->next;
170 stl(a, (*current)->value);
172 if (next == NULL)
174 env->movcal_backup_tail = current;
177 free (*current);
178 *current = next;
179 break;
184 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
186 uint32_t tmp0, tmp1;
188 tmp1 = arg0 + arg1;
189 tmp0 = arg1;
190 arg1 = tmp1 + (env->sr & 1);
191 if (tmp0 > tmp1)
192 env->sr |= SR_T;
193 else
194 env->sr &= ~SR_T;
195 if (tmp1 > arg1)
196 env->sr |= SR_T;
197 return arg1;
200 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
202 uint32_t dest, src, ans;
204 if ((int32_t) arg1 >= 0)
205 dest = 0;
206 else
207 dest = 1;
208 if ((int32_t) arg0 >= 0)
209 src = 0;
210 else
211 src = 1;
212 src += dest;
213 arg1 += arg0;
214 if ((int32_t) arg1 >= 0)
215 ans = 0;
216 else
217 ans = 1;
218 ans += dest;
219 if (src == 0 || src == 2) {
220 if (ans == 1)
221 env->sr |= SR_T;
222 else
223 env->sr &= ~SR_T;
224 } else
225 env->sr &= ~SR_T;
226 return arg1;
229 #define T (env->sr & SR_T)
230 #define Q (env->sr & SR_Q ? 1 : 0)
231 #define M (env->sr & SR_M ? 1 : 0)
232 #define SETT env->sr |= SR_T
233 #define CLRT env->sr &= ~SR_T
234 #define SETQ env->sr |= SR_Q
235 #define CLRQ env->sr &= ~SR_Q
236 #define SETM env->sr |= SR_M
237 #define CLRM env->sr &= ~SR_M
239 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
241 uint32_t tmp0, tmp2;
242 uint8_t old_q, tmp1 = 0xff;
244 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
245 old_q = Q;
246 if ((0x80000000 & arg1) != 0)
247 SETQ;
248 else
249 CLRQ;
250 tmp2 = arg0;
251 arg1 <<= 1;
252 arg1 |= T;
253 switch (old_q) {
254 case 0:
255 switch (M) {
256 case 0:
257 tmp0 = arg1;
258 arg1 -= tmp2;
259 tmp1 = arg1 > tmp0;
260 switch (Q) {
261 case 0:
262 if (tmp1)
263 SETQ;
264 else
265 CLRQ;
266 break;
267 case 1:
268 if (tmp1 == 0)
269 SETQ;
270 else
271 CLRQ;
272 break;
274 break;
275 case 1:
276 tmp0 = arg1;
277 arg1 += tmp2;
278 tmp1 = arg1 < tmp0;
279 switch (Q) {
280 case 0:
281 if (tmp1 == 0)
282 SETQ;
283 else
284 CLRQ;
285 break;
286 case 1:
287 if (tmp1)
288 SETQ;
289 else
290 CLRQ;
291 break;
293 break;
295 break;
296 case 1:
297 switch (M) {
298 case 0:
299 tmp0 = arg1;
300 arg1 += tmp2;
301 tmp1 = arg1 < tmp0;
302 switch (Q) {
303 case 0:
304 if (tmp1)
305 SETQ;
306 else
307 CLRQ;
308 break;
309 case 1:
310 if (tmp1 == 0)
311 SETQ;
312 else
313 CLRQ;
314 break;
316 break;
317 case 1:
318 tmp0 = arg1;
319 arg1 -= tmp2;
320 tmp1 = arg1 > tmp0;
321 switch (Q) {
322 case 0:
323 if (tmp1 == 0)
324 SETQ;
325 else
326 CLRQ;
327 break;
328 case 1:
329 if (tmp1)
330 SETQ;
331 else
332 CLRQ;
333 break;
335 break;
337 break;
339 if (Q == M)
340 SETT;
341 else
342 CLRT;
343 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
344 return arg1;
347 void helper_macl(uint32_t arg0, uint32_t arg1)
349 int64_t res;
351 res = ((uint64_t) env->mach << 32) | env->macl;
352 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
353 env->mach = (res >> 32) & 0xffffffff;
354 env->macl = res & 0xffffffff;
355 if (env->sr & SR_S) {
356 if (res < 0)
357 env->mach |= 0xffff0000;
358 else
359 env->mach &= 0x00007fff;
363 void helper_macw(uint32_t arg0, uint32_t arg1)
365 int64_t res;
367 res = ((uint64_t) env->mach << 32) | env->macl;
368 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
369 env->mach = (res >> 32) & 0xffffffff;
370 env->macl = res & 0xffffffff;
371 if (env->sr & SR_S) {
372 if (res < -0x80000000) {
373 env->mach = 1;
374 env->macl = 0x80000000;
375 } else if (res > 0x000000007fffffff) {
376 env->mach = 1;
377 env->macl = 0x7fffffff;
382 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
384 uint32_t tmp0, tmp1;
386 tmp1 = arg1 - arg0;
387 tmp0 = arg1;
388 arg1 = tmp1 - (env->sr & SR_T);
389 if (tmp0 < tmp1)
390 env->sr |= SR_T;
391 else
392 env->sr &= ~SR_T;
393 if (tmp1 < arg1)
394 env->sr |= SR_T;
395 return arg1;
398 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
400 int32_t dest, src, ans;
402 if ((int32_t) arg1 >= 0)
403 dest = 0;
404 else
405 dest = 1;
406 if ((int32_t) arg0 >= 0)
407 src = 0;
408 else
409 src = 1;
410 src += dest;
411 arg1 -= arg0;
412 if ((int32_t) arg1 >= 0)
413 ans = 0;
414 else
415 ans = 1;
416 ans += dest;
417 if (src == 1) {
418 if (ans == 1)
419 env->sr |= SR_T;
420 else
421 env->sr &= ~SR_T;
422 } else
423 env->sr &= ~SR_T;
424 return arg1;
427 static inline void set_t(void)
429 env->sr |= SR_T;
432 static inline void clr_t(void)
434 env->sr &= ~SR_T;
437 void helper_ld_fpscr(uint32_t val)
439 env->fpscr = val & FPSCR_MASK;
440 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
441 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
442 } else {
443 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
445 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
448 static void update_fpscr(void *retaddr)
450 int xcpt, cause, enable;
452 xcpt = get_float_exception_flags(&env->fp_status);
454 /* Clear the flag entries */
455 env->fpscr &= ~FPSCR_FLAG_MASK;
457 if (unlikely(xcpt)) {
458 if (xcpt & float_flag_invalid) {
459 env->fpscr |= FPSCR_FLAG_V;
461 if (xcpt & float_flag_divbyzero) {
462 env->fpscr |= FPSCR_FLAG_Z;
464 if (xcpt & float_flag_overflow) {
465 env->fpscr |= FPSCR_FLAG_O;
467 if (xcpt & float_flag_underflow) {
468 env->fpscr |= FPSCR_FLAG_U;
470 if (xcpt & float_flag_inexact) {
471 env->fpscr |= FPSCR_FLAG_I;
474 /* Accumulate in cause entries */
475 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
476 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
478 /* Generate an exception if enabled */
479 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
480 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
481 if (cause & enable) {
482 cpu_restore_state_from_retaddr(retaddr);
483 env->exception_index = 0x120;
484 cpu_loop_exit();
489 uint32_t helper_fabs_FT(uint32_t t0)
491 CPU_FloatU f;
492 f.l = t0;
493 f.f = float32_abs(f.f);
494 return f.l;
497 uint64_t helper_fabs_DT(uint64_t t0)
499 CPU_DoubleU d;
500 d.ll = t0;
501 d.d = float64_abs(d.d);
502 return d.ll;
505 uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
507 CPU_FloatU f0, f1;
508 f0.l = t0;
509 f1.l = t1;
510 set_float_exception_flags(0, &env->fp_status);
511 f0.f = float32_add(f0.f, f1.f, &env->fp_status);
512 update_fpscr(GETPC());
513 return f0.l;
516 uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
518 CPU_DoubleU d0, d1;
519 d0.ll = t0;
520 d1.ll = t1;
521 set_float_exception_flags(0, &env->fp_status);
522 d0.d = float64_add(d0.d, d1.d, &env->fp_status);
523 update_fpscr(GETPC());
524 return d0.ll;
527 void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
529 CPU_FloatU f0, f1;
530 int relation;
531 f0.l = t0;
532 f1.l = t1;
534 set_float_exception_flags(0, &env->fp_status);
535 relation = float32_compare(f0.f, f1.f, &env->fp_status);
536 if (unlikely(relation == float_relation_unordered)) {
537 update_fpscr(GETPC());
538 } else if (relation == float_relation_equal) {
539 set_t();
540 } else {
541 clr_t();
545 void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
547 CPU_DoubleU d0, d1;
548 int relation;
549 d0.ll = t0;
550 d1.ll = t1;
552 set_float_exception_flags(0, &env->fp_status);
553 relation = float64_compare(d0.d, d1.d, &env->fp_status);
554 if (unlikely(relation == float_relation_unordered)) {
555 update_fpscr(GETPC());
556 } else if (relation == float_relation_equal) {
557 set_t();
558 } else {
559 clr_t();
563 void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
565 CPU_FloatU f0, f1;
566 int relation;
567 f0.l = t0;
568 f1.l = t1;
570 set_float_exception_flags(0, &env->fp_status);
571 relation = float32_compare(f0.f, f1.f, &env->fp_status);
572 if (unlikely(relation == float_relation_unordered)) {
573 update_fpscr(GETPC());
574 } else if (relation == float_relation_greater) {
575 set_t();
576 } else {
577 clr_t();
581 void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
583 CPU_DoubleU d0, d1;
584 int relation;
585 d0.ll = t0;
586 d1.ll = t1;
588 set_float_exception_flags(0, &env->fp_status);
589 relation = float64_compare(d0.d, d1.d, &env->fp_status);
590 if (unlikely(relation == float_relation_unordered)) {
591 update_fpscr(GETPC());
592 } else if (relation == float_relation_greater) {
593 set_t();
594 } else {
595 clr_t();
599 uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
601 CPU_DoubleU d;
602 CPU_FloatU f;
603 f.l = t0;
604 set_float_exception_flags(0, &env->fp_status);
605 d.d = float32_to_float64(f.f, &env->fp_status);
606 update_fpscr(GETPC());
607 return d.ll;
610 uint32_t helper_fcnvds_DT_FT(uint64_t t0)
612 CPU_DoubleU d;
613 CPU_FloatU f;
614 d.ll = t0;
615 set_float_exception_flags(0, &env->fp_status);
616 f.f = float64_to_float32(d.d, &env->fp_status);
617 update_fpscr(GETPC());
618 return f.l;
621 uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
623 CPU_FloatU f0, f1;
624 f0.l = t0;
625 f1.l = t1;
626 set_float_exception_flags(0, &env->fp_status);
627 f0.f = float32_div(f0.f, f1.f, &env->fp_status);
628 update_fpscr(GETPC());
629 return f0.l;
632 uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
634 CPU_DoubleU d0, d1;
635 d0.ll = t0;
636 d1.ll = t1;
637 set_float_exception_flags(0, &env->fp_status);
638 d0.d = float64_div(d0.d, d1.d, &env->fp_status);
639 update_fpscr(GETPC());
640 return d0.ll;
643 uint32_t helper_float_FT(uint32_t t0)
645 CPU_FloatU f;
647 set_float_exception_flags(0, &env->fp_status);
648 f.f = int32_to_float32(t0, &env->fp_status);
649 update_fpscr(GETPC());
651 return f.l;
654 uint64_t helper_float_DT(uint32_t t0)
656 CPU_DoubleU d;
657 set_float_exception_flags(0, &env->fp_status);
658 d.d = int32_to_float64(t0, &env->fp_status);
659 update_fpscr(GETPC());
660 return d.ll;
663 uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
665 CPU_FloatU f0, f1, f2;
666 f0.l = t0;
667 f1.l = t1;
668 f2.l = t2;
669 set_float_exception_flags(0, &env->fp_status);
670 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
671 f0.f = float32_add(f0.f, f2.f, &env->fp_status);
672 update_fpscr(GETPC());
674 return f0.l;
677 uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
679 CPU_FloatU f0, f1;
680 f0.l = t0;
681 f1.l = t1;
682 set_float_exception_flags(0, &env->fp_status);
683 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
684 update_fpscr(GETPC());
685 return f0.l;
688 uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
690 CPU_DoubleU d0, d1;
691 d0.ll = t0;
692 d1.ll = t1;
693 set_float_exception_flags(0, &env->fp_status);
694 d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
695 update_fpscr(GETPC());
697 return d0.ll;
700 uint32_t helper_fneg_T(uint32_t t0)
702 CPU_FloatU f;
703 f.l = t0;
704 f.f = float32_chs(f.f);
705 return f.l;
708 uint32_t helper_fsqrt_FT(uint32_t t0)
710 CPU_FloatU f;
711 f.l = t0;
712 set_float_exception_flags(0, &env->fp_status);
713 f.f = float32_sqrt(f.f, &env->fp_status);
714 update_fpscr(GETPC());
715 return f.l;
718 uint64_t helper_fsqrt_DT(uint64_t t0)
720 CPU_DoubleU d;
721 d.ll = t0;
722 set_float_exception_flags(0, &env->fp_status);
723 d.d = float64_sqrt(d.d, &env->fp_status);
724 update_fpscr(GETPC());
725 return d.ll;
728 uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
730 CPU_FloatU f0, f1;
731 f0.l = t0;
732 f1.l = t1;
733 set_float_exception_flags(0, &env->fp_status);
734 f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
735 update_fpscr(GETPC());
736 return f0.l;
739 uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
741 CPU_DoubleU d0, d1;
743 d0.ll = t0;
744 d1.ll = t1;
745 set_float_exception_flags(0, &env->fp_status);
746 d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
747 update_fpscr(GETPC());
748 return d0.ll;
751 uint32_t helper_ftrc_FT(uint32_t t0)
753 CPU_FloatU f;
754 uint32_t ret;
755 f.l = t0;
756 set_float_exception_flags(0, &env->fp_status);
757 ret = float32_to_int32_round_to_zero(f.f, &env->fp_status);
758 update_fpscr(GETPC());
759 return ret;
762 uint32_t helper_ftrc_DT(uint64_t t0)
764 CPU_DoubleU d;
765 uint32_t ret;
766 d.ll = t0;
767 set_float_exception_flags(0, &env->fp_status);
768 ret = float64_to_int32_round_to_zero(d.d, &env->fp_status);
769 update_fpscr(GETPC());
770 return ret;
773 void helper_fipr(uint32_t m, uint32_t n)
775 int bank, i;
776 float32 r, p;
778 bank = (env->sr & FPSCR_FR) ? 16 : 0;
779 r = float32_zero;
780 set_float_exception_flags(0, &env->fp_status);
782 for (i = 0 ; i < 4 ; i++) {
783 p = float32_mul(env->fregs[bank + m + i],
784 env->fregs[bank + n + i],
785 &env->fp_status);
786 r = float32_add(r, p, &env->fp_status);
788 update_fpscr(GETPC());
790 env->fregs[bank + n + 3] = r;
793 void helper_ftrv(uint32_t n)
795 int bank_matrix, bank_vector;
796 int i, j;
797 float32 r[4];
798 float32 p;
800 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
801 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
802 set_float_exception_flags(0, &env->fp_status);
803 for (i = 0 ; i < 4 ; i++) {
804 r[i] = float32_zero;
805 for (j = 0 ; j < 4 ; j++) {
806 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
807 env->fregs[bank_vector + j],
808 &env->fp_status);
809 r[i] = float32_add(r[i], p, &env->fp_status);
812 update_fpscr(GETPC());
814 for (i = 0 ; i < 4 ; i++) {
815 env->fregs[bank_vector + i] = r[i];