4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
25 #include "qemu/cutils.h"
27 #include "exec/exec-all.h"
29 #include "hw/qdev-core.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
41 #else /* !CONFIG_USER_ONLY */
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "exec/address-spaces.h"
47 #include "sysemu/xen-mapcache.h"
50 #include "exec/cpu-all.h"
51 #include "qemu/rcu_queue.h"
52 #include "qemu/main-loop.h"
53 #include "translate-all.h"
54 #include "sysemu/replay.h"
56 #include "exec/memory-internal.h"
57 #include "exec/ram_addr.h"
60 #include "migration/vmstate.h"
62 #include "qemu/range.h"
64 #include "qemu/mmap-alloc.h"
67 //#define DEBUG_SUBPAGE
69 #if !defined(CONFIG_USER_ONLY)
70 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
71 * are protected by the ramlist lock.
73 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
75 static MemoryRegion
*system_memory
;
76 static MemoryRegion
*system_io
;
78 AddressSpace address_space_io
;
79 AddressSpace address_space_memory
;
81 MemoryRegion io_mem_rom
, io_mem_notdirty
;
82 static MemoryRegion io_mem_unassigned
;
84 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
85 #define RAM_PREALLOC (1 << 0)
87 /* RAM is mmap-ed with MAP_SHARED */
88 #define RAM_SHARED (1 << 1)
90 /* Only a portion of RAM (used_length) is actually used, and migrated.
91 * This used_length size can change across reboots.
93 #define RAM_RESIZEABLE (1 << 2)
97 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
98 /* current CPU in the current thread. It is only valid inside
100 __thread CPUState
*current_cpu
;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
106 #if !defined(CONFIG_USER_ONLY)
108 typedef struct PhysPageEntry PhysPageEntry
;
110 struct PhysPageEntry
{
111 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
113 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
117 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
119 /* Size of the L2 (and L3, etc) page tables. */
120 #define ADDR_SPACE_BITS 64
123 #define P_L2_SIZE (1 << P_L2_BITS)
125 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
127 typedef PhysPageEntry Node
[P_L2_SIZE
];
129 typedef struct PhysPageMap
{
132 unsigned sections_nb
;
133 unsigned sections_nb_alloc
;
135 unsigned nodes_nb_alloc
;
137 MemoryRegionSection
*sections
;
140 struct AddressSpaceDispatch
{
143 MemoryRegionSection
*mru_section
;
144 /* This is a multi-level map on the physical address space.
145 * The bottom level has pointers to MemoryRegionSections.
147 PhysPageEntry phys_map
;
152 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
153 typedef struct subpage_t
{
157 uint16_t sub_section
[TARGET_PAGE_SIZE
];
160 #define PHYS_SECTION_UNASSIGNED 0
161 #define PHYS_SECTION_NOTDIRTY 1
162 #define PHYS_SECTION_ROM 2
163 #define PHYS_SECTION_WATCH 3
165 static void io_mem_init(void);
166 static void memory_map_init(void);
167 static void tcg_commit(MemoryListener
*listener
);
169 static MemoryRegion io_mem_watch
;
172 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
173 * @cpu: the CPU whose AddressSpace this is
174 * @as: the AddressSpace itself
175 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
176 * @tcg_as_listener: listener for tracking changes to the AddressSpace
178 struct CPUAddressSpace
{
181 struct AddressSpaceDispatch
*memory_dispatch
;
182 MemoryListener tcg_as_listener
;
187 #if !defined(CONFIG_USER_ONLY)
189 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
191 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
192 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
193 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
194 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
198 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
205 ret
= map
->nodes_nb
++;
207 assert(ret
!= PHYS_MAP_NODE_NIL
);
208 assert(ret
!= map
->nodes_nb_alloc
);
210 e
.skip
= leaf
? 0 : 1;
211 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
212 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
213 memcpy(&p
[i
], &e
, sizeof(e
));
218 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
219 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
223 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
225 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
226 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
228 p
= map
->nodes
[lp
->ptr
];
229 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
231 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
232 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
238 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
244 static void phys_page_set(AddressSpaceDispatch
*d
,
245 hwaddr index
, hwaddr nb
,
248 /* Wildly overreserve - it doesn't matter much. */
249 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
251 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
254 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
255 * and update our entry so we can skip it and go directly to the destination.
257 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
259 unsigned valid_ptr
= P_L2_SIZE
;
264 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
269 for (i
= 0; i
< P_L2_SIZE
; i
++) {
270 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
277 phys_page_compact(&p
[i
], nodes
, compacted
);
281 /* We can only compress if there's only one child. */
286 assert(valid_ptr
< P_L2_SIZE
);
288 /* Don't compress if it won't fit in the # of bits we have. */
289 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
293 lp
->ptr
= p
[valid_ptr
].ptr
;
294 if (!p
[valid_ptr
].skip
) {
295 /* If our only child is a leaf, make this a leaf. */
296 /* By design, we should have made this node a leaf to begin with so we
297 * should never reach here.
298 * But since it's so simple to handle this, let's do it just in case we
303 lp
->skip
+= p
[valid_ptr
].skip
;
307 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
309 DECLARE_BITMAP(compacted
, nodes_nb
);
311 if (d
->phys_map
.skip
) {
312 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
316 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
319 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
320 * the section must cover the entire address space.
322 return section
->size
.hi
||
323 range_covers_byte(section
->offset_within_address_space
,
324 section
->size
.lo
, addr
);
327 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
328 Node
*nodes
, MemoryRegionSection
*sections
)
331 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
334 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
335 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
336 return §ions
[PHYS_SECTION_UNASSIGNED
];
339 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
342 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
343 return §ions
[lp
.ptr
];
345 return §ions
[PHYS_SECTION_UNASSIGNED
];
349 bool memory_region_is_unassigned(MemoryRegion
*mr
)
351 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
352 && mr
!= &io_mem_watch
;
355 /* Called from RCU critical section */
356 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
358 bool resolve_subpage
)
360 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
364 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
365 section_covers_addr(section
, addr
)) {
368 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
372 if (resolve_subpage
&& section
->mr
->subpage
) {
373 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
374 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
377 atomic_set(&d
->mru_section
, section
);
382 /* Called from RCU critical section */
383 static MemoryRegionSection
*
384 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
385 hwaddr
*plen
, bool resolve_subpage
)
387 MemoryRegionSection
*section
;
391 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
392 /* Compute offset within MemoryRegionSection */
393 addr
-= section
->offset_within_address_space
;
395 /* Compute offset within MemoryRegion */
396 *xlat
= addr
+ section
->offset_within_region
;
400 /* MMIO registers can be expected to perform full-width accesses based only
401 * on their address, without considering adjacent registers that could
402 * decode to completely different MemoryRegions. When such registers
403 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
404 * regions overlap wildly. For this reason we cannot clamp the accesses
407 * If the length is small (as is the case for address_space_ldl/stl),
408 * everything works fine. If the incoming length is large, however,
409 * the caller really has to do the clamping through memory_access_size.
411 if (memory_region_is_ram(mr
)) {
412 diff
= int128_sub(section
->size
, int128_make64(addr
));
413 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
418 /* Called from RCU critical section */
419 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
420 hwaddr
*xlat
, hwaddr
*plen
,
424 MemoryRegionSection
*section
;
428 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
429 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
432 if (!mr
->iommu_ops
) {
436 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
437 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
438 | (addr
& iotlb
.addr_mask
));
439 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
440 if (!(iotlb
.perm
& (1 << is_write
))) {
441 mr
= &io_mem_unassigned
;
445 as
= iotlb
.target_as
;
448 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
449 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
450 *plen
= MIN(page
, *plen
);
457 /* Called from RCU critical section */
458 MemoryRegionSection
*
459 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
460 hwaddr
*xlat
, hwaddr
*plen
)
462 MemoryRegionSection
*section
;
463 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
465 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
467 assert(!section
->mr
->iommu_ops
);
472 #if !defined(CONFIG_USER_ONLY)
474 static int cpu_common_post_load(void *opaque
, int version_id
)
476 CPUState
*cpu
= opaque
;
478 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
479 version_id is increased. */
480 cpu
->interrupt_request
&= ~0x01;
486 static int cpu_common_pre_load(void *opaque
)
488 CPUState
*cpu
= opaque
;
490 cpu
->exception_index
= -1;
495 static bool cpu_common_exception_index_needed(void *opaque
)
497 CPUState
*cpu
= opaque
;
499 return tcg_enabled() && cpu
->exception_index
!= -1;
502 static const VMStateDescription vmstate_cpu_common_exception_index
= {
503 .name
= "cpu_common/exception_index",
505 .minimum_version_id
= 1,
506 .needed
= cpu_common_exception_index_needed
,
507 .fields
= (VMStateField
[]) {
508 VMSTATE_INT32(exception_index
, CPUState
),
509 VMSTATE_END_OF_LIST()
513 static bool cpu_common_crash_occurred_needed(void *opaque
)
515 CPUState
*cpu
= opaque
;
517 return cpu
->crash_occurred
;
520 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
521 .name
= "cpu_common/crash_occurred",
523 .minimum_version_id
= 1,
524 .needed
= cpu_common_crash_occurred_needed
,
525 .fields
= (VMStateField
[]) {
526 VMSTATE_BOOL(crash_occurred
, CPUState
),
527 VMSTATE_END_OF_LIST()
531 const VMStateDescription vmstate_cpu_common
= {
532 .name
= "cpu_common",
534 .minimum_version_id
= 1,
535 .pre_load
= cpu_common_pre_load
,
536 .post_load
= cpu_common_post_load
,
537 .fields
= (VMStateField
[]) {
538 VMSTATE_UINT32(halted
, CPUState
),
539 VMSTATE_UINT32(interrupt_request
, CPUState
),
540 VMSTATE_END_OF_LIST()
542 .subsections
= (const VMStateDescription
*[]) {
543 &vmstate_cpu_common_exception_index
,
544 &vmstate_cpu_common_crash_occurred
,
551 CPUState
*qemu_get_cpu(int index
)
556 if (cpu
->cpu_index
== index
) {
564 #if !defined(CONFIG_USER_ONLY)
565 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
567 CPUAddressSpace
*newas
;
569 /* Target code should have set num_ases before calling us */
570 assert(asidx
< cpu
->num_ases
);
573 /* address space 0 gets the convenience alias */
577 /* KVM cannot currently support multiple address spaces. */
578 assert(asidx
== 0 || !kvm_enabled());
580 if (!cpu
->cpu_ases
) {
581 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
584 newas
= &cpu
->cpu_ases
[asidx
];
588 newas
->tcg_as_listener
.commit
= tcg_commit
;
589 memory_listener_register(&newas
->tcg_as_listener
, as
);
593 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
595 /* Return the AddressSpace corresponding to the specified index */
596 return cpu
->cpu_ases
[asidx
].as
;
600 #ifndef CONFIG_USER_ONLY
601 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
603 static int cpu_get_free_index(Error
**errp
)
605 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
607 if (cpu
>= MAX_CPUMASK_BITS
) {
608 error_setg(errp
, "Trying to use more CPUs than max of %d",
613 bitmap_set(cpu_index_map
, cpu
, 1);
617 static void cpu_release_index(CPUState
*cpu
)
619 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
623 static int cpu_get_free_index(Error
**errp
)
628 CPU_FOREACH(some_cpu
) {
634 static void cpu_release_index(CPUState
*cpu
)
640 void cpu_exec_exit(CPUState
*cpu
)
642 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
644 #if defined(CONFIG_USER_ONLY)
647 if (cpu
->cpu_index
== -1) {
648 /* cpu_index was never allocated by this @cpu or was already freed. */
649 #if defined(CONFIG_USER_ONLY)
655 QTAILQ_REMOVE(&cpus
, cpu
, node
);
656 cpu_release_index(cpu
);
658 #if defined(CONFIG_USER_ONLY)
662 if (cc
->vmsd
!= NULL
) {
663 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
665 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
666 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
670 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
672 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
673 Error
*local_err
= NULL
;
678 #ifndef CONFIG_USER_ONLY
679 cpu
->thread_id
= qemu_get_thread_id();
681 /* This is a softmmu CPU object, so create a property for it
682 * so users can wire up its memory. (This can't go in qom/cpu.c
683 * because that file is compiled only once for both user-mode
684 * and system builds.) The default if no link is set up is to use
685 * the system address space.
687 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
688 (Object
**)&cpu
->memory
,
689 qdev_prop_allow_set_link_before_realize
,
690 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
692 cpu
->memory
= system_memory
;
693 object_ref(OBJECT(cpu
->memory
));
696 #if defined(CONFIG_USER_ONLY)
699 cpu
->cpu_index
= cpu_get_free_index(&local_err
);
701 error_propagate(errp
, local_err
);
702 #if defined(CONFIG_USER_ONLY)
707 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
708 #if defined(CONFIG_USER_ONLY)
712 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
713 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
715 if (cc
->vmsd
!= NULL
) {
716 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
721 #if defined(CONFIG_USER_ONLY)
722 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
724 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
727 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
730 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
731 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
733 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
734 phys
| (pc
& ~TARGET_PAGE_MASK
));
739 #if defined(CONFIG_USER_ONLY)
740 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
745 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
751 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
755 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
756 int flags
, CPUWatchpoint
**watchpoint
)
761 /* Add a watchpoint. */
762 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
763 int flags
, CPUWatchpoint
**watchpoint
)
767 /* forbid ranges which are empty or run off the end of the address space */
768 if (len
== 0 || (addr
+ len
- 1) < addr
) {
769 error_report("tried to set invalid watchpoint at %"
770 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
773 wp
= g_malloc(sizeof(*wp
));
779 /* keep all GDB-injected watchpoints in front */
780 if (flags
& BP_GDB
) {
781 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
783 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
786 tlb_flush_page(cpu
, addr
);
793 /* Remove a specific watchpoint. */
794 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
799 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
800 if (addr
== wp
->vaddr
&& len
== wp
->len
801 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
802 cpu_watchpoint_remove_by_ref(cpu
, wp
);
809 /* Remove a specific watchpoint by reference. */
810 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
812 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
814 tlb_flush_page(cpu
, watchpoint
->vaddr
);
819 /* Remove all matching watchpoints. */
820 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
822 CPUWatchpoint
*wp
, *next
;
824 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
825 if (wp
->flags
& mask
) {
826 cpu_watchpoint_remove_by_ref(cpu
, wp
);
831 /* Return true if this watchpoint address matches the specified
832 * access (ie the address range covered by the watchpoint overlaps
833 * partially or completely with the address range covered by the
836 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
840 /* We know the lengths are non-zero, but a little caution is
841 * required to avoid errors in the case where the range ends
842 * exactly at the top of the address space and so addr + len
843 * wraps round to zero.
845 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
846 vaddr addrend
= addr
+ len
- 1;
848 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
853 /* Add a breakpoint. */
854 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
855 CPUBreakpoint
**breakpoint
)
859 bp
= g_malloc(sizeof(*bp
));
864 /* keep all GDB-injected breakpoints in front */
865 if (flags
& BP_GDB
) {
866 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
868 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
871 breakpoint_invalidate(cpu
, pc
);
879 /* Remove a specific breakpoint. */
880 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
884 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
885 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
886 cpu_breakpoint_remove_by_ref(cpu
, bp
);
893 /* Remove a specific breakpoint by reference. */
894 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
896 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
898 breakpoint_invalidate(cpu
, breakpoint
->pc
);
903 /* Remove all matching breakpoints. */
904 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
906 CPUBreakpoint
*bp
, *next
;
908 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
909 if (bp
->flags
& mask
) {
910 cpu_breakpoint_remove_by_ref(cpu
, bp
);
915 /* enable or disable single step mode. EXCP_DEBUG is returned by the
916 CPU loop after each instruction */
917 void cpu_single_step(CPUState
*cpu
, int enabled
)
919 if (cpu
->singlestep_enabled
!= enabled
) {
920 cpu
->singlestep_enabled
= enabled
;
922 kvm_update_guest_debug(cpu
, 0);
924 /* must flush all the translated code to avoid inconsistencies */
925 /* XXX: only flush what is necessary */
931 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
938 fprintf(stderr
, "qemu: fatal: ");
939 vfprintf(stderr
, fmt
, ap
);
940 fprintf(stderr
, "\n");
941 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
942 if (qemu_log_separate()) {
943 qemu_log("qemu: fatal: ");
944 qemu_log_vprintf(fmt
, ap2
);
946 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
953 #if defined(CONFIG_USER_ONLY)
955 struct sigaction act
;
956 sigfillset(&act
.sa_mask
);
957 act
.sa_handler
= SIG_DFL
;
958 sigaction(SIGABRT
, &act
, NULL
);
964 #if !defined(CONFIG_USER_ONLY)
965 /* Called from RCU critical section */
966 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
970 block
= atomic_rcu_read(&ram_list
.mru_block
);
971 if (block
&& addr
- block
->offset
< block
->max_length
) {
974 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
975 if (addr
- block
->offset
< block
->max_length
) {
980 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
984 /* It is safe to write mru_block outside the iothread lock. This
989 * xxx removed from list
993 * call_rcu(reclaim_ramblock, xxx);
996 * atomic_rcu_set is not needed here. The block was already published
997 * when it was placed into the list. Here we're just making an extra
998 * copy of the pointer.
1000 ram_list
.mru_block
= block
;
1004 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1011 end
= TARGET_PAGE_ALIGN(start
+ length
);
1012 start
&= TARGET_PAGE_MASK
;
1015 block
= qemu_get_ram_block(start
);
1016 assert(block
== qemu_get_ram_block(end
- 1));
1017 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1019 tlb_reset_dirty(cpu
, start1
, length
);
1024 /* Note: start and end must be within the same ram block. */
1025 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1029 DirtyMemoryBlocks
*blocks
;
1030 unsigned long end
, page
;
1037 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1038 page
= start
>> TARGET_PAGE_BITS
;
1042 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1044 while (page
< end
) {
1045 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1046 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1047 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1049 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1056 if (dirty
&& tcg_enabled()) {
1057 tlb_reset_dirty_range_all(start
, length
);
1063 /* Called from RCU critical section */
1064 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1065 MemoryRegionSection
*section
,
1067 hwaddr paddr
, hwaddr xlat
,
1069 target_ulong
*address
)
1074 if (memory_region_is_ram(section
->mr
)) {
1076 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1077 if (!section
->readonly
) {
1078 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1080 iotlb
|= PHYS_SECTION_ROM
;
1083 AddressSpaceDispatch
*d
;
1085 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1086 iotlb
= section
- d
->map
.sections
;
1090 /* Make accesses to pages with watchpoints go via the
1091 watchpoint trap routines. */
1092 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1093 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1094 /* Avoid trapping reads of pages with a write breakpoint. */
1095 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1096 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1097 *address
|= TLB_MMIO
;
1105 #endif /* defined(CONFIG_USER_ONLY) */
1107 #if !defined(CONFIG_USER_ONLY)
1109 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1111 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1113 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1114 qemu_anon_ram_alloc
;
1117 * Set a custom physical guest memory alloator.
1118 * Accelerators with unusual needs may need this. Hopefully, we can
1119 * get rid of it eventually.
1121 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1123 phys_mem_alloc
= alloc
;
1126 static uint16_t phys_section_add(PhysPageMap
*map
,
1127 MemoryRegionSection
*section
)
1129 /* The physical section number is ORed with a page-aligned
1130 * pointer to produce the iotlb entries. Thus it should
1131 * never overflow into the page-aligned value.
1133 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1135 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1136 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1137 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1138 map
->sections_nb_alloc
);
1140 map
->sections
[map
->sections_nb
] = *section
;
1141 memory_region_ref(section
->mr
);
1142 return map
->sections_nb
++;
1145 static void phys_section_destroy(MemoryRegion
*mr
)
1147 bool have_sub_page
= mr
->subpage
;
1149 memory_region_unref(mr
);
1151 if (have_sub_page
) {
1152 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1153 object_unref(OBJECT(&subpage
->iomem
));
1158 static void phys_sections_free(PhysPageMap
*map
)
1160 while (map
->sections_nb
> 0) {
1161 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1162 phys_section_destroy(section
->mr
);
1164 g_free(map
->sections
);
1168 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1171 hwaddr base
= section
->offset_within_address_space
1173 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1174 d
->map
.nodes
, d
->map
.sections
);
1175 MemoryRegionSection subsection
= {
1176 .offset_within_address_space
= base
,
1177 .size
= int128_make64(TARGET_PAGE_SIZE
),
1181 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1183 if (!(existing
->mr
->subpage
)) {
1184 subpage
= subpage_init(d
->as
, base
);
1185 subsection
.address_space
= d
->as
;
1186 subsection
.mr
= &subpage
->iomem
;
1187 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1188 phys_section_add(&d
->map
, &subsection
));
1190 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1192 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1193 end
= start
+ int128_get64(section
->size
) - 1;
1194 subpage_register(subpage
, start
, end
,
1195 phys_section_add(&d
->map
, section
));
1199 static void register_multipage(AddressSpaceDispatch
*d
,
1200 MemoryRegionSection
*section
)
1202 hwaddr start_addr
= section
->offset_within_address_space
;
1203 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1204 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1208 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1211 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1213 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1214 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1215 MemoryRegionSection now
= *section
, remain
= *section
;
1216 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1218 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1219 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1220 - now
.offset_within_address_space
;
1222 now
.size
= int128_min(int128_make64(left
), now
.size
);
1223 register_subpage(d
, &now
);
1225 now
.size
= int128_zero();
1227 while (int128_ne(remain
.size
, now
.size
)) {
1228 remain
.size
= int128_sub(remain
.size
, now
.size
);
1229 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1230 remain
.offset_within_region
+= int128_get64(now
.size
);
1232 if (int128_lt(remain
.size
, page_size
)) {
1233 register_subpage(d
, &now
);
1234 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1235 now
.size
= page_size
;
1236 register_subpage(d
, &now
);
1238 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1239 register_multipage(d
, &now
);
1244 void qemu_flush_coalesced_mmio_buffer(void)
1247 kvm_flush_coalesced_mmio_buffer();
1250 void qemu_mutex_lock_ramlist(void)
1252 qemu_mutex_lock(&ram_list
.mutex
);
1255 void qemu_mutex_unlock_ramlist(void)
1257 qemu_mutex_unlock(&ram_list
.mutex
);
1261 static void *file_ram_alloc(RAMBlock
*block
,
1266 bool unlink_on_error
= false;
1268 char *sanitized_name
;
1274 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1276 "host lacks kvm mmu notifiers, -mem-path unsupported");
1281 fd
= open(path
, O_RDWR
);
1283 /* @path names an existing file, use it */
1286 if (errno
== ENOENT
) {
1287 /* @path names a file that doesn't exist, create it */
1288 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1290 unlink_on_error
= true;
1293 } else if (errno
== EISDIR
) {
1294 /* @path names a directory, create a file there */
1295 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1296 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1297 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1303 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1305 g_free(sanitized_name
);
1307 fd
= mkstemp(filename
);
1315 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1316 error_setg_errno(errp
, errno
,
1317 "can't open backing store %s for guest RAM",
1322 * Try again on EINTR and EEXIST. The latter happens when
1323 * something else creates the file between our two open().
1327 page_size
= qemu_fd_getpagesize(fd
);
1328 block
->mr
->align
= MAX(page_size
, QEMU_VMALLOC_ALIGN
);
1330 if (memory
< page_size
) {
1331 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1332 "or larger than page size 0x%" PRIx64
,
1337 memory
= ROUND_UP(memory
, page_size
);
1340 * ftruncate is not supported by hugetlbfs in older
1341 * hosts, so don't bother bailing out on errors.
1342 * If anything goes wrong with it under other filesystems,
1345 if (ftruncate(fd
, memory
)) {
1346 perror("ftruncate");
1349 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1350 block
->flags
& RAM_SHARED
);
1351 if (area
== MAP_FAILED
) {
1352 error_setg_errno(errp
, errno
,
1353 "unable to map backing store for guest RAM");
1358 os_mem_prealloc(fd
, area
, memory
);
1365 if (unlink_on_error
) {
1375 /* Called with the ramlist lock held. */
1376 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1378 RAMBlock
*block
, *next_block
;
1379 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1381 assert(size
!= 0); /* it would hand out same offset multiple times */
1383 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1387 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1388 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1390 end
= block
->offset
+ block
->max_length
;
1392 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1393 if (next_block
->offset
>= end
) {
1394 next
= MIN(next
, next_block
->offset
);
1397 if (next
- end
>= size
&& next
- end
< mingap
) {
1399 mingap
= next
- end
;
1403 if (offset
== RAM_ADDR_MAX
) {
1404 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1412 ram_addr_t
last_ram_offset(void)
1415 ram_addr_t last
= 0;
1418 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1419 last
= MAX(last
, block
->offset
+ block
->max_length
);
1425 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1429 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1430 if (!machine_dump_guest_core(current_machine
)) {
1431 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1433 perror("qemu_madvise");
1434 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1435 "but dump_guest_core=off specified\n");
1440 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1445 /* Called with iothread lock held. */
1446 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1451 assert(!new_block
->idstr
[0]);
1454 char *id
= qdev_get_dev_path(dev
);
1456 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1460 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1463 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1464 if (block
!= new_block
&&
1465 !strcmp(block
->idstr
, new_block
->idstr
)) {
1466 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1474 /* Called with iothread lock held. */
1475 void qemu_ram_unset_idstr(RAMBlock
*block
)
1477 /* FIXME: arch_init.c assumes that this is not called throughout
1478 * migration. Ignore the problem since hot-unplug during migration
1479 * does not work anyway.
1482 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1486 static int memory_try_enable_merging(void *addr
, size_t len
)
1488 if (!machine_mem_merge(current_machine
)) {
1489 /* disabled by the user */
1493 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1496 /* Only legal before guest might have detected the memory size: e.g. on
1497 * incoming migration, or right after reset.
1499 * As memory core doesn't know how is memory accessed, it is up to
1500 * resize callback to update device state and/or add assertions to detect
1501 * misuse, if necessary.
1503 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1507 newsize
= HOST_PAGE_ALIGN(newsize
);
1509 if (block
->used_length
== newsize
) {
1513 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1514 error_setg_errno(errp
, EINVAL
,
1515 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1516 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1517 newsize
, block
->used_length
);
1521 if (block
->max_length
< newsize
) {
1522 error_setg_errno(errp
, EINVAL
,
1523 "Length too large: %s: 0x" RAM_ADDR_FMT
1524 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1525 newsize
, block
->max_length
);
1529 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1530 block
->used_length
= newsize
;
1531 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1533 memory_region_set_size(block
->mr
, newsize
);
1534 if (block
->resized
) {
1535 block
->resized(block
->idstr
, newsize
, block
->host
);
1540 /* Called with ram_list.mutex held */
1541 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1542 ram_addr_t new_ram_size
)
1544 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1545 DIRTY_MEMORY_BLOCK_SIZE
);
1546 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1547 DIRTY_MEMORY_BLOCK_SIZE
);
1550 /* Only need to extend if block count increased */
1551 if (new_num_blocks
<= old_num_blocks
) {
1555 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1556 DirtyMemoryBlocks
*old_blocks
;
1557 DirtyMemoryBlocks
*new_blocks
;
1560 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1561 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1562 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1564 if (old_num_blocks
) {
1565 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1566 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1569 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1570 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1573 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1576 g_free_rcu(old_blocks
, rcu
);
1581 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1584 RAMBlock
*last_block
= NULL
;
1585 ram_addr_t old_ram_size
, new_ram_size
;
1588 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1590 qemu_mutex_lock_ramlist();
1591 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1593 if (!new_block
->host
) {
1594 if (xen_enabled()) {
1595 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1596 new_block
->mr
, &err
);
1598 error_propagate(errp
, err
);
1599 qemu_mutex_unlock_ramlist();
1603 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1604 &new_block
->mr
->align
);
1605 if (!new_block
->host
) {
1606 error_setg_errno(errp
, errno
,
1607 "cannot set up guest memory '%s'",
1608 memory_region_name(new_block
->mr
));
1609 qemu_mutex_unlock_ramlist();
1612 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1616 new_ram_size
= MAX(old_ram_size
,
1617 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1618 if (new_ram_size
> old_ram_size
) {
1619 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1620 dirty_memory_extend(old_ram_size
, new_ram_size
);
1622 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1623 * QLIST (which has an RCU-friendly variant) does not have insertion at
1624 * tail, so save the last element in last_block.
1626 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1628 if (block
->max_length
< new_block
->max_length
) {
1633 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1634 } else if (last_block
) {
1635 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1636 } else { /* list is empty */
1637 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1639 ram_list
.mru_block
= NULL
;
1641 /* Write list before version */
1644 qemu_mutex_unlock_ramlist();
1646 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1647 new_block
->used_length
,
1650 if (new_block
->host
) {
1651 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1652 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1653 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1654 if (kvm_enabled()) {
1655 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1661 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1662 bool share
, const char *mem_path
,
1665 RAMBlock
*new_block
;
1666 Error
*local_err
= NULL
;
1668 if (xen_enabled()) {
1669 error_setg(errp
, "-mem-path not supported with Xen");
1673 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1675 * file_ram_alloc() needs to allocate just like
1676 * phys_mem_alloc, but we haven't bothered to provide
1680 "-mem-path not supported with this accelerator");
1684 size
= HOST_PAGE_ALIGN(size
);
1685 new_block
= g_malloc0(sizeof(*new_block
));
1687 new_block
->used_length
= size
;
1688 new_block
->max_length
= size
;
1689 new_block
->flags
= share
? RAM_SHARED
: 0;
1690 new_block
->host
= file_ram_alloc(new_block
, size
,
1692 if (!new_block
->host
) {
1697 ram_block_add(new_block
, &local_err
);
1700 error_propagate(errp
, local_err
);
1708 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1709 void (*resized
)(const char*,
1712 void *host
, bool resizeable
,
1713 MemoryRegion
*mr
, Error
**errp
)
1715 RAMBlock
*new_block
;
1716 Error
*local_err
= NULL
;
1718 size
= HOST_PAGE_ALIGN(size
);
1719 max_size
= HOST_PAGE_ALIGN(max_size
);
1720 new_block
= g_malloc0(sizeof(*new_block
));
1722 new_block
->resized
= resized
;
1723 new_block
->used_length
= size
;
1724 new_block
->max_length
= max_size
;
1725 assert(max_size
>= size
);
1727 new_block
->host
= host
;
1729 new_block
->flags
|= RAM_PREALLOC
;
1732 new_block
->flags
|= RAM_RESIZEABLE
;
1734 ram_block_add(new_block
, &local_err
);
1737 error_propagate(errp
, local_err
);
1743 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1744 MemoryRegion
*mr
, Error
**errp
)
1746 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1749 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1751 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1754 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1755 void (*resized
)(const char*,
1758 MemoryRegion
*mr
, Error
**errp
)
1760 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1763 static void reclaim_ramblock(RAMBlock
*block
)
1765 if (block
->flags
& RAM_PREALLOC
) {
1767 } else if (xen_enabled()) {
1768 xen_invalidate_map_cache_entry(block
->host
);
1770 } else if (block
->fd
>= 0) {
1771 qemu_ram_munmap(block
->host
, block
->max_length
);
1775 qemu_anon_ram_free(block
->host
, block
->max_length
);
1780 void qemu_ram_free(RAMBlock
*block
)
1786 qemu_mutex_lock_ramlist();
1787 QLIST_REMOVE_RCU(block
, next
);
1788 ram_list
.mru_block
= NULL
;
1789 /* Write list before version */
1792 call_rcu(block
, reclaim_ramblock
, rcu
);
1793 qemu_mutex_unlock_ramlist();
1797 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1804 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1805 offset
= addr
- block
->offset
;
1806 if (offset
< block
->max_length
) {
1807 vaddr
= ramblock_ptr(block
, offset
);
1808 if (block
->flags
& RAM_PREALLOC
) {
1810 } else if (xen_enabled()) {
1814 if (block
->fd
>= 0) {
1815 flags
|= (block
->flags
& RAM_SHARED
?
1816 MAP_SHARED
: MAP_PRIVATE
);
1817 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1818 flags
, block
->fd
, offset
);
1821 * Remap needs to match alloc. Accelerators that
1822 * set phys_mem_alloc never remap. If they did,
1823 * we'd need a remap hook here.
1825 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1827 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1828 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1831 if (area
!= vaddr
) {
1832 fprintf(stderr
, "Could not remap addr: "
1833 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1837 memory_try_enable_merging(vaddr
, length
);
1838 qemu_ram_setup_dump(vaddr
, length
);
1843 #endif /* !_WIN32 */
1845 int qemu_get_ram_fd(ram_addr_t addr
)
1851 block
= qemu_get_ram_block(addr
);
1857 void qemu_set_ram_fd(ram_addr_t addr
, int fd
)
1862 block
= qemu_get_ram_block(addr
);
1867 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1873 block
= qemu_get_ram_block(addr
);
1874 ptr
= ramblock_ptr(block
, 0);
1879 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1880 * This should not be used for general purpose DMA. Use address_space_map
1881 * or address_space_rw instead. For local memory (e.g. video ram) that the
1882 * device owns, use memory_region_get_ram_ptr.
1884 * Called within RCU critical section.
1886 void *qemu_get_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1888 RAMBlock
*block
= ram_block
;
1890 if (block
== NULL
) {
1891 block
= qemu_get_ram_block(addr
);
1894 if (xen_enabled() && block
->host
== NULL
) {
1895 /* We need to check if the requested address is in the RAM
1896 * because we don't want to map the entire memory in QEMU.
1897 * In that case just map until the end of the page.
1899 if (block
->offset
== 0) {
1900 return xen_map_cache(addr
, 0, 0);
1903 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1905 return ramblock_ptr(block
, addr
- block
->offset
);
1908 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1909 * but takes a size argument.
1911 * Called within RCU critical section.
1913 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1916 RAMBlock
*block
= ram_block
;
1917 ram_addr_t offset_inside_block
;
1922 if (block
== NULL
) {
1923 block
= qemu_get_ram_block(addr
);
1925 offset_inside_block
= addr
- block
->offset
;
1926 *size
= MIN(*size
, block
->max_length
- offset_inside_block
);
1928 if (xen_enabled() && block
->host
== NULL
) {
1929 /* We need to check if the requested address is in the RAM
1930 * because we don't want to map the entire memory in QEMU.
1931 * In that case just map the requested area.
1933 if (block
->offset
== 0) {
1934 return xen_map_cache(addr
, *size
, 1);
1937 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1940 return ramblock_ptr(block
, offset_inside_block
);
1944 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1947 * ptr: Host pointer to look up
1948 * round_offset: If true round the result offset down to a page boundary
1949 * *ram_addr: set to result ram_addr
1950 * *offset: set to result offset within the RAMBlock
1952 * Returns: RAMBlock (or NULL if not found)
1954 * By the time this function returns, the returned pointer is not protected
1955 * by RCU anymore. If the caller is not within an RCU critical section and
1956 * does not hold the iothread lock, it must have other means of protecting the
1957 * pointer, such as a reference to the region that includes the incoming
1960 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1961 ram_addr_t
*ram_addr
,
1965 uint8_t *host
= ptr
;
1967 if (xen_enabled()) {
1969 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1970 block
= qemu_get_ram_block(*ram_addr
);
1972 *offset
= (host
- block
->host
);
1979 block
= atomic_rcu_read(&ram_list
.mru_block
);
1980 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1984 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1985 /* This case append when the block is not mapped. */
1986 if (block
->host
== NULL
) {
1989 if (host
- block
->host
< block
->max_length
) {
1998 *offset
= (host
- block
->host
);
2000 *offset
&= TARGET_PAGE_MASK
;
2002 *ram_addr
= block
->offset
+ *offset
;
2008 * Finds the named RAMBlock
2010 * name: The name of RAMBlock to find
2012 * Returns: RAMBlock (or NULL if not found)
2014 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2018 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2019 if (!strcmp(name
, block
->idstr
)) {
2027 /* Some of the softmmu routines need to translate from a host pointer
2028 (typically a TLB entry) back to a ram offset. */
2029 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2032 ram_addr_t offset
; /* Not used */
2034 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
2043 /* Called within RCU critical section. */
2044 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2045 uint64_t val
, unsigned size
)
2047 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2048 tb_invalidate_phys_page_fast(ram_addr
, size
);
2052 stb_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2055 stw_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2058 stl_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2063 /* Set both VGA and migration bits for simplicity and to remove
2064 * the notdirty callback faster.
2066 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2067 DIRTY_CLIENTS_NOCODE
);
2068 /* we remove the notdirty callback only if the code has been
2070 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2071 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2075 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2076 unsigned size
, bool is_write
)
2081 static const MemoryRegionOps notdirty_mem_ops
= {
2082 .write
= notdirty_mem_write
,
2083 .valid
.accepts
= notdirty_mem_accepts
,
2084 .endianness
= DEVICE_NATIVE_ENDIAN
,
2087 /* Generate a debug exception if a watchpoint has been hit. */
2088 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2090 CPUState
*cpu
= current_cpu
;
2091 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2092 CPUArchState
*env
= cpu
->env_ptr
;
2093 target_ulong pc
, cs_base
;
2098 if (cpu
->watchpoint_hit
) {
2099 /* We re-entered the check after replacing the TB. Now raise
2100 * the debug interrupt so that is will trigger after the
2101 * current instruction. */
2102 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2105 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2106 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2107 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2108 && (wp
->flags
& flags
)) {
2109 if (flags
== BP_MEM_READ
) {
2110 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2112 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2114 wp
->hitaddr
= vaddr
;
2115 wp
->hitattrs
= attrs
;
2116 if (!cpu
->watchpoint_hit
) {
2117 if (wp
->flags
& BP_CPU
&&
2118 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2119 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2122 cpu
->watchpoint_hit
= wp
;
2123 tb_check_watchpoint(cpu
);
2124 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2125 cpu
->exception_index
= EXCP_DEBUG
;
2128 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2129 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2130 cpu_resume_from_signal(cpu
, NULL
);
2134 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2139 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2140 so these check for a hit then pass through to the normal out-of-line
2142 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2143 unsigned size
, MemTxAttrs attrs
)
2147 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2148 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2150 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2153 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2156 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2159 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2167 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2168 uint64_t val
, unsigned size
,
2172 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2173 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2175 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2178 address_space_stb(as
, addr
, val
, attrs
, &res
);
2181 address_space_stw(as
, addr
, val
, attrs
, &res
);
2184 address_space_stl(as
, addr
, val
, attrs
, &res
);
2191 static const MemoryRegionOps watch_mem_ops
= {
2192 .read_with_attrs
= watch_mem_read
,
2193 .write_with_attrs
= watch_mem_write
,
2194 .endianness
= DEVICE_NATIVE_ENDIAN
,
2197 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2198 unsigned len
, MemTxAttrs attrs
)
2200 subpage_t
*subpage
= opaque
;
2204 #if defined(DEBUG_SUBPAGE)
2205 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2206 subpage
, len
, addr
);
2208 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2215 *data
= ldub_p(buf
);
2218 *data
= lduw_p(buf
);
2231 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2232 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2234 subpage_t
*subpage
= opaque
;
2237 #if defined(DEBUG_SUBPAGE)
2238 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2239 " value %"PRIx64
"\n",
2240 __func__
, subpage
, len
, addr
, value
);
2258 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2262 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2263 unsigned len
, bool is_write
)
2265 subpage_t
*subpage
= opaque
;
2266 #if defined(DEBUG_SUBPAGE)
2267 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2268 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2271 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2275 static const MemoryRegionOps subpage_ops
= {
2276 .read_with_attrs
= subpage_read
,
2277 .write_with_attrs
= subpage_write
,
2278 .impl
.min_access_size
= 1,
2279 .impl
.max_access_size
= 8,
2280 .valid
.min_access_size
= 1,
2281 .valid
.max_access_size
= 8,
2282 .valid
.accepts
= subpage_accepts
,
2283 .endianness
= DEVICE_NATIVE_ENDIAN
,
2286 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2291 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2293 idx
= SUBPAGE_IDX(start
);
2294 eidx
= SUBPAGE_IDX(end
);
2295 #if defined(DEBUG_SUBPAGE)
2296 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2297 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2299 for (; idx
<= eidx
; idx
++) {
2300 mmio
->sub_section
[idx
] = section
;
2306 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2310 mmio
= g_malloc0(sizeof(subpage_t
));
2314 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2315 NULL
, TARGET_PAGE_SIZE
);
2316 mmio
->iomem
.subpage
= true;
2317 #if defined(DEBUG_SUBPAGE)
2318 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2319 mmio
, base
, TARGET_PAGE_SIZE
);
2321 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2326 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2330 MemoryRegionSection section
= {
2331 .address_space
= as
,
2333 .offset_within_address_space
= 0,
2334 .offset_within_region
= 0,
2335 .size
= int128_2_64(),
2338 return phys_section_add(map
, §ion
);
2341 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2343 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2344 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2345 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2346 MemoryRegionSection
*sections
= d
->map
.sections
;
2348 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2351 static void io_mem_init(void)
2353 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2354 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2356 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2358 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2362 static void mem_begin(MemoryListener
*listener
)
2364 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2365 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2368 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2369 assert(n
== PHYS_SECTION_UNASSIGNED
);
2370 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2371 assert(n
== PHYS_SECTION_NOTDIRTY
);
2372 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2373 assert(n
== PHYS_SECTION_ROM
);
2374 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2375 assert(n
== PHYS_SECTION_WATCH
);
2377 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2379 as
->next_dispatch
= d
;
2382 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2384 phys_sections_free(&d
->map
);
2388 static void mem_commit(MemoryListener
*listener
)
2390 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2391 AddressSpaceDispatch
*cur
= as
->dispatch
;
2392 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2394 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2396 atomic_rcu_set(&as
->dispatch
, next
);
2398 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2402 static void tcg_commit(MemoryListener
*listener
)
2404 CPUAddressSpace
*cpuas
;
2405 AddressSpaceDispatch
*d
;
2407 /* since each CPU stores ram addresses in its TLB cache, we must
2408 reset the modified entries */
2409 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2410 cpu_reloading_memory_map();
2411 /* The CPU and TLB are protected by the iothread lock.
2412 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2413 * may have split the RCU critical section.
2415 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2416 cpuas
->memory_dispatch
= d
;
2417 tlb_flush(cpuas
->cpu
, 1);
2420 void address_space_init_dispatch(AddressSpace
*as
)
2422 as
->dispatch
= NULL
;
2423 as
->dispatch_listener
= (MemoryListener
) {
2425 .commit
= mem_commit
,
2426 .region_add
= mem_add
,
2427 .region_nop
= mem_add
,
2430 memory_listener_register(&as
->dispatch_listener
, as
);
2433 void address_space_unregister(AddressSpace
*as
)
2435 memory_listener_unregister(&as
->dispatch_listener
);
2438 void address_space_destroy_dispatch(AddressSpace
*as
)
2440 AddressSpaceDispatch
*d
= as
->dispatch
;
2442 atomic_rcu_set(&as
->dispatch
, NULL
);
2444 call_rcu(d
, address_space_dispatch_free
, rcu
);
2448 static void memory_map_init(void)
2450 system_memory
= g_malloc(sizeof(*system_memory
));
2452 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2453 address_space_init(&address_space_memory
, system_memory
, "memory");
2455 system_io
= g_malloc(sizeof(*system_io
));
2456 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2458 address_space_init(&address_space_io
, system_io
, "I/O");
2461 MemoryRegion
*get_system_memory(void)
2463 return system_memory
;
2466 MemoryRegion
*get_system_io(void)
2471 #endif /* !defined(CONFIG_USER_ONLY) */
2473 /* physical memory access (slow version, mainly for debug) */
2474 #if defined(CONFIG_USER_ONLY)
2475 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2476 uint8_t *buf
, int len
, int is_write
)
2483 page
= addr
& TARGET_PAGE_MASK
;
2484 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2487 flags
= page_get_flags(page
);
2488 if (!(flags
& PAGE_VALID
))
2491 if (!(flags
& PAGE_WRITE
))
2493 /* XXX: this code should not depend on lock_user */
2494 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2497 unlock_user(p
, addr
, l
);
2499 if (!(flags
& PAGE_READ
))
2501 /* XXX: this code should not depend on lock_user */
2502 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2505 unlock_user(p
, addr
, 0);
2516 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2519 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2520 /* No early return if dirty_log_mask is or becomes 0, because
2521 * cpu_physical_memory_set_dirty_range will still call
2522 * xen_modified_memory.
2524 if (dirty_log_mask
) {
2526 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2528 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2529 tb_invalidate_phys_range(addr
, addr
+ length
);
2530 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2532 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2535 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2537 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2539 /* Regions are assumed to support 1-4 byte accesses unless
2540 otherwise specified. */
2541 if (access_size_max
== 0) {
2542 access_size_max
= 4;
2545 /* Bound the maximum access by the alignment of the address. */
2546 if (!mr
->ops
->impl
.unaligned
) {
2547 unsigned align_size_max
= addr
& -addr
;
2548 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2549 access_size_max
= align_size_max
;
2553 /* Don't attempt accesses larger than the maximum. */
2554 if (l
> access_size_max
) {
2555 l
= access_size_max
;
2562 static bool prepare_mmio_access(MemoryRegion
*mr
)
2564 bool unlocked
= !qemu_mutex_iothread_locked();
2565 bool release_lock
= false;
2567 if (unlocked
&& mr
->global_locking
) {
2568 qemu_mutex_lock_iothread();
2570 release_lock
= true;
2572 if (mr
->flush_coalesced_mmio
) {
2574 qemu_mutex_lock_iothread();
2576 qemu_flush_coalesced_mmio_buffer();
2578 qemu_mutex_unlock_iothread();
2582 return release_lock
;
2585 /* Called within RCU critical section. */
2586 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2589 int len
, hwaddr addr1
,
2590 hwaddr l
, MemoryRegion
*mr
)
2594 MemTxResult result
= MEMTX_OK
;
2595 bool release_lock
= false;
2598 if (!memory_access_is_direct(mr
, true)) {
2599 release_lock
|= prepare_mmio_access(mr
);
2600 l
= memory_access_size(mr
, l
, addr1
);
2601 /* XXX: could force current_cpu to NULL to avoid
2605 /* 64 bit write access */
2607 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2611 /* 32 bit write access */
2613 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2617 /* 16 bit write access */
2619 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2623 /* 8 bit write access */
2625 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2632 addr1
+= memory_region_get_ram_addr(mr
);
2634 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2635 memcpy(ptr
, buf
, l
);
2636 invalidate_and_set_dirty(mr
, addr1
, l
);
2640 qemu_mutex_unlock_iothread();
2641 release_lock
= false;
2653 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2659 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2660 const uint8_t *buf
, int len
)
2665 MemTxResult result
= MEMTX_OK
;
2670 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2671 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2679 /* Called within RCU critical section. */
2680 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2681 MemTxAttrs attrs
, uint8_t *buf
,
2682 int len
, hwaddr addr1
, hwaddr l
,
2687 MemTxResult result
= MEMTX_OK
;
2688 bool release_lock
= false;
2691 if (!memory_access_is_direct(mr
, false)) {
2693 release_lock
|= prepare_mmio_access(mr
);
2694 l
= memory_access_size(mr
, l
, addr1
);
2697 /* 64 bit read access */
2698 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2703 /* 32 bit read access */
2704 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2709 /* 16 bit read access */
2710 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2715 /* 8 bit read access */
2716 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2725 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
2726 memory_region_get_ram_addr(mr
) + addr1
);
2727 memcpy(buf
, ptr
, l
);
2731 qemu_mutex_unlock_iothread();
2732 release_lock
= false;
2744 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2750 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2751 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2756 MemTxResult result
= MEMTX_OK
;
2761 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2762 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2770 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2771 uint8_t *buf
, int len
, bool is_write
)
2774 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2776 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2780 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2781 int len
, int is_write
)
2783 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2784 buf
, len
, is_write
);
2787 enum write_rom_type
{
2792 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2793 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2803 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2805 if (!(memory_region_is_ram(mr
) ||
2806 memory_region_is_romd(mr
))) {
2807 l
= memory_access_size(mr
, l
, addr1
);
2809 addr1
+= memory_region_get_ram_addr(mr
);
2811 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2814 memcpy(ptr
, buf
, l
);
2815 invalidate_and_set_dirty(mr
, addr1
, l
);
2818 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2829 /* used for ROM loading : can write in RAM and ROM */
2830 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2831 const uint8_t *buf
, int len
)
2833 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2836 void cpu_flush_icache_range(hwaddr start
, int len
)
2839 * This function should do the same thing as an icache flush that was
2840 * triggered from within the guest. For TCG we are always cache coherent,
2841 * so there is no need to flush anything. For KVM / Xen we need to flush
2842 * the host's instruction cache at least.
2844 if (tcg_enabled()) {
2848 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2849 start
, NULL
, len
, FLUSH_CACHE
);
2860 static BounceBuffer bounce
;
2862 typedef struct MapClient
{
2864 QLIST_ENTRY(MapClient
) link
;
2867 QemuMutex map_client_list_lock
;
2868 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2869 = QLIST_HEAD_INITIALIZER(map_client_list
);
2871 static void cpu_unregister_map_client_do(MapClient
*client
)
2873 QLIST_REMOVE(client
, link
);
2877 static void cpu_notify_map_clients_locked(void)
2881 while (!QLIST_EMPTY(&map_client_list
)) {
2882 client
= QLIST_FIRST(&map_client_list
);
2883 qemu_bh_schedule(client
->bh
);
2884 cpu_unregister_map_client_do(client
);
2888 void cpu_register_map_client(QEMUBH
*bh
)
2890 MapClient
*client
= g_malloc(sizeof(*client
));
2892 qemu_mutex_lock(&map_client_list_lock
);
2894 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2895 if (!atomic_read(&bounce
.in_use
)) {
2896 cpu_notify_map_clients_locked();
2898 qemu_mutex_unlock(&map_client_list_lock
);
2901 void cpu_exec_init_all(void)
2903 qemu_mutex_init(&ram_list
.mutex
);
2906 qemu_mutex_init(&map_client_list_lock
);
2909 void cpu_unregister_map_client(QEMUBH
*bh
)
2913 qemu_mutex_lock(&map_client_list_lock
);
2914 QLIST_FOREACH(client
, &map_client_list
, link
) {
2915 if (client
->bh
== bh
) {
2916 cpu_unregister_map_client_do(client
);
2920 qemu_mutex_unlock(&map_client_list_lock
);
2923 static void cpu_notify_map_clients(void)
2925 qemu_mutex_lock(&map_client_list_lock
);
2926 cpu_notify_map_clients_locked();
2927 qemu_mutex_unlock(&map_client_list_lock
);
2930 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2938 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2939 if (!memory_access_is_direct(mr
, is_write
)) {
2940 l
= memory_access_size(mr
, l
, addr
);
2941 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2953 /* Map a physical memory region into a host virtual address.
2954 * May map a subset of the requested range, given by and returned in *plen.
2955 * May return NULL if resources needed to perform the mapping are exhausted.
2956 * Use only for reads OR writes - not for read-modify-write operations.
2957 * Use cpu_register_map_client() to know when retrying the map operation is
2958 * likely to succeed.
2960 void *address_space_map(AddressSpace
*as
,
2967 hwaddr l
, xlat
, base
;
2968 MemoryRegion
*mr
, *this_mr
;
2978 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2980 if (!memory_access_is_direct(mr
, is_write
)) {
2981 if (atomic_xchg(&bounce
.in_use
, true)) {
2985 /* Avoid unbounded allocations */
2986 l
= MIN(l
, TARGET_PAGE_SIZE
);
2987 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2991 memory_region_ref(mr
);
2994 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3000 return bounce
.buffer
;
3004 raddr
= memory_region_get_ram_addr(mr
);
3015 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3016 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3021 memory_region_ref(mr
);
3023 ptr
= qemu_ram_ptr_length(mr
->ram_block
, raddr
+ base
, plen
);
3029 /* Unmaps a memory region previously mapped by address_space_map().
3030 * Will also mark the memory as dirty if is_write == 1. access_len gives
3031 * the amount of memory that was actually read or written by the caller.
3033 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3034 int is_write
, hwaddr access_len
)
3036 if (buffer
!= bounce
.buffer
) {
3040 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
3043 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3045 if (xen_enabled()) {
3046 xen_invalidate_map_cache_entry(buffer
);
3048 memory_region_unref(mr
);
3052 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3053 bounce
.buffer
, access_len
);
3055 qemu_vfree(bounce
.buffer
);
3056 bounce
.buffer
= NULL
;
3057 memory_region_unref(bounce
.mr
);
3058 atomic_mb_set(&bounce
.in_use
, false);
3059 cpu_notify_map_clients();
3062 void *cpu_physical_memory_map(hwaddr addr
,
3066 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3069 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3070 int is_write
, hwaddr access_len
)
3072 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3075 /* warning: addr must be aligned */
3076 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3078 MemTxResult
*result
,
3079 enum device_endian endian
)
3087 bool release_lock
= false;
3090 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3091 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3092 release_lock
|= prepare_mmio_access(mr
);
3095 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3096 #if defined(TARGET_WORDS_BIGENDIAN)
3097 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3101 if (endian
== DEVICE_BIG_ENDIAN
) {
3107 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3108 memory_region_get_ram_addr(mr
) + addr1
);
3110 case DEVICE_LITTLE_ENDIAN
:
3111 val
= ldl_le_p(ptr
);
3113 case DEVICE_BIG_ENDIAN
:
3114 val
= ldl_be_p(ptr
);
3126 qemu_mutex_unlock_iothread();
3132 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3133 MemTxAttrs attrs
, MemTxResult
*result
)
3135 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3136 DEVICE_NATIVE_ENDIAN
);
3139 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3140 MemTxAttrs attrs
, MemTxResult
*result
)
3142 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3143 DEVICE_LITTLE_ENDIAN
);
3146 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3147 MemTxAttrs attrs
, MemTxResult
*result
)
3149 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3153 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3155 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3158 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3160 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3163 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3165 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3168 /* warning: addr must be aligned */
3169 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3171 MemTxResult
*result
,
3172 enum device_endian endian
)
3180 bool release_lock
= false;
3183 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3185 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3186 release_lock
|= prepare_mmio_access(mr
);
3189 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3190 #if defined(TARGET_WORDS_BIGENDIAN)
3191 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3195 if (endian
== DEVICE_BIG_ENDIAN
) {
3201 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3202 memory_region_get_ram_addr(mr
) + addr1
);
3204 case DEVICE_LITTLE_ENDIAN
:
3205 val
= ldq_le_p(ptr
);
3207 case DEVICE_BIG_ENDIAN
:
3208 val
= ldq_be_p(ptr
);
3220 qemu_mutex_unlock_iothread();
3226 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3227 MemTxAttrs attrs
, MemTxResult
*result
)
3229 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3230 DEVICE_NATIVE_ENDIAN
);
3233 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3234 MemTxAttrs attrs
, MemTxResult
*result
)
3236 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3237 DEVICE_LITTLE_ENDIAN
);
3240 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3241 MemTxAttrs attrs
, MemTxResult
*result
)
3243 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3247 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3249 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3252 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3254 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3257 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3259 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3263 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3264 MemTxAttrs attrs
, MemTxResult
*result
)
3269 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3276 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3278 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3281 /* warning: addr must be aligned */
3282 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3285 MemTxResult
*result
,
3286 enum device_endian endian
)
3294 bool release_lock
= false;
3297 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3299 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3300 release_lock
|= prepare_mmio_access(mr
);
3303 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3304 #if defined(TARGET_WORDS_BIGENDIAN)
3305 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3309 if (endian
== DEVICE_BIG_ENDIAN
) {
3315 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3316 memory_region_get_ram_addr(mr
) + addr1
);
3318 case DEVICE_LITTLE_ENDIAN
:
3319 val
= lduw_le_p(ptr
);
3321 case DEVICE_BIG_ENDIAN
:
3322 val
= lduw_be_p(ptr
);
3334 qemu_mutex_unlock_iothread();
3340 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3341 MemTxAttrs attrs
, MemTxResult
*result
)
3343 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3344 DEVICE_NATIVE_ENDIAN
);
3347 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3348 MemTxAttrs attrs
, MemTxResult
*result
)
3350 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3351 DEVICE_LITTLE_ENDIAN
);
3354 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3355 MemTxAttrs attrs
, MemTxResult
*result
)
3357 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3361 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3363 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3366 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3368 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3371 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3373 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3376 /* warning: addr must be aligned. The ram page is not masked as dirty
3377 and the code inside is not invalidated. It is useful if the dirty
3378 bits are used to track modified PTEs */
3379 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3380 MemTxAttrs attrs
, MemTxResult
*result
)
3387 uint8_t dirty_log_mask
;
3388 bool release_lock
= false;
3391 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3393 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3394 release_lock
|= prepare_mmio_access(mr
);
3396 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3398 addr1
+= memory_region_get_ram_addr(mr
);
3399 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3402 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3403 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3404 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3411 qemu_mutex_unlock_iothread();
3416 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3418 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3421 /* warning: addr must be aligned */
3422 static inline void address_space_stl_internal(AddressSpace
*as
,
3423 hwaddr addr
, uint32_t val
,
3425 MemTxResult
*result
,
3426 enum device_endian endian
)
3433 bool release_lock
= false;
3436 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3438 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3439 release_lock
|= prepare_mmio_access(mr
);
3441 #if defined(TARGET_WORDS_BIGENDIAN)
3442 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3446 if (endian
== DEVICE_BIG_ENDIAN
) {
3450 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3453 addr1
+= memory_region_get_ram_addr(mr
);
3454 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3456 case DEVICE_LITTLE_ENDIAN
:
3459 case DEVICE_BIG_ENDIAN
:
3466 invalidate_and_set_dirty(mr
, addr1
, 4);
3473 qemu_mutex_unlock_iothread();
3478 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3479 MemTxAttrs attrs
, MemTxResult
*result
)
3481 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3482 DEVICE_NATIVE_ENDIAN
);
3485 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3486 MemTxAttrs attrs
, MemTxResult
*result
)
3488 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3489 DEVICE_LITTLE_ENDIAN
);
3492 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3493 MemTxAttrs attrs
, MemTxResult
*result
)
3495 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3499 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3501 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3504 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3506 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3509 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3511 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3515 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3516 MemTxAttrs attrs
, MemTxResult
*result
)
3521 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3527 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3529 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3532 /* warning: addr must be aligned */
3533 static inline void address_space_stw_internal(AddressSpace
*as
,
3534 hwaddr addr
, uint32_t val
,
3536 MemTxResult
*result
,
3537 enum device_endian endian
)
3544 bool release_lock
= false;
3547 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3548 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3549 release_lock
|= prepare_mmio_access(mr
);
3551 #if defined(TARGET_WORDS_BIGENDIAN)
3552 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3556 if (endian
== DEVICE_BIG_ENDIAN
) {
3560 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3563 addr1
+= memory_region_get_ram_addr(mr
);
3564 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3566 case DEVICE_LITTLE_ENDIAN
:
3569 case DEVICE_BIG_ENDIAN
:
3576 invalidate_and_set_dirty(mr
, addr1
, 2);
3583 qemu_mutex_unlock_iothread();
3588 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3589 MemTxAttrs attrs
, MemTxResult
*result
)
3591 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3592 DEVICE_NATIVE_ENDIAN
);
3595 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3596 MemTxAttrs attrs
, MemTxResult
*result
)
3598 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3599 DEVICE_LITTLE_ENDIAN
);
3602 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3603 MemTxAttrs attrs
, MemTxResult
*result
)
3605 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3609 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3611 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3614 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3616 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3619 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3621 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3625 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3626 MemTxAttrs attrs
, MemTxResult
*result
)
3630 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3636 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3637 MemTxAttrs attrs
, MemTxResult
*result
)
3640 val
= cpu_to_le64(val
);
3641 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3646 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3647 MemTxAttrs attrs
, MemTxResult
*result
)
3650 val
= cpu_to_be64(val
);
3651 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3657 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3659 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3662 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3664 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3667 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3669 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3672 /* virtual memory access for debug (includes writing to ROM) */
3673 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3674 uint8_t *buf
, int len
, int is_write
)
3684 page
= addr
& TARGET_PAGE_MASK
;
3685 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3686 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3687 /* if no physical page mapped, return an error */
3688 if (phys_addr
== -1)
3690 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3693 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3695 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3698 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3699 MEMTXATTRS_UNSPECIFIED
,
3710 * Allows code that needs to deal with migration bitmaps etc to still be built
3711 * target independent.
3713 size_t qemu_target_page_bits(void)
3715 return TARGET_PAGE_BITS
;
3721 * A helper function for the _utterly broken_ virtio device model to find out if
3722 * it's running on a big endian machine. Don't do this at home kids!
3724 bool target_words_bigendian(void);
3725 bool target_words_bigendian(void)
3727 #if defined(TARGET_WORDS_BIGENDIAN)
3734 #ifndef CONFIG_USER_ONLY
3735 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3742 mr
= address_space_translate(&address_space_memory
,
3743 phys_addr
, &phys_addr
, &l
, false);
3745 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3750 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3756 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3757 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3758 block
->used_length
, opaque
);