target-arm: Use attribute info to handle user-only watchpoints
[qemu.git] / exec.c
blob53d59bb080fcd94c827908623c54df473381ec0f
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifndef _WIN32
21 #include <sys/types.h>
22 #include <sys/mman.h>
23 #endif
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "tcg.h"
28 #include "hw/hw.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #endif
32 #include "hw/qdev.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "exec/cputlb.h"
52 #include "translate-all.h"
54 #include "exec/memory-internal.h"
55 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 //#define DEBUG_SUBPAGE
61 #if !defined(CONFIG_USER_ONLY)
62 static bool in_migration;
64 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
65 * are protected by the ramlist lock.
67 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
69 static MemoryRegion *system_memory;
70 static MemoryRegion *system_io;
72 AddressSpace address_space_io;
73 AddressSpace address_space_memory;
75 MemoryRegion io_mem_rom, io_mem_notdirty;
76 static MemoryRegion io_mem_unassigned;
78 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
79 #define RAM_PREALLOC (1 << 0)
81 /* RAM is mmap-ed with MAP_SHARED */
82 #define RAM_SHARED (1 << 1)
84 /* Only a portion of RAM (used_length) is actually used, and migrated.
85 * This used_length size can change across reboots.
87 #define RAM_RESIZEABLE (1 << 2)
89 #endif
91 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
92 /* current CPU in the current thread. It is only valid inside
93 cpu_exec() */
94 DEFINE_TLS(CPUState *, current_cpu);
95 /* 0 = Do not count executed instructions.
96 1 = Precise instruction counting.
97 2 = Adaptive rate instruction counting. */
98 int use_icount;
100 #if !defined(CONFIG_USER_ONLY)
102 typedef struct PhysPageEntry PhysPageEntry;
104 struct PhysPageEntry {
105 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
106 uint32_t skip : 6;
107 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
108 uint32_t ptr : 26;
111 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113 /* Size of the L2 (and L3, etc) page tables. */
114 #define ADDR_SPACE_BITS 64
116 #define P_L2_BITS 9
117 #define P_L2_SIZE (1 << P_L2_BITS)
119 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121 typedef PhysPageEntry Node[P_L2_SIZE];
123 typedef struct PhysPageMap {
124 struct rcu_head rcu;
126 unsigned sections_nb;
127 unsigned sections_nb_alloc;
128 unsigned nodes_nb;
129 unsigned nodes_nb_alloc;
130 Node *nodes;
131 MemoryRegionSection *sections;
132 } PhysPageMap;
134 struct AddressSpaceDispatch {
135 struct rcu_head rcu;
137 /* This is a multi-level map on the physical address space.
138 * The bottom level has pointers to MemoryRegionSections.
140 PhysPageEntry phys_map;
141 PhysPageMap map;
142 AddressSpace *as;
145 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
146 typedef struct subpage_t {
147 MemoryRegion iomem;
148 AddressSpace *as;
149 hwaddr base;
150 uint16_t sub_section[TARGET_PAGE_SIZE];
151 } subpage_t;
153 #define PHYS_SECTION_UNASSIGNED 0
154 #define PHYS_SECTION_NOTDIRTY 1
155 #define PHYS_SECTION_ROM 2
156 #define PHYS_SECTION_WATCH 3
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_commit(MemoryListener *listener);
162 static MemoryRegion io_mem_watch;
163 #endif
165 #if !defined(CONFIG_USER_ONLY)
167 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
169 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
171 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
172 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
176 static uint32_t phys_map_node_alloc(PhysPageMap *map)
178 unsigned i;
179 uint32_t ret;
181 ret = map->nodes_nb++;
182 assert(ret != PHYS_MAP_NODE_NIL);
183 assert(ret != map->nodes_nb_alloc);
184 for (i = 0; i < P_L2_SIZE; ++i) {
185 map->nodes[ret][i].skip = 1;
186 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
188 return ret;
191 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
192 hwaddr *index, hwaddr *nb, uint16_t leaf,
193 int level)
195 PhysPageEntry *p;
196 int i;
197 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
199 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
200 lp->ptr = phys_map_node_alloc(map);
201 p = map->nodes[lp->ptr];
202 if (level == 0) {
203 for (i = 0; i < P_L2_SIZE; i++) {
204 p[i].skip = 0;
205 p[i].ptr = PHYS_SECTION_UNASSIGNED;
208 } else {
209 p = map->nodes[lp->ptr];
211 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
213 while (*nb && lp < &p[P_L2_SIZE]) {
214 if ((*index & (step - 1)) == 0 && *nb >= step) {
215 lp->skip = 0;
216 lp->ptr = leaf;
217 *index += step;
218 *nb -= step;
219 } else {
220 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
222 ++lp;
226 static void phys_page_set(AddressSpaceDispatch *d,
227 hwaddr index, hwaddr nb,
228 uint16_t leaf)
230 /* Wildly overreserve - it doesn't matter much. */
231 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
233 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
236 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
237 * and update our entry so we can skip it and go directly to the destination.
239 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
241 unsigned valid_ptr = P_L2_SIZE;
242 int valid = 0;
243 PhysPageEntry *p;
244 int i;
246 if (lp->ptr == PHYS_MAP_NODE_NIL) {
247 return;
250 p = nodes[lp->ptr];
251 for (i = 0; i < P_L2_SIZE; i++) {
252 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
253 continue;
256 valid_ptr = i;
257 valid++;
258 if (p[i].skip) {
259 phys_page_compact(&p[i], nodes, compacted);
263 /* We can only compress if there's only one child. */
264 if (valid != 1) {
265 return;
268 assert(valid_ptr < P_L2_SIZE);
270 /* Don't compress if it won't fit in the # of bits we have. */
271 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
272 return;
275 lp->ptr = p[valid_ptr].ptr;
276 if (!p[valid_ptr].skip) {
277 /* If our only child is a leaf, make this a leaf. */
278 /* By design, we should have made this node a leaf to begin with so we
279 * should never reach here.
280 * But since it's so simple to handle this, let's do it just in case we
281 * change this rule.
283 lp->skip = 0;
284 } else {
285 lp->skip += p[valid_ptr].skip;
289 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
291 DECLARE_BITMAP(compacted, nodes_nb);
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
298 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
299 Node *nodes, MemoryRegionSection *sections)
301 PhysPageEntry *p;
302 hwaddr index = addr >> TARGET_PAGE_BITS;
303 int i;
305 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
306 if (lp.ptr == PHYS_MAP_NODE_NIL) {
307 return &sections[PHYS_SECTION_UNASSIGNED];
309 p = nodes[lp.ptr];
310 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
313 if (sections[lp.ptr].size.hi ||
314 range_covers_byte(sections[lp.ptr].offset_within_address_space,
315 sections[lp.ptr].size.lo, addr)) {
316 return &sections[lp.ptr];
317 } else {
318 return &sections[PHYS_SECTION_UNASSIGNED];
322 bool memory_region_is_unassigned(MemoryRegion *mr)
324 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
325 && mr != &io_mem_watch;
328 /* Called from RCU critical section */
329 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
330 hwaddr addr,
331 bool resolve_subpage)
333 MemoryRegionSection *section;
334 subpage_t *subpage;
336 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
337 if (resolve_subpage && section->mr->subpage) {
338 subpage = container_of(section->mr, subpage_t, iomem);
339 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
341 return section;
344 /* Called from RCU critical section */
345 static MemoryRegionSection *
346 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
347 hwaddr *plen, bool resolve_subpage)
349 MemoryRegionSection *section;
350 Int128 diff;
352 section = address_space_lookup_region(d, addr, resolve_subpage);
353 /* Compute offset within MemoryRegionSection */
354 addr -= section->offset_within_address_space;
356 /* Compute offset within MemoryRegion */
357 *xlat = addr + section->offset_within_region;
359 diff = int128_sub(section->mr->size, int128_make64(addr));
360 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
361 return section;
364 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
366 if (memory_region_is_ram(mr)) {
367 return !(is_write && mr->readonly);
369 if (memory_region_is_romd(mr)) {
370 return !is_write;
373 return false;
376 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
377 hwaddr *xlat, hwaddr *plen,
378 bool is_write)
380 IOMMUTLBEntry iotlb;
381 MemoryRegionSection *section;
382 MemoryRegion *mr;
383 hwaddr len = *plen;
385 rcu_read_lock();
386 for (;;) {
387 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
388 section = address_space_translate_internal(d, addr, &addr, plen, true);
389 mr = section->mr;
391 if (!mr->iommu_ops) {
392 break;
395 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
396 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
397 | (addr & iotlb.addr_mask));
398 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
399 if (!(iotlb.perm & (1 << is_write))) {
400 mr = &io_mem_unassigned;
401 break;
404 as = iotlb.target_as;
407 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
408 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
409 len = MIN(page, len);
412 *plen = len;
413 *xlat = addr;
414 rcu_read_unlock();
415 return mr;
418 /* Called from RCU critical section */
419 MemoryRegionSection *
420 address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
421 hwaddr *xlat, hwaddr *plen)
423 MemoryRegionSection *section;
424 section = address_space_translate_internal(cpu->memory_dispatch,
425 addr, xlat, plen, false);
427 assert(!section->mr->iommu_ops);
428 return section;
430 #endif
432 void cpu_exec_init_all(void)
434 #if !defined(CONFIG_USER_ONLY)
435 qemu_mutex_init(&ram_list.mutex);
436 memory_map_init();
437 io_mem_init();
438 #endif
441 #if !defined(CONFIG_USER_ONLY)
443 static int cpu_common_post_load(void *opaque, int version_id)
445 CPUState *cpu = opaque;
447 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
448 version_id is increased. */
449 cpu->interrupt_request &= ~0x01;
450 tlb_flush(cpu, 1);
452 return 0;
455 static int cpu_common_pre_load(void *opaque)
457 CPUState *cpu = opaque;
459 cpu->exception_index = -1;
461 return 0;
464 static bool cpu_common_exception_index_needed(void *opaque)
466 CPUState *cpu = opaque;
468 return tcg_enabled() && cpu->exception_index != -1;
471 static const VMStateDescription vmstate_cpu_common_exception_index = {
472 .name = "cpu_common/exception_index",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
481 const VMStateDescription vmstate_cpu_common = {
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
485 .pre_load = cpu_common_pre_load,
486 .post_load = cpu_common_post_load,
487 .fields = (VMStateField[]) {
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
490 VMSTATE_END_OF_LIST()
492 .subsections = (VMStateSubsection[]) {
494 .vmsd = &vmstate_cpu_common_exception_index,
495 .needed = cpu_common_exception_index_needed,
496 } , {
497 /* empty */
502 #endif
504 CPUState *qemu_get_cpu(int index)
506 CPUState *cpu;
508 CPU_FOREACH(cpu) {
509 if (cpu->cpu_index == index) {
510 return cpu;
514 return NULL;
517 #if !defined(CONFIG_USER_ONLY)
518 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
520 /* We only support one address space per cpu at the moment. */
521 assert(cpu->as == as);
523 if (cpu->tcg_as_listener) {
524 memory_listener_unregister(cpu->tcg_as_listener);
525 } else {
526 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
528 cpu->tcg_as_listener->commit = tcg_commit;
529 memory_listener_register(cpu->tcg_as_listener, as);
531 #endif
533 void cpu_exec_init(CPUArchState *env)
535 CPUState *cpu = ENV_GET_CPU(env);
536 CPUClass *cc = CPU_GET_CLASS(cpu);
537 CPUState *some_cpu;
538 int cpu_index;
540 #if defined(CONFIG_USER_ONLY)
541 cpu_list_lock();
542 #endif
543 cpu_index = 0;
544 CPU_FOREACH(some_cpu) {
545 cpu_index++;
547 cpu->cpu_index = cpu_index;
548 cpu->numa_node = 0;
549 QTAILQ_INIT(&cpu->breakpoints);
550 QTAILQ_INIT(&cpu->watchpoints);
551 #ifndef CONFIG_USER_ONLY
552 cpu->as = &address_space_memory;
553 cpu->thread_id = qemu_get_thread_id();
554 cpu_reload_memory_map(cpu);
555 #endif
556 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
557 #if defined(CONFIG_USER_ONLY)
558 cpu_list_unlock();
559 #endif
560 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
561 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
563 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
564 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
565 cpu_save, cpu_load, env);
566 assert(cc->vmsd == NULL);
567 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
568 #endif
569 if (cc->vmsd != NULL) {
570 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
574 #if defined(CONFIG_USER_ONLY)
575 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
577 tb_invalidate_phys_page_range(pc, pc + 1, 0);
579 #else
580 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
582 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
583 if (phys != -1) {
584 tb_invalidate_phys_addr(cpu->as,
585 phys | (pc & ~TARGET_PAGE_MASK));
588 #endif
590 #if defined(CONFIG_USER_ONLY)
591 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
596 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
597 int flags)
599 return -ENOSYS;
602 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
606 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
607 int flags, CPUWatchpoint **watchpoint)
609 return -ENOSYS;
611 #else
612 /* Add a watchpoint. */
613 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
614 int flags, CPUWatchpoint **watchpoint)
616 CPUWatchpoint *wp;
618 /* forbid ranges which are empty or run off the end of the address space */
619 if (len == 0 || (addr + len - 1) < addr) {
620 error_report("tried to set invalid watchpoint at %"
621 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
622 return -EINVAL;
624 wp = g_malloc(sizeof(*wp));
626 wp->vaddr = addr;
627 wp->len = len;
628 wp->flags = flags;
630 /* keep all GDB-injected watchpoints in front */
631 if (flags & BP_GDB) {
632 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
633 } else {
634 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
637 tlb_flush_page(cpu, addr);
639 if (watchpoint)
640 *watchpoint = wp;
641 return 0;
644 /* Remove a specific watchpoint. */
645 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
646 int flags)
648 CPUWatchpoint *wp;
650 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
651 if (addr == wp->vaddr && len == wp->len
652 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
653 cpu_watchpoint_remove_by_ref(cpu, wp);
654 return 0;
657 return -ENOENT;
660 /* Remove a specific watchpoint by reference. */
661 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
663 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
665 tlb_flush_page(cpu, watchpoint->vaddr);
667 g_free(watchpoint);
670 /* Remove all matching watchpoints. */
671 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
673 CPUWatchpoint *wp, *next;
675 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
676 if (wp->flags & mask) {
677 cpu_watchpoint_remove_by_ref(cpu, wp);
682 /* Return true if this watchpoint address matches the specified
683 * access (ie the address range covered by the watchpoint overlaps
684 * partially or completely with the address range covered by the
685 * access).
687 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
688 vaddr addr,
689 vaddr len)
691 /* We know the lengths are non-zero, but a little caution is
692 * required to avoid errors in the case where the range ends
693 * exactly at the top of the address space and so addr + len
694 * wraps round to zero.
696 vaddr wpend = wp->vaddr + wp->len - 1;
697 vaddr addrend = addr + len - 1;
699 return !(addr > wpend || wp->vaddr > addrend);
702 #endif
704 /* Add a breakpoint. */
705 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
706 CPUBreakpoint **breakpoint)
708 CPUBreakpoint *bp;
710 bp = g_malloc(sizeof(*bp));
712 bp->pc = pc;
713 bp->flags = flags;
715 /* keep all GDB-injected breakpoints in front */
716 if (flags & BP_GDB) {
717 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
718 } else {
719 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
722 breakpoint_invalidate(cpu, pc);
724 if (breakpoint) {
725 *breakpoint = bp;
727 return 0;
730 /* Remove a specific breakpoint. */
731 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
733 CPUBreakpoint *bp;
735 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
736 if (bp->pc == pc && bp->flags == flags) {
737 cpu_breakpoint_remove_by_ref(cpu, bp);
738 return 0;
741 return -ENOENT;
744 /* Remove a specific breakpoint by reference. */
745 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
747 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
749 breakpoint_invalidate(cpu, breakpoint->pc);
751 g_free(breakpoint);
754 /* Remove all matching breakpoints. */
755 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
757 CPUBreakpoint *bp, *next;
759 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
760 if (bp->flags & mask) {
761 cpu_breakpoint_remove_by_ref(cpu, bp);
766 /* enable or disable single step mode. EXCP_DEBUG is returned by the
767 CPU loop after each instruction */
768 void cpu_single_step(CPUState *cpu, int enabled)
770 if (cpu->singlestep_enabled != enabled) {
771 cpu->singlestep_enabled = enabled;
772 if (kvm_enabled()) {
773 kvm_update_guest_debug(cpu, 0);
774 } else {
775 /* must flush all the translated code to avoid inconsistencies */
776 /* XXX: only flush what is necessary */
777 CPUArchState *env = cpu->env_ptr;
778 tb_flush(env);
783 void cpu_abort(CPUState *cpu, const char *fmt, ...)
785 va_list ap;
786 va_list ap2;
788 va_start(ap, fmt);
789 va_copy(ap2, ap);
790 fprintf(stderr, "qemu: fatal: ");
791 vfprintf(stderr, fmt, ap);
792 fprintf(stderr, "\n");
793 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
794 if (qemu_log_enabled()) {
795 qemu_log("qemu: fatal: ");
796 qemu_log_vprintf(fmt, ap2);
797 qemu_log("\n");
798 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
799 qemu_log_flush();
800 qemu_log_close();
802 va_end(ap2);
803 va_end(ap);
804 #if defined(CONFIG_USER_ONLY)
806 struct sigaction act;
807 sigfillset(&act.sa_mask);
808 act.sa_handler = SIG_DFL;
809 sigaction(SIGABRT, &act, NULL);
811 #endif
812 abort();
815 #if !defined(CONFIG_USER_ONLY)
816 /* Called from RCU critical section */
817 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
819 RAMBlock *block;
821 block = atomic_rcu_read(&ram_list.mru_block);
822 if (block && addr - block->offset < block->max_length) {
823 goto found;
825 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
826 if (addr - block->offset < block->max_length) {
827 goto found;
831 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
832 abort();
834 found:
835 /* It is safe to write mru_block outside the iothread lock. This
836 * is what happens:
838 * mru_block = xxx
839 * rcu_read_unlock()
840 * xxx removed from list
841 * rcu_read_lock()
842 * read mru_block
843 * mru_block = NULL;
844 * call_rcu(reclaim_ramblock, xxx);
845 * rcu_read_unlock()
847 * atomic_rcu_set is not needed here. The block was already published
848 * when it was placed into the list. Here we're just making an extra
849 * copy of the pointer.
851 ram_list.mru_block = block;
852 return block;
855 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
857 ram_addr_t start1;
858 RAMBlock *block;
859 ram_addr_t end;
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
864 rcu_read_lock();
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868 cpu_tlb_reset_dirty_all(start1, length);
869 rcu_read_unlock();
872 /* Note: start and end must be within the same ram block. */
873 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
874 unsigned client)
876 if (length == 0)
877 return;
878 cpu_physical_memory_clear_dirty_range_type(start, length, client);
880 if (tcg_enabled()) {
881 tlb_reset_dirty_range_all(start, length);
885 static void cpu_physical_memory_set_dirty_tracking(bool enable)
887 in_migration = enable;
890 /* Called from RCU critical section */
891 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
892 MemoryRegionSection *section,
893 target_ulong vaddr,
894 hwaddr paddr, hwaddr xlat,
895 int prot,
896 target_ulong *address)
898 hwaddr iotlb;
899 CPUWatchpoint *wp;
901 if (memory_region_is_ram(section->mr)) {
902 /* Normal RAM. */
903 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
904 + xlat;
905 if (!section->readonly) {
906 iotlb |= PHYS_SECTION_NOTDIRTY;
907 } else {
908 iotlb |= PHYS_SECTION_ROM;
910 } else {
911 iotlb = section - section->address_space->dispatch->map.sections;
912 iotlb += xlat;
915 /* Make accesses to pages with watchpoints go via the
916 watchpoint trap routines. */
917 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
918 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
919 /* Avoid trapping reads of pages with a write breakpoint. */
920 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
921 iotlb = PHYS_SECTION_WATCH + paddr;
922 *address |= TLB_MMIO;
923 break;
928 return iotlb;
930 #endif /* defined(CONFIG_USER_ONLY) */
932 #if !defined(CONFIG_USER_ONLY)
934 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
935 uint16_t section);
936 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
938 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
939 qemu_anon_ram_alloc;
942 * Set a custom physical guest memory alloator.
943 * Accelerators with unusual needs may need this. Hopefully, we can
944 * get rid of it eventually.
946 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
948 phys_mem_alloc = alloc;
951 static uint16_t phys_section_add(PhysPageMap *map,
952 MemoryRegionSection *section)
954 /* The physical section number is ORed with a page-aligned
955 * pointer to produce the iotlb entries. Thus it should
956 * never overflow into the page-aligned value.
958 assert(map->sections_nb < TARGET_PAGE_SIZE);
960 if (map->sections_nb == map->sections_nb_alloc) {
961 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
962 map->sections = g_renew(MemoryRegionSection, map->sections,
963 map->sections_nb_alloc);
965 map->sections[map->sections_nb] = *section;
966 memory_region_ref(section->mr);
967 return map->sections_nb++;
970 static void phys_section_destroy(MemoryRegion *mr)
972 memory_region_unref(mr);
974 if (mr->subpage) {
975 subpage_t *subpage = container_of(mr, subpage_t, iomem);
976 object_unref(OBJECT(&subpage->iomem));
977 g_free(subpage);
981 static void phys_sections_free(PhysPageMap *map)
983 while (map->sections_nb > 0) {
984 MemoryRegionSection *section = &map->sections[--map->sections_nb];
985 phys_section_destroy(section->mr);
987 g_free(map->sections);
988 g_free(map->nodes);
991 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
993 subpage_t *subpage;
994 hwaddr base = section->offset_within_address_space
995 & TARGET_PAGE_MASK;
996 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
997 d->map.nodes, d->map.sections);
998 MemoryRegionSection subsection = {
999 .offset_within_address_space = base,
1000 .size = int128_make64(TARGET_PAGE_SIZE),
1002 hwaddr start, end;
1004 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1006 if (!(existing->mr->subpage)) {
1007 subpage = subpage_init(d->as, base);
1008 subsection.address_space = d->as;
1009 subsection.mr = &subpage->iomem;
1010 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1011 phys_section_add(&d->map, &subsection));
1012 } else {
1013 subpage = container_of(existing->mr, subpage_t, iomem);
1015 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1016 end = start + int128_get64(section->size) - 1;
1017 subpage_register(subpage, start, end,
1018 phys_section_add(&d->map, section));
1022 static void register_multipage(AddressSpaceDispatch *d,
1023 MemoryRegionSection *section)
1025 hwaddr start_addr = section->offset_within_address_space;
1026 uint16_t section_index = phys_section_add(&d->map, section);
1027 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1028 TARGET_PAGE_BITS));
1030 assert(num_pages);
1031 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1034 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1036 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1037 AddressSpaceDispatch *d = as->next_dispatch;
1038 MemoryRegionSection now = *section, remain = *section;
1039 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1041 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1042 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1043 - now.offset_within_address_space;
1045 now.size = int128_min(int128_make64(left), now.size);
1046 register_subpage(d, &now);
1047 } else {
1048 now.size = int128_zero();
1050 while (int128_ne(remain.size, now.size)) {
1051 remain.size = int128_sub(remain.size, now.size);
1052 remain.offset_within_address_space += int128_get64(now.size);
1053 remain.offset_within_region += int128_get64(now.size);
1054 now = remain;
1055 if (int128_lt(remain.size, page_size)) {
1056 register_subpage(d, &now);
1057 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1058 now.size = page_size;
1059 register_subpage(d, &now);
1060 } else {
1061 now.size = int128_and(now.size, int128_neg(page_size));
1062 register_multipage(d, &now);
1067 void qemu_flush_coalesced_mmio_buffer(void)
1069 if (kvm_enabled())
1070 kvm_flush_coalesced_mmio_buffer();
1073 void qemu_mutex_lock_ramlist(void)
1075 qemu_mutex_lock(&ram_list.mutex);
1078 void qemu_mutex_unlock_ramlist(void)
1080 qemu_mutex_unlock(&ram_list.mutex);
1083 #ifdef __linux__
1085 #include <sys/vfs.h>
1087 #define HUGETLBFS_MAGIC 0x958458f6
1089 static long gethugepagesize(const char *path, Error **errp)
1091 struct statfs fs;
1092 int ret;
1094 do {
1095 ret = statfs(path, &fs);
1096 } while (ret != 0 && errno == EINTR);
1098 if (ret != 0) {
1099 error_setg_errno(errp, errno, "failed to get page size of file %s",
1100 path);
1101 return 0;
1104 if (fs.f_type != HUGETLBFS_MAGIC)
1105 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
1107 return fs.f_bsize;
1110 static void *file_ram_alloc(RAMBlock *block,
1111 ram_addr_t memory,
1112 const char *path,
1113 Error **errp)
1115 char *filename;
1116 char *sanitized_name;
1117 char *c;
1118 void *area = NULL;
1119 int fd;
1120 uint64_t hpagesize;
1121 Error *local_err = NULL;
1123 hpagesize = gethugepagesize(path, &local_err);
1124 if (local_err) {
1125 error_propagate(errp, local_err);
1126 goto error;
1128 block->mr->align = hpagesize;
1130 if (memory < hpagesize) {
1131 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1132 "or larger than huge page size 0x%" PRIx64,
1133 memory, hpagesize);
1134 goto error;
1137 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1138 error_setg(errp,
1139 "host lacks kvm mmu notifiers, -mem-path unsupported");
1140 goto error;
1143 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1144 sanitized_name = g_strdup(memory_region_name(block->mr));
1145 for (c = sanitized_name; *c != '\0'; c++) {
1146 if (*c == '/')
1147 *c = '_';
1150 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1151 sanitized_name);
1152 g_free(sanitized_name);
1154 fd = mkstemp(filename);
1155 if (fd < 0) {
1156 error_setg_errno(errp, errno,
1157 "unable to create backing store for hugepages");
1158 g_free(filename);
1159 goto error;
1161 unlink(filename);
1162 g_free(filename);
1164 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1167 * ftruncate is not supported by hugetlbfs in older
1168 * hosts, so don't bother bailing out on errors.
1169 * If anything goes wrong with it under other filesystems,
1170 * mmap will fail.
1172 if (ftruncate(fd, memory)) {
1173 perror("ftruncate");
1176 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1177 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1178 fd, 0);
1179 if (area == MAP_FAILED) {
1180 error_setg_errno(errp, errno,
1181 "unable to map backing store for hugepages");
1182 close(fd);
1183 goto error;
1186 if (mem_prealloc) {
1187 os_mem_prealloc(fd, area, memory);
1190 block->fd = fd;
1191 return area;
1193 error:
1194 if (mem_prealloc) {
1195 error_report("%s", error_get_pretty(*errp));
1196 exit(1);
1198 return NULL;
1200 #endif
1202 /* Called with the ramlist lock held. */
1203 static ram_addr_t find_ram_offset(ram_addr_t size)
1205 RAMBlock *block, *next_block;
1206 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1208 assert(size != 0); /* it would hand out same offset multiple times */
1210 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1211 return 0;
1214 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1215 ram_addr_t end, next = RAM_ADDR_MAX;
1217 end = block->offset + block->max_length;
1219 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1220 if (next_block->offset >= end) {
1221 next = MIN(next, next_block->offset);
1224 if (next - end >= size && next - end < mingap) {
1225 offset = end;
1226 mingap = next - end;
1230 if (offset == RAM_ADDR_MAX) {
1231 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1232 (uint64_t)size);
1233 abort();
1236 return offset;
1239 ram_addr_t last_ram_offset(void)
1241 RAMBlock *block;
1242 ram_addr_t last = 0;
1244 rcu_read_lock();
1245 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1246 last = MAX(last, block->offset + block->max_length);
1248 rcu_read_unlock();
1249 return last;
1252 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1254 int ret;
1256 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1257 if (!machine_dump_guest_core(current_machine)) {
1258 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1259 if (ret) {
1260 perror("qemu_madvise");
1261 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1262 "but dump_guest_core=off specified\n");
1267 /* Called within an RCU critical section, or while the ramlist lock
1268 * is held.
1270 static RAMBlock *find_ram_block(ram_addr_t addr)
1272 RAMBlock *block;
1274 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1275 if (block->offset == addr) {
1276 return block;
1280 return NULL;
1283 /* Called with iothread lock held. */
1284 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1286 RAMBlock *new_block, *block;
1288 rcu_read_lock();
1289 new_block = find_ram_block(addr);
1290 assert(new_block);
1291 assert(!new_block->idstr[0]);
1293 if (dev) {
1294 char *id = qdev_get_dev_path(dev);
1295 if (id) {
1296 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1297 g_free(id);
1300 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1302 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1303 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1304 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1305 new_block->idstr);
1306 abort();
1309 rcu_read_unlock();
1312 /* Called with iothread lock held. */
1313 void qemu_ram_unset_idstr(ram_addr_t addr)
1315 RAMBlock *block;
1317 /* FIXME: arch_init.c assumes that this is not called throughout
1318 * migration. Ignore the problem since hot-unplug during migration
1319 * does not work anyway.
1322 rcu_read_lock();
1323 block = find_ram_block(addr);
1324 if (block) {
1325 memset(block->idstr, 0, sizeof(block->idstr));
1327 rcu_read_unlock();
1330 static int memory_try_enable_merging(void *addr, size_t len)
1332 if (!machine_mem_merge(current_machine)) {
1333 /* disabled by the user */
1334 return 0;
1337 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1340 /* Only legal before guest might have detected the memory size: e.g. on
1341 * incoming migration, or right after reset.
1343 * As memory core doesn't know how is memory accessed, it is up to
1344 * resize callback to update device state and/or add assertions to detect
1345 * misuse, if necessary.
1347 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1349 RAMBlock *block = find_ram_block(base);
1351 assert(block);
1353 newsize = TARGET_PAGE_ALIGN(newsize);
1355 if (block->used_length == newsize) {
1356 return 0;
1359 if (!(block->flags & RAM_RESIZEABLE)) {
1360 error_setg_errno(errp, EINVAL,
1361 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1362 " in != 0x" RAM_ADDR_FMT, block->idstr,
1363 newsize, block->used_length);
1364 return -EINVAL;
1367 if (block->max_length < newsize) {
1368 error_setg_errno(errp, EINVAL,
1369 "Length too large: %s: 0x" RAM_ADDR_FMT
1370 " > 0x" RAM_ADDR_FMT, block->idstr,
1371 newsize, block->max_length);
1372 return -EINVAL;
1375 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1376 block->used_length = newsize;
1377 cpu_physical_memory_set_dirty_range(block->offset, block->used_length);
1378 memory_region_set_size(block->mr, newsize);
1379 if (block->resized) {
1380 block->resized(block->idstr, newsize, block->host);
1382 return 0;
1385 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1387 RAMBlock *block;
1388 RAMBlock *last_block = NULL;
1389 ram_addr_t old_ram_size, new_ram_size;
1391 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1393 qemu_mutex_lock_ramlist();
1394 new_block->offset = find_ram_offset(new_block->max_length);
1396 if (!new_block->host) {
1397 if (xen_enabled()) {
1398 xen_ram_alloc(new_block->offset, new_block->max_length,
1399 new_block->mr);
1400 } else {
1401 new_block->host = phys_mem_alloc(new_block->max_length,
1402 &new_block->mr->align);
1403 if (!new_block->host) {
1404 error_setg_errno(errp, errno,
1405 "cannot set up guest memory '%s'",
1406 memory_region_name(new_block->mr));
1407 qemu_mutex_unlock_ramlist();
1408 return -1;
1410 memory_try_enable_merging(new_block->host, new_block->max_length);
1414 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1415 * QLIST (which has an RCU-friendly variant) does not have insertion at
1416 * tail, so save the last element in last_block.
1418 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1419 last_block = block;
1420 if (block->max_length < new_block->max_length) {
1421 break;
1424 if (block) {
1425 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1426 } else if (last_block) {
1427 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1428 } else { /* list is empty */
1429 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1431 ram_list.mru_block = NULL;
1433 /* Write list before version */
1434 smp_wmb();
1435 ram_list.version++;
1436 qemu_mutex_unlock_ramlist();
1438 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1440 if (new_ram_size > old_ram_size) {
1441 int i;
1443 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1444 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1445 ram_list.dirty_memory[i] =
1446 bitmap_zero_extend(ram_list.dirty_memory[i],
1447 old_ram_size, new_ram_size);
1450 cpu_physical_memory_set_dirty_range(new_block->offset,
1451 new_block->used_length);
1453 if (new_block->host) {
1454 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1455 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1456 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1457 if (kvm_enabled()) {
1458 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1462 return new_block->offset;
1465 #ifdef __linux__
1466 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1467 bool share, const char *mem_path,
1468 Error **errp)
1470 RAMBlock *new_block;
1471 ram_addr_t addr;
1472 Error *local_err = NULL;
1474 if (xen_enabled()) {
1475 error_setg(errp, "-mem-path not supported with Xen");
1476 return -1;
1479 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1481 * file_ram_alloc() needs to allocate just like
1482 * phys_mem_alloc, but we haven't bothered to provide
1483 * a hook there.
1485 error_setg(errp,
1486 "-mem-path not supported with this accelerator");
1487 return -1;
1490 size = TARGET_PAGE_ALIGN(size);
1491 new_block = g_malloc0(sizeof(*new_block));
1492 new_block->mr = mr;
1493 new_block->used_length = size;
1494 new_block->max_length = size;
1495 new_block->flags = share ? RAM_SHARED : 0;
1496 new_block->host = file_ram_alloc(new_block, size,
1497 mem_path, errp);
1498 if (!new_block->host) {
1499 g_free(new_block);
1500 return -1;
1503 addr = ram_block_add(new_block, &local_err);
1504 if (local_err) {
1505 g_free(new_block);
1506 error_propagate(errp, local_err);
1507 return -1;
1509 return addr;
1511 #endif
1513 static
1514 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1515 void (*resized)(const char*,
1516 uint64_t length,
1517 void *host),
1518 void *host, bool resizeable,
1519 MemoryRegion *mr, Error **errp)
1521 RAMBlock *new_block;
1522 ram_addr_t addr;
1523 Error *local_err = NULL;
1525 size = TARGET_PAGE_ALIGN(size);
1526 max_size = TARGET_PAGE_ALIGN(max_size);
1527 new_block = g_malloc0(sizeof(*new_block));
1528 new_block->mr = mr;
1529 new_block->resized = resized;
1530 new_block->used_length = size;
1531 new_block->max_length = max_size;
1532 assert(max_size >= size);
1533 new_block->fd = -1;
1534 new_block->host = host;
1535 if (host) {
1536 new_block->flags |= RAM_PREALLOC;
1538 if (resizeable) {
1539 new_block->flags |= RAM_RESIZEABLE;
1541 addr = ram_block_add(new_block, &local_err);
1542 if (local_err) {
1543 g_free(new_block);
1544 error_propagate(errp, local_err);
1545 return -1;
1547 return addr;
1550 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1551 MemoryRegion *mr, Error **errp)
1553 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1556 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1558 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1561 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1562 void (*resized)(const char*,
1563 uint64_t length,
1564 void *host),
1565 MemoryRegion *mr, Error **errp)
1567 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1570 void qemu_ram_free_from_ptr(ram_addr_t addr)
1572 RAMBlock *block;
1574 qemu_mutex_lock_ramlist();
1575 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1576 if (addr == block->offset) {
1577 QLIST_REMOVE_RCU(block, next);
1578 ram_list.mru_block = NULL;
1579 /* Write list before version */
1580 smp_wmb();
1581 ram_list.version++;
1582 g_free_rcu(block, rcu);
1583 break;
1586 qemu_mutex_unlock_ramlist();
1589 static void reclaim_ramblock(RAMBlock *block)
1591 if (block->flags & RAM_PREALLOC) {
1593 } else if (xen_enabled()) {
1594 xen_invalidate_map_cache_entry(block->host);
1595 #ifndef _WIN32
1596 } else if (block->fd >= 0) {
1597 munmap(block->host, block->max_length);
1598 close(block->fd);
1599 #endif
1600 } else {
1601 qemu_anon_ram_free(block->host, block->max_length);
1603 g_free(block);
1606 void qemu_ram_free(ram_addr_t addr)
1608 RAMBlock *block;
1610 qemu_mutex_lock_ramlist();
1611 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1612 if (addr == block->offset) {
1613 QLIST_REMOVE_RCU(block, next);
1614 ram_list.mru_block = NULL;
1615 /* Write list before version */
1616 smp_wmb();
1617 ram_list.version++;
1618 call_rcu(block, reclaim_ramblock, rcu);
1619 break;
1622 qemu_mutex_unlock_ramlist();
1625 #ifndef _WIN32
1626 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1628 RAMBlock *block;
1629 ram_addr_t offset;
1630 int flags;
1631 void *area, *vaddr;
1633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1634 offset = addr - block->offset;
1635 if (offset < block->max_length) {
1636 vaddr = ramblock_ptr(block, offset);
1637 if (block->flags & RAM_PREALLOC) {
1639 } else if (xen_enabled()) {
1640 abort();
1641 } else {
1642 flags = MAP_FIXED;
1643 if (block->fd >= 0) {
1644 flags |= (block->flags & RAM_SHARED ?
1645 MAP_SHARED : MAP_PRIVATE);
1646 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1647 flags, block->fd, offset);
1648 } else {
1650 * Remap needs to match alloc. Accelerators that
1651 * set phys_mem_alloc never remap. If they did,
1652 * we'd need a remap hook here.
1654 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1656 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1657 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1658 flags, -1, 0);
1660 if (area != vaddr) {
1661 fprintf(stderr, "Could not remap addr: "
1662 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1663 length, addr);
1664 exit(1);
1666 memory_try_enable_merging(vaddr, length);
1667 qemu_ram_setup_dump(vaddr, length);
1672 #endif /* !_WIN32 */
1674 int qemu_get_ram_fd(ram_addr_t addr)
1676 RAMBlock *block;
1677 int fd;
1679 rcu_read_lock();
1680 block = qemu_get_ram_block(addr);
1681 fd = block->fd;
1682 rcu_read_unlock();
1683 return fd;
1686 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1688 RAMBlock *block;
1689 void *ptr;
1691 rcu_read_lock();
1692 block = qemu_get_ram_block(addr);
1693 ptr = ramblock_ptr(block, 0);
1694 rcu_read_unlock();
1695 return ptr;
1698 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1699 * This should not be used for general purpose DMA. Use address_space_map
1700 * or address_space_rw instead. For local memory (e.g. video ram) that the
1701 * device owns, use memory_region_get_ram_ptr.
1703 * By the time this function returns, the returned pointer is not protected
1704 * by RCU anymore. If the caller is not within an RCU critical section and
1705 * does not hold the iothread lock, it must have other means of protecting the
1706 * pointer, such as a reference to the region that includes the incoming
1707 * ram_addr_t.
1709 void *qemu_get_ram_ptr(ram_addr_t addr)
1711 RAMBlock *block;
1712 void *ptr;
1714 rcu_read_lock();
1715 block = qemu_get_ram_block(addr);
1717 if (xen_enabled() && block->host == NULL) {
1718 /* We need to check if the requested address is in the RAM
1719 * because we don't want to map the entire memory in QEMU.
1720 * In that case just map until the end of the page.
1722 if (block->offset == 0) {
1723 ptr = xen_map_cache(addr, 0, 0);
1724 goto unlock;
1727 block->host = xen_map_cache(block->offset, block->max_length, 1);
1729 ptr = ramblock_ptr(block, addr - block->offset);
1731 unlock:
1732 rcu_read_unlock();
1733 return ptr;
1736 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1737 * but takes a size argument.
1739 * By the time this function returns, the returned pointer is not protected
1740 * by RCU anymore. If the caller is not within an RCU critical section and
1741 * does not hold the iothread lock, it must have other means of protecting the
1742 * pointer, such as a reference to the region that includes the incoming
1743 * ram_addr_t.
1745 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1747 void *ptr;
1748 if (*size == 0) {
1749 return NULL;
1751 if (xen_enabled()) {
1752 return xen_map_cache(addr, *size, 1);
1753 } else {
1754 RAMBlock *block;
1755 rcu_read_lock();
1756 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1757 if (addr - block->offset < block->max_length) {
1758 if (addr - block->offset + *size > block->max_length)
1759 *size = block->max_length - addr + block->offset;
1760 ptr = ramblock_ptr(block, addr - block->offset);
1761 rcu_read_unlock();
1762 return ptr;
1766 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1767 abort();
1771 /* Some of the softmmu routines need to translate from a host pointer
1772 * (typically a TLB entry) back to a ram offset.
1774 * By the time this function returns, the returned pointer is not protected
1775 * by RCU anymore. If the caller is not within an RCU critical section and
1776 * does not hold the iothread lock, it must have other means of protecting the
1777 * pointer, such as a reference to the region that includes the incoming
1778 * ram_addr_t.
1780 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1782 RAMBlock *block;
1783 uint8_t *host = ptr;
1784 MemoryRegion *mr;
1786 if (xen_enabled()) {
1787 rcu_read_lock();
1788 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1789 mr = qemu_get_ram_block(*ram_addr)->mr;
1790 rcu_read_unlock();
1791 return mr;
1794 rcu_read_lock();
1795 block = atomic_rcu_read(&ram_list.mru_block);
1796 if (block && block->host && host - block->host < block->max_length) {
1797 goto found;
1800 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1801 /* This case append when the block is not mapped. */
1802 if (block->host == NULL) {
1803 continue;
1805 if (host - block->host < block->max_length) {
1806 goto found;
1810 rcu_read_unlock();
1811 return NULL;
1813 found:
1814 *ram_addr = block->offset + (host - block->host);
1815 mr = block->mr;
1816 rcu_read_unlock();
1817 return mr;
1820 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1821 uint64_t val, unsigned size)
1823 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1824 tb_invalidate_phys_page_fast(ram_addr, size);
1826 switch (size) {
1827 case 1:
1828 stb_p(qemu_get_ram_ptr(ram_addr), val);
1829 break;
1830 case 2:
1831 stw_p(qemu_get_ram_ptr(ram_addr), val);
1832 break;
1833 case 4:
1834 stl_p(qemu_get_ram_ptr(ram_addr), val);
1835 break;
1836 default:
1837 abort();
1839 cpu_physical_memory_set_dirty_range_nocode(ram_addr, size);
1840 /* we remove the notdirty callback only if the code has been
1841 flushed */
1842 if (!cpu_physical_memory_is_clean(ram_addr)) {
1843 CPUArchState *env = current_cpu->env_ptr;
1844 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
1848 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1849 unsigned size, bool is_write)
1851 return is_write;
1854 static const MemoryRegionOps notdirty_mem_ops = {
1855 .write = notdirty_mem_write,
1856 .valid.accepts = notdirty_mem_accepts,
1857 .endianness = DEVICE_NATIVE_ENDIAN,
1860 /* Generate a debug exception if a watchpoint has been hit. */
1861 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
1863 CPUState *cpu = current_cpu;
1864 CPUArchState *env = cpu->env_ptr;
1865 target_ulong pc, cs_base;
1866 target_ulong vaddr;
1867 CPUWatchpoint *wp;
1868 int cpu_flags;
1870 if (cpu->watchpoint_hit) {
1871 /* We re-entered the check after replacing the TB. Now raise
1872 * the debug interrupt so that is will trigger after the
1873 * current instruction. */
1874 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
1875 return;
1877 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1878 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1879 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1880 && (wp->flags & flags)) {
1881 if (flags == BP_MEM_READ) {
1882 wp->flags |= BP_WATCHPOINT_HIT_READ;
1883 } else {
1884 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1886 wp->hitaddr = vaddr;
1887 wp->hitattrs = attrs;
1888 if (!cpu->watchpoint_hit) {
1889 cpu->watchpoint_hit = wp;
1890 tb_check_watchpoint(cpu);
1891 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1892 cpu->exception_index = EXCP_DEBUG;
1893 cpu_loop_exit(cpu);
1894 } else {
1895 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1896 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
1897 cpu_resume_from_signal(cpu, NULL);
1900 } else {
1901 wp->flags &= ~BP_WATCHPOINT_HIT;
1906 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1907 so these check for a hit then pass through to the normal out-of-line
1908 phys routines. */
1909 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
1910 unsigned size, MemTxAttrs attrs)
1912 MemTxResult res;
1913 uint64_t data;
1915 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1916 switch (size) {
1917 case 1:
1918 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
1919 break;
1920 case 2:
1921 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
1922 break;
1923 case 4:
1924 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
1925 break;
1926 default: abort();
1928 *pdata = data;
1929 return res;
1932 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
1933 uint64_t val, unsigned size,
1934 MemTxAttrs attrs)
1936 MemTxResult res;
1938 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1939 switch (size) {
1940 case 1:
1941 address_space_stb(&address_space_memory, addr, val, attrs, &res);
1942 break;
1943 case 2:
1944 address_space_stw(&address_space_memory, addr, val, attrs, &res);
1945 break;
1946 case 4:
1947 address_space_stl(&address_space_memory, addr, val, attrs, &res);
1948 break;
1949 default: abort();
1951 return res;
1954 static const MemoryRegionOps watch_mem_ops = {
1955 .read_with_attrs = watch_mem_read,
1956 .write_with_attrs = watch_mem_write,
1957 .endianness = DEVICE_NATIVE_ENDIAN,
1960 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
1961 unsigned len, MemTxAttrs attrs)
1963 subpage_t *subpage = opaque;
1964 uint8_t buf[8];
1965 MemTxResult res;
1967 #if defined(DEBUG_SUBPAGE)
1968 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1969 subpage, len, addr);
1970 #endif
1971 res = address_space_read(subpage->as, addr + subpage->base,
1972 attrs, buf, len);
1973 if (res) {
1974 return res;
1976 switch (len) {
1977 case 1:
1978 *data = ldub_p(buf);
1979 return MEMTX_OK;
1980 case 2:
1981 *data = lduw_p(buf);
1982 return MEMTX_OK;
1983 case 4:
1984 *data = ldl_p(buf);
1985 return MEMTX_OK;
1986 case 8:
1987 *data = ldq_p(buf);
1988 return MEMTX_OK;
1989 default:
1990 abort();
1994 static MemTxResult subpage_write(void *opaque, hwaddr addr,
1995 uint64_t value, unsigned len, MemTxAttrs attrs)
1997 subpage_t *subpage = opaque;
1998 uint8_t buf[8];
2000 #if defined(DEBUG_SUBPAGE)
2001 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2002 " value %"PRIx64"\n",
2003 __func__, subpage, len, addr, value);
2004 #endif
2005 switch (len) {
2006 case 1:
2007 stb_p(buf, value);
2008 break;
2009 case 2:
2010 stw_p(buf, value);
2011 break;
2012 case 4:
2013 stl_p(buf, value);
2014 break;
2015 case 8:
2016 stq_p(buf, value);
2017 break;
2018 default:
2019 abort();
2021 return address_space_write(subpage->as, addr + subpage->base,
2022 attrs, buf, len);
2025 static bool subpage_accepts(void *opaque, hwaddr addr,
2026 unsigned len, bool is_write)
2028 subpage_t *subpage = opaque;
2029 #if defined(DEBUG_SUBPAGE)
2030 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2031 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2032 #endif
2034 return address_space_access_valid(subpage->as, addr + subpage->base,
2035 len, is_write);
2038 static const MemoryRegionOps subpage_ops = {
2039 .read_with_attrs = subpage_read,
2040 .write_with_attrs = subpage_write,
2041 .impl.min_access_size = 1,
2042 .impl.max_access_size = 8,
2043 .valid.min_access_size = 1,
2044 .valid.max_access_size = 8,
2045 .valid.accepts = subpage_accepts,
2046 .endianness = DEVICE_NATIVE_ENDIAN,
2049 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2050 uint16_t section)
2052 int idx, eidx;
2054 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2055 return -1;
2056 idx = SUBPAGE_IDX(start);
2057 eidx = SUBPAGE_IDX(end);
2058 #if defined(DEBUG_SUBPAGE)
2059 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2060 __func__, mmio, start, end, idx, eidx, section);
2061 #endif
2062 for (; idx <= eidx; idx++) {
2063 mmio->sub_section[idx] = section;
2066 return 0;
2069 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2071 subpage_t *mmio;
2073 mmio = g_malloc0(sizeof(subpage_t));
2075 mmio->as = as;
2076 mmio->base = base;
2077 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2078 NULL, TARGET_PAGE_SIZE);
2079 mmio->iomem.subpage = true;
2080 #if defined(DEBUG_SUBPAGE)
2081 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2082 mmio, base, TARGET_PAGE_SIZE);
2083 #endif
2084 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2086 return mmio;
2089 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2090 MemoryRegion *mr)
2092 assert(as);
2093 MemoryRegionSection section = {
2094 .address_space = as,
2095 .mr = mr,
2096 .offset_within_address_space = 0,
2097 .offset_within_region = 0,
2098 .size = int128_2_64(),
2101 return phys_section_add(map, &section);
2104 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
2106 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2107 MemoryRegionSection *sections = d->map.sections;
2109 return sections[index & ~TARGET_PAGE_MASK].mr;
2112 static void io_mem_init(void)
2114 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2115 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2116 NULL, UINT64_MAX);
2117 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2118 NULL, UINT64_MAX);
2119 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2120 NULL, UINT64_MAX);
2123 static void mem_begin(MemoryListener *listener)
2125 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2126 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2127 uint16_t n;
2129 n = dummy_section(&d->map, as, &io_mem_unassigned);
2130 assert(n == PHYS_SECTION_UNASSIGNED);
2131 n = dummy_section(&d->map, as, &io_mem_notdirty);
2132 assert(n == PHYS_SECTION_NOTDIRTY);
2133 n = dummy_section(&d->map, as, &io_mem_rom);
2134 assert(n == PHYS_SECTION_ROM);
2135 n = dummy_section(&d->map, as, &io_mem_watch);
2136 assert(n == PHYS_SECTION_WATCH);
2138 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2139 d->as = as;
2140 as->next_dispatch = d;
2143 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2145 phys_sections_free(&d->map);
2146 g_free(d);
2149 static void mem_commit(MemoryListener *listener)
2151 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2152 AddressSpaceDispatch *cur = as->dispatch;
2153 AddressSpaceDispatch *next = as->next_dispatch;
2155 phys_page_compact_all(next, next->map.nodes_nb);
2157 atomic_rcu_set(&as->dispatch, next);
2158 if (cur) {
2159 call_rcu(cur, address_space_dispatch_free, rcu);
2163 static void tcg_commit(MemoryListener *listener)
2165 CPUState *cpu;
2167 /* since each CPU stores ram addresses in its TLB cache, we must
2168 reset the modified entries */
2169 /* XXX: slow ! */
2170 CPU_FOREACH(cpu) {
2171 /* FIXME: Disentangle the cpu.h circular files deps so we can
2172 directly get the right CPU from listener. */
2173 if (cpu->tcg_as_listener != listener) {
2174 continue;
2176 cpu_reload_memory_map(cpu);
2180 static void core_log_global_start(MemoryListener *listener)
2182 cpu_physical_memory_set_dirty_tracking(true);
2185 static void core_log_global_stop(MemoryListener *listener)
2187 cpu_physical_memory_set_dirty_tracking(false);
2190 static MemoryListener core_memory_listener = {
2191 .log_global_start = core_log_global_start,
2192 .log_global_stop = core_log_global_stop,
2193 .priority = 1,
2196 void address_space_init_dispatch(AddressSpace *as)
2198 as->dispatch = NULL;
2199 as->dispatch_listener = (MemoryListener) {
2200 .begin = mem_begin,
2201 .commit = mem_commit,
2202 .region_add = mem_add,
2203 .region_nop = mem_add,
2204 .priority = 0,
2206 memory_listener_register(&as->dispatch_listener, as);
2209 void address_space_unregister(AddressSpace *as)
2211 memory_listener_unregister(&as->dispatch_listener);
2214 void address_space_destroy_dispatch(AddressSpace *as)
2216 AddressSpaceDispatch *d = as->dispatch;
2218 atomic_rcu_set(&as->dispatch, NULL);
2219 if (d) {
2220 call_rcu(d, address_space_dispatch_free, rcu);
2224 static void memory_map_init(void)
2226 system_memory = g_malloc(sizeof(*system_memory));
2228 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2229 address_space_init(&address_space_memory, system_memory, "memory");
2231 system_io = g_malloc(sizeof(*system_io));
2232 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2233 65536);
2234 address_space_init(&address_space_io, system_io, "I/O");
2236 memory_listener_register(&core_memory_listener, &address_space_memory);
2239 MemoryRegion *get_system_memory(void)
2241 return system_memory;
2244 MemoryRegion *get_system_io(void)
2246 return system_io;
2249 #endif /* !defined(CONFIG_USER_ONLY) */
2251 /* physical memory access (slow version, mainly for debug) */
2252 #if defined(CONFIG_USER_ONLY)
2253 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2254 uint8_t *buf, int len, int is_write)
2256 int l, flags;
2257 target_ulong page;
2258 void * p;
2260 while (len > 0) {
2261 page = addr & TARGET_PAGE_MASK;
2262 l = (page + TARGET_PAGE_SIZE) - addr;
2263 if (l > len)
2264 l = len;
2265 flags = page_get_flags(page);
2266 if (!(flags & PAGE_VALID))
2267 return -1;
2268 if (is_write) {
2269 if (!(flags & PAGE_WRITE))
2270 return -1;
2271 /* XXX: this code should not depend on lock_user */
2272 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2273 return -1;
2274 memcpy(p, buf, l);
2275 unlock_user(p, addr, l);
2276 } else {
2277 if (!(flags & PAGE_READ))
2278 return -1;
2279 /* XXX: this code should not depend on lock_user */
2280 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2281 return -1;
2282 memcpy(buf, p, l);
2283 unlock_user(p, addr, 0);
2285 len -= l;
2286 buf += l;
2287 addr += l;
2289 return 0;
2292 #else
2294 static void invalidate_and_set_dirty(hwaddr addr,
2295 hwaddr length)
2297 if (cpu_physical_memory_range_includes_clean(addr, length)) {
2298 tb_invalidate_phys_range(addr, addr + length, 0);
2299 cpu_physical_memory_set_dirty_range_nocode(addr, length);
2301 xen_modified_memory(addr, length);
2304 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2306 unsigned access_size_max = mr->ops->valid.max_access_size;
2308 /* Regions are assumed to support 1-4 byte accesses unless
2309 otherwise specified. */
2310 if (access_size_max == 0) {
2311 access_size_max = 4;
2314 /* Bound the maximum access by the alignment of the address. */
2315 if (!mr->ops->impl.unaligned) {
2316 unsigned align_size_max = addr & -addr;
2317 if (align_size_max != 0 && align_size_max < access_size_max) {
2318 access_size_max = align_size_max;
2322 /* Don't attempt accesses larger than the maximum. */
2323 if (l > access_size_max) {
2324 l = access_size_max;
2326 if (l & (l - 1)) {
2327 l = 1 << (qemu_fls(l) - 1);
2330 return l;
2333 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2334 uint8_t *buf, int len, bool is_write)
2336 hwaddr l;
2337 uint8_t *ptr;
2338 uint64_t val;
2339 hwaddr addr1;
2340 MemoryRegion *mr;
2341 MemTxResult result = MEMTX_OK;
2343 while (len > 0) {
2344 l = len;
2345 mr = address_space_translate(as, addr, &addr1, &l, is_write);
2347 if (is_write) {
2348 if (!memory_access_is_direct(mr, is_write)) {
2349 l = memory_access_size(mr, l, addr1);
2350 /* XXX: could force current_cpu to NULL to avoid
2351 potential bugs */
2352 switch (l) {
2353 case 8:
2354 /* 64 bit write access */
2355 val = ldq_p(buf);
2356 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2357 attrs);
2358 break;
2359 case 4:
2360 /* 32 bit write access */
2361 val = ldl_p(buf);
2362 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2363 attrs);
2364 break;
2365 case 2:
2366 /* 16 bit write access */
2367 val = lduw_p(buf);
2368 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2369 attrs);
2370 break;
2371 case 1:
2372 /* 8 bit write access */
2373 val = ldub_p(buf);
2374 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2375 attrs);
2376 break;
2377 default:
2378 abort();
2380 } else {
2381 addr1 += memory_region_get_ram_addr(mr);
2382 /* RAM case */
2383 ptr = qemu_get_ram_ptr(addr1);
2384 memcpy(ptr, buf, l);
2385 invalidate_and_set_dirty(addr1, l);
2387 } else {
2388 if (!memory_access_is_direct(mr, is_write)) {
2389 /* I/O case */
2390 l = memory_access_size(mr, l, addr1);
2391 switch (l) {
2392 case 8:
2393 /* 64 bit read access */
2394 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2395 attrs);
2396 stq_p(buf, val);
2397 break;
2398 case 4:
2399 /* 32 bit read access */
2400 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2401 attrs);
2402 stl_p(buf, val);
2403 break;
2404 case 2:
2405 /* 16 bit read access */
2406 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2407 attrs);
2408 stw_p(buf, val);
2409 break;
2410 case 1:
2411 /* 8 bit read access */
2412 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2413 attrs);
2414 stb_p(buf, val);
2415 break;
2416 default:
2417 abort();
2419 } else {
2420 /* RAM case */
2421 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2422 memcpy(buf, ptr, l);
2425 len -= l;
2426 buf += l;
2427 addr += l;
2430 return result;
2433 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2434 const uint8_t *buf, int len)
2436 return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
2439 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2440 uint8_t *buf, int len)
2442 return address_space_rw(as, addr, attrs, buf, len, false);
2446 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2447 int len, int is_write)
2449 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2450 buf, len, is_write);
2453 enum write_rom_type {
2454 WRITE_DATA,
2455 FLUSH_CACHE,
2458 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2459 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2461 hwaddr l;
2462 uint8_t *ptr;
2463 hwaddr addr1;
2464 MemoryRegion *mr;
2466 while (len > 0) {
2467 l = len;
2468 mr = address_space_translate(as, addr, &addr1, &l, true);
2470 if (!(memory_region_is_ram(mr) ||
2471 memory_region_is_romd(mr))) {
2472 /* do nothing */
2473 } else {
2474 addr1 += memory_region_get_ram_addr(mr);
2475 /* ROM/RAM case */
2476 ptr = qemu_get_ram_ptr(addr1);
2477 switch (type) {
2478 case WRITE_DATA:
2479 memcpy(ptr, buf, l);
2480 invalidate_and_set_dirty(addr1, l);
2481 break;
2482 case FLUSH_CACHE:
2483 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2484 break;
2487 len -= l;
2488 buf += l;
2489 addr += l;
2493 /* used for ROM loading : can write in RAM and ROM */
2494 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2495 const uint8_t *buf, int len)
2497 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2500 void cpu_flush_icache_range(hwaddr start, int len)
2503 * This function should do the same thing as an icache flush that was
2504 * triggered from within the guest. For TCG we are always cache coherent,
2505 * so there is no need to flush anything. For KVM / Xen we need to flush
2506 * the host's instruction cache at least.
2508 if (tcg_enabled()) {
2509 return;
2512 cpu_physical_memory_write_rom_internal(&address_space_memory,
2513 start, NULL, len, FLUSH_CACHE);
2516 typedef struct {
2517 MemoryRegion *mr;
2518 void *buffer;
2519 hwaddr addr;
2520 hwaddr len;
2521 } BounceBuffer;
2523 static BounceBuffer bounce;
2525 typedef struct MapClient {
2526 void *opaque;
2527 void (*callback)(void *opaque);
2528 QLIST_ENTRY(MapClient) link;
2529 } MapClient;
2531 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2532 = QLIST_HEAD_INITIALIZER(map_client_list);
2534 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2536 MapClient *client = g_malloc(sizeof(*client));
2538 client->opaque = opaque;
2539 client->callback = callback;
2540 QLIST_INSERT_HEAD(&map_client_list, client, link);
2541 return client;
2544 static void cpu_unregister_map_client(void *_client)
2546 MapClient *client = (MapClient *)_client;
2548 QLIST_REMOVE(client, link);
2549 g_free(client);
2552 static void cpu_notify_map_clients(void)
2554 MapClient *client;
2556 while (!QLIST_EMPTY(&map_client_list)) {
2557 client = QLIST_FIRST(&map_client_list);
2558 client->callback(client->opaque);
2559 cpu_unregister_map_client(client);
2563 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2565 MemoryRegion *mr;
2566 hwaddr l, xlat;
2568 while (len > 0) {
2569 l = len;
2570 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2571 if (!memory_access_is_direct(mr, is_write)) {
2572 l = memory_access_size(mr, l, addr);
2573 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2574 return false;
2578 len -= l;
2579 addr += l;
2581 return true;
2584 /* Map a physical memory region into a host virtual address.
2585 * May map a subset of the requested range, given by and returned in *plen.
2586 * May return NULL if resources needed to perform the mapping are exhausted.
2587 * Use only for reads OR writes - not for read-modify-write operations.
2588 * Use cpu_register_map_client() to know when retrying the map operation is
2589 * likely to succeed.
2591 void *address_space_map(AddressSpace *as,
2592 hwaddr addr,
2593 hwaddr *plen,
2594 bool is_write)
2596 hwaddr len = *plen;
2597 hwaddr done = 0;
2598 hwaddr l, xlat, base;
2599 MemoryRegion *mr, *this_mr;
2600 ram_addr_t raddr;
2602 if (len == 0) {
2603 return NULL;
2606 l = len;
2607 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2608 if (!memory_access_is_direct(mr, is_write)) {
2609 if (bounce.buffer) {
2610 return NULL;
2612 /* Avoid unbounded allocations */
2613 l = MIN(l, TARGET_PAGE_SIZE);
2614 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2615 bounce.addr = addr;
2616 bounce.len = l;
2618 memory_region_ref(mr);
2619 bounce.mr = mr;
2620 if (!is_write) {
2621 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2622 bounce.buffer, l);
2625 *plen = l;
2626 return bounce.buffer;
2629 base = xlat;
2630 raddr = memory_region_get_ram_addr(mr);
2632 for (;;) {
2633 len -= l;
2634 addr += l;
2635 done += l;
2636 if (len == 0) {
2637 break;
2640 l = len;
2641 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2642 if (this_mr != mr || xlat != base + done) {
2643 break;
2647 memory_region_ref(mr);
2648 *plen = done;
2649 return qemu_ram_ptr_length(raddr + base, plen);
2652 /* Unmaps a memory region previously mapped by address_space_map().
2653 * Will also mark the memory as dirty if is_write == 1. access_len gives
2654 * the amount of memory that was actually read or written by the caller.
2656 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2657 int is_write, hwaddr access_len)
2659 if (buffer != bounce.buffer) {
2660 MemoryRegion *mr;
2661 ram_addr_t addr1;
2663 mr = qemu_ram_addr_from_host(buffer, &addr1);
2664 assert(mr != NULL);
2665 if (is_write) {
2666 invalidate_and_set_dirty(addr1, access_len);
2668 if (xen_enabled()) {
2669 xen_invalidate_map_cache_entry(buffer);
2671 memory_region_unref(mr);
2672 return;
2674 if (is_write) {
2675 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2676 bounce.buffer, access_len);
2678 qemu_vfree(bounce.buffer);
2679 bounce.buffer = NULL;
2680 memory_region_unref(bounce.mr);
2681 cpu_notify_map_clients();
2684 void *cpu_physical_memory_map(hwaddr addr,
2685 hwaddr *plen,
2686 int is_write)
2688 return address_space_map(&address_space_memory, addr, plen, is_write);
2691 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2692 int is_write, hwaddr access_len)
2694 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2697 /* warning: addr must be aligned */
2698 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2699 MemTxAttrs attrs,
2700 MemTxResult *result,
2701 enum device_endian endian)
2703 uint8_t *ptr;
2704 uint64_t val;
2705 MemoryRegion *mr;
2706 hwaddr l = 4;
2707 hwaddr addr1;
2708 MemTxResult r;
2710 mr = address_space_translate(as, addr, &addr1, &l, false);
2711 if (l < 4 || !memory_access_is_direct(mr, false)) {
2712 /* I/O case */
2713 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
2714 #if defined(TARGET_WORDS_BIGENDIAN)
2715 if (endian == DEVICE_LITTLE_ENDIAN) {
2716 val = bswap32(val);
2718 #else
2719 if (endian == DEVICE_BIG_ENDIAN) {
2720 val = bswap32(val);
2722 #endif
2723 } else {
2724 /* RAM case */
2725 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2726 & TARGET_PAGE_MASK)
2727 + addr1);
2728 switch (endian) {
2729 case DEVICE_LITTLE_ENDIAN:
2730 val = ldl_le_p(ptr);
2731 break;
2732 case DEVICE_BIG_ENDIAN:
2733 val = ldl_be_p(ptr);
2734 break;
2735 default:
2736 val = ldl_p(ptr);
2737 break;
2739 r = MEMTX_OK;
2741 if (result) {
2742 *result = r;
2744 return val;
2747 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
2748 MemTxAttrs attrs, MemTxResult *result)
2750 return address_space_ldl_internal(as, addr, attrs, result,
2751 DEVICE_NATIVE_ENDIAN);
2754 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
2755 MemTxAttrs attrs, MemTxResult *result)
2757 return address_space_ldl_internal(as, addr, attrs, result,
2758 DEVICE_LITTLE_ENDIAN);
2761 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
2762 MemTxAttrs attrs, MemTxResult *result)
2764 return address_space_ldl_internal(as, addr, attrs, result,
2765 DEVICE_BIG_ENDIAN);
2768 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
2770 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2773 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
2775 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2778 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
2780 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2783 /* warning: addr must be aligned */
2784 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
2785 MemTxAttrs attrs,
2786 MemTxResult *result,
2787 enum device_endian endian)
2789 uint8_t *ptr;
2790 uint64_t val;
2791 MemoryRegion *mr;
2792 hwaddr l = 8;
2793 hwaddr addr1;
2794 MemTxResult r;
2796 mr = address_space_translate(as, addr, &addr1, &l,
2797 false);
2798 if (l < 8 || !memory_access_is_direct(mr, false)) {
2799 /* I/O case */
2800 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
2801 #if defined(TARGET_WORDS_BIGENDIAN)
2802 if (endian == DEVICE_LITTLE_ENDIAN) {
2803 val = bswap64(val);
2805 #else
2806 if (endian == DEVICE_BIG_ENDIAN) {
2807 val = bswap64(val);
2809 #endif
2810 } else {
2811 /* RAM case */
2812 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2813 & TARGET_PAGE_MASK)
2814 + addr1);
2815 switch (endian) {
2816 case DEVICE_LITTLE_ENDIAN:
2817 val = ldq_le_p(ptr);
2818 break;
2819 case DEVICE_BIG_ENDIAN:
2820 val = ldq_be_p(ptr);
2821 break;
2822 default:
2823 val = ldq_p(ptr);
2824 break;
2826 r = MEMTX_OK;
2828 if (result) {
2829 *result = r;
2831 return val;
2834 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
2835 MemTxAttrs attrs, MemTxResult *result)
2837 return address_space_ldq_internal(as, addr, attrs, result,
2838 DEVICE_NATIVE_ENDIAN);
2841 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
2842 MemTxAttrs attrs, MemTxResult *result)
2844 return address_space_ldq_internal(as, addr, attrs, result,
2845 DEVICE_LITTLE_ENDIAN);
2848 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
2849 MemTxAttrs attrs, MemTxResult *result)
2851 return address_space_ldq_internal(as, addr, attrs, result,
2852 DEVICE_BIG_ENDIAN);
2855 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
2857 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2860 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
2862 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2865 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
2867 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2870 /* XXX: optimize */
2871 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
2872 MemTxAttrs attrs, MemTxResult *result)
2874 uint8_t val;
2875 MemTxResult r;
2877 r = address_space_rw(as, addr, attrs, &val, 1, 0);
2878 if (result) {
2879 *result = r;
2881 return val;
2884 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
2886 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2889 /* warning: addr must be aligned */
2890 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
2891 hwaddr addr,
2892 MemTxAttrs attrs,
2893 MemTxResult *result,
2894 enum device_endian endian)
2896 uint8_t *ptr;
2897 uint64_t val;
2898 MemoryRegion *mr;
2899 hwaddr l = 2;
2900 hwaddr addr1;
2901 MemTxResult r;
2903 mr = address_space_translate(as, addr, &addr1, &l,
2904 false);
2905 if (l < 2 || !memory_access_is_direct(mr, false)) {
2906 /* I/O case */
2907 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
2908 #if defined(TARGET_WORDS_BIGENDIAN)
2909 if (endian == DEVICE_LITTLE_ENDIAN) {
2910 val = bswap16(val);
2912 #else
2913 if (endian == DEVICE_BIG_ENDIAN) {
2914 val = bswap16(val);
2916 #endif
2917 } else {
2918 /* RAM case */
2919 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2920 & TARGET_PAGE_MASK)
2921 + addr1);
2922 switch (endian) {
2923 case DEVICE_LITTLE_ENDIAN:
2924 val = lduw_le_p(ptr);
2925 break;
2926 case DEVICE_BIG_ENDIAN:
2927 val = lduw_be_p(ptr);
2928 break;
2929 default:
2930 val = lduw_p(ptr);
2931 break;
2933 r = MEMTX_OK;
2935 if (result) {
2936 *result = r;
2938 return val;
2941 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
2942 MemTxAttrs attrs, MemTxResult *result)
2944 return address_space_lduw_internal(as, addr, attrs, result,
2945 DEVICE_NATIVE_ENDIAN);
2948 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
2949 MemTxAttrs attrs, MemTxResult *result)
2951 return address_space_lduw_internal(as, addr, attrs, result,
2952 DEVICE_LITTLE_ENDIAN);
2955 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
2956 MemTxAttrs attrs, MemTxResult *result)
2958 return address_space_lduw_internal(as, addr, attrs, result,
2959 DEVICE_BIG_ENDIAN);
2962 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
2964 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2967 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
2969 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2972 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
2974 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2977 /* warning: addr must be aligned. The ram page is not masked as dirty
2978 and the code inside is not invalidated. It is useful if the dirty
2979 bits are used to track modified PTEs */
2980 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
2981 MemTxAttrs attrs, MemTxResult *result)
2983 uint8_t *ptr;
2984 MemoryRegion *mr;
2985 hwaddr l = 4;
2986 hwaddr addr1;
2987 MemTxResult r;
2989 mr = address_space_translate(as, addr, &addr1, &l,
2990 true);
2991 if (l < 4 || !memory_access_is_direct(mr, true)) {
2992 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
2993 } else {
2994 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2995 ptr = qemu_get_ram_ptr(addr1);
2996 stl_p(ptr, val);
2998 if (unlikely(in_migration)) {
2999 if (cpu_physical_memory_is_clean(addr1)) {
3000 /* invalidate code */
3001 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3002 /* set dirty bit */
3003 cpu_physical_memory_set_dirty_range_nocode(addr1, 4);
3006 r = MEMTX_OK;
3008 if (result) {
3009 *result = r;
3013 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3015 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3018 /* warning: addr must be aligned */
3019 static inline void address_space_stl_internal(AddressSpace *as,
3020 hwaddr addr, uint32_t val,
3021 MemTxAttrs attrs,
3022 MemTxResult *result,
3023 enum device_endian endian)
3025 uint8_t *ptr;
3026 MemoryRegion *mr;
3027 hwaddr l = 4;
3028 hwaddr addr1;
3029 MemTxResult r;
3031 mr = address_space_translate(as, addr, &addr1, &l,
3032 true);
3033 if (l < 4 || !memory_access_is_direct(mr, true)) {
3034 #if defined(TARGET_WORDS_BIGENDIAN)
3035 if (endian == DEVICE_LITTLE_ENDIAN) {
3036 val = bswap32(val);
3038 #else
3039 if (endian == DEVICE_BIG_ENDIAN) {
3040 val = bswap32(val);
3042 #endif
3043 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3044 } else {
3045 /* RAM case */
3046 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3047 ptr = qemu_get_ram_ptr(addr1);
3048 switch (endian) {
3049 case DEVICE_LITTLE_ENDIAN:
3050 stl_le_p(ptr, val);
3051 break;
3052 case DEVICE_BIG_ENDIAN:
3053 stl_be_p(ptr, val);
3054 break;
3055 default:
3056 stl_p(ptr, val);
3057 break;
3059 invalidate_and_set_dirty(addr1, 4);
3060 r = MEMTX_OK;
3062 if (result) {
3063 *result = r;
3067 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3068 MemTxAttrs attrs, MemTxResult *result)
3070 address_space_stl_internal(as, addr, val, attrs, result,
3071 DEVICE_NATIVE_ENDIAN);
3074 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3075 MemTxAttrs attrs, MemTxResult *result)
3077 address_space_stl_internal(as, addr, val, attrs, result,
3078 DEVICE_LITTLE_ENDIAN);
3081 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3082 MemTxAttrs attrs, MemTxResult *result)
3084 address_space_stl_internal(as, addr, val, attrs, result,
3085 DEVICE_BIG_ENDIAN);
3088 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3090 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3093 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3095 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3098 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3100 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3103 /* XXX: optimize */
3104 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3105 MemTxAttrs attrs, MemTxResult *result)
3107 uint8_t v = val;
3108 MemTxResult r;
3110 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3111 if (result) {
3112 *result = r;
3116 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3118 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3121 /* warning: addr must be aligned */
3122 static inline void address_space_stw_internal(AddressSpace *as,
3123 hwaddr addr, uint32_t val,
3124 MemTxAttrs attrs,
3125 MemTxResult *result,
3126 enum device_endian endian)
3128 uint8_t *ptr;
3129 MemoryRegion *mr;
3130 hwaddr l = 2;
3131 hwaddr addr1;
3132 MemTxResult r;
3134 mr = address_space_translate(as, addr, &addr1, &l, true);
3135 if (l < 2 || !memory_access_is_direct(mr, true)) {
3136 #if defined(TARGET_WORDS_BIGENDIAN)
3137 if (endian == DEVICE_LITTLE_ENDIAN) {
3138 val = bswap16(val);
3140 #else
3141 if (endian == DEVICE_BIG_ENDIAN) {
3142 val = bswap16(val);
3144 #endif
3145 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3146 } else {
3147 /* RAM case */
3148 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3149 ptr = qemu_get_ram_ptr(addr1);
3150 switch (endian) {
3151 case DEVICE_LITTLE_ENDIAN:
3152 stw_le_p(ptr, val);
3153 break;
3154 case DEVICE_BIG_ENDIAN:
3155 stw_be_p(ptr, val);
3156 break;
3157 default:
3158 stw_p(ptr, val);
3159 break;
3161 invalidate_and_set_dirty(addr1, 2);
3162 r = MEMTX_OK;
3164 if (result) {
3165 *result = r;
3169 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3170 MemTxAttrs attrs, MemTxResult *result)
3172 address_space_stw_internal(as, addr, val, attrs, result,
3173 DEVICE_NATIVE_ENDIAN);
3176 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3177 MemTxAttrs attrs, MemTxResult *result)
3179 address_space_stw_internal(as, addr, val, attrs, result,
3180 DEVICE_LITTLE_ENDIAN);
3183 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3184 MemTxAttrs attrs, MemTxResult *result)
3186 address_space_stw_internal(as, addr, val, attrs, result,
3187 DEVICE_BIG_ENDIAN);
3190 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3192 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3195 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3197 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3200 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3202 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3205 /* XXX: optimize */
3206 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3207 MemTxAttrs attrs, MemTxResult *result)
3209 MemTxResult r;
3210 val = tswap64(val);
3211 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3212 if (result) {
3213 *result = r;
3217 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3218 MemTxAttrs attrs, MemTxResult *result)
3220 MemTxResult r;
3221 val = cpu_to_le64(val);
3222 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3223 if (result) {
3224 *result = r;
3227 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3228 MemTxAttrs attrs, MemTxResult *result)
3230 MemTxResult r;
3231 val = cpu_to_be64(val);
3232 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3233 if (result) {
3234 *result = r;
3238 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3240 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3243 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3245 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3248 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3250 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3253 /* virtual memory access for debug (includes writing to ROM) */
3254 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3255 uint8_t *buf, int len, int is_write)
3257 int l;
3258 hwaddr phys_addr;
3259 target_ulong page;
3261 while (len > 0) {
3262 page = addr & TARGET_PAGE_MASK;
3263 phys_addr = cpu_get_phys_page_debug(cpu, page);
3264 /* if no physical page mapped, return an error */
3265 if (phys_addr == -1)
3266 return -1;
3267 l = (page + TARGET_PAGE_SIZE) - addr;
3268 if (l > len)
3269 l = len;
3270 phys_addr += (addr & ~TARGET_PAGE_MASK);
3271 if (is_write) {
3272 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3273 } else {
3274 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3275 buf, l, 0);
3277 len -= l;
3278 buf += l;
3279 addr += l;
3281 return 0;
3283 #endif
3286 * A helper function for the _utterly broken_ virtio device model to find out if
3287 * it's running on a big endian machine. Don't do this at home kids!
3289 bool target_words_bigendian(void);
3290 bool target_words_bigendian(void)
3292 #if defined(TARGET_WORDS_BIGENDIAN)
3293 return true;
3294 #else
3295 return false;
3296 #endif
3299 #ifndef CONFIG_USER_ONLY
3300 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3302 MemoryRegion*mr;
3303 hwaddr l = 1;
3305 mr = address_space_translate(&address_space_memory,
3306 phys_addr, &phys_addr, &l, false);
3308 return !(memory_region_is_ram(mr) ||
3309 memory_region_is_romd(mr));
3312 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3314 RAMBlock *block;
3316 rcu_read_lock();
3317 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3318 func(block->host, block->offset, block->used_length, opaque);
3320 rcu_read_unlock();
3322 #endif