qdev/isa: convert gravis ultrasound
[qemu.git] / gdbstub.c
blob33d79ebcb9eb70bc98e1bfa29a135d11adfe111a
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
41 #include "kvm.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
215 #endif
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
226 static int gdb_signal_table[] = {
229 TARGET_SIGINT,
232 TARGET_SIGTRAP
234 #endif
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
245 #endif
247 static int gdb_signal_to_target (int sig)
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
255 //#define DEBUG_GDB
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
266 enum RSState {
267 RS_INACTIVE,
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
299 static GDBState *gdbserver_state;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
310 static int get_char(GDBState *s)
312 uint8_t ch;
313 int ret;
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
330 return ch;
332 #endif
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
336 static enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
365 #ifdef CONFIG_USER_ONLY
366 int ret;
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
383 static inline int fromhex(int v)
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
395 static inline int tohex(int v)
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
403 static void memtohex(char *buf, const uint8_t *mem, int len)
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
413 *q = '\0';
416 static void hextomem(uint8_t *mem, const char *buf, int len)
418 int i;
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
429 int csum, i;
430 uint8_t *p;
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
458 return 0;
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
468 return put_packet_binary(s, buf, strlen(buf));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
500 #if defined(TARGET_I386)
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
507 #else
508 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
509 #endif
511 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513 #define IDX_IP_REG CPU_NB_REGS
514 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
515 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
516 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
517 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
518 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
520 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
522 if (n < CPU_NB_REGS) {
523 GET_REGL(env->regs[gpr_map[n]]);
524 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
525 #ifdef USE_X86LDOUBLE
526 /* FIXME: byteswap float values - after fixing fpregs layout. */
527 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
528 #else
529 memset(mem_buf, 0, 10);
530 #endif
531 return 10;
532 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
533 n -= IDX_XMM_REGS;
534 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
535 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
536 return 16;
537 } else {
538 switch (n) {
539 case IDX_IP_REG: GET_REGL(env->eip);
540 case IDX_FLAGS_REG: GET_REG32(env->eflags);
542 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
543 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
544 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
545 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
546 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
547 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
549 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
550 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
551 (env->fpstt & 0x7) << 11);
552 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
553 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
554 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
555 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
556 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
557 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
559 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
562 return 0;
565 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
567 uint16_t selector = ldl_p(mem_buf);
569 if (selector != env->segs[sreg].selector) {
570 #if defined(CONFIG_USER_ONLY)
571 cpu_x86_load_seg(env, sreg, selector);
572 #else
573 unsigned int limit, flags;
574 target_ulong base;
576 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
577 base = selector << 4;
578 limit = 0xffff;
579 flags = 0;
580 } else {
581 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
582 return 4;
584 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
585 #endif
587 return 4;
590 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
592 uint32_t tmp;
594 if (n < CPU_NB_REGS) {
595 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
596 return sizeof(target_ulong);
597 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
598 #ifdef USE_X86LDOUBLE
599 /* FIXME: byteswap float values - after fixing fpregs layout. */
600 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
601 #endif
602 return 10;
603 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
604 n -= IDX_XMM_REGS;
605 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
606 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
607 return 16;
608 } else {
609 switch (n) {
610 case IDX_IP_REG:
611 env->eip = ldtul_p(mem_buf);
612 return sizeof(target_ulong);
613 case IDX_FLAGS_REG:
614 env->eflags = ldl_p(mem_buf);
615 return 4;
617 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
618 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
619 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
620 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
621 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
622 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
624 case IDX_FP_REGS + 8:
625 env->fpuc = ldl_p(mem_buf);
626 return 4;
627 case IDX_FP_REGS + 9:
628 tmp = ldl_p(mem_buf);
629 env->fpstt = (tmp >> 11) & 7;
630 env->fpus = tmp & ~0x3800;
631 return 4;
632 case IDX_FP_REGS + 10: /* ftag */ return 4;
633 case IDX_FP_REGS + 11: /* fiseg */ return 4;
634 case IDX_FP_REGS + 12: /* fioff */ return 4;
635 case IDX_FP_REGS + 13: /* foseg */ return 4;
636 case IDX_FP_REGS + 14: /* fooff */ return 4;
637 case IDX_FP_REGS + 15: /* fop */ return 4;
639 case IDX_MXCSR_REG:
640 env->mxcsr = ldl_p(mem_buf);
641 return 4;
644 /* Unrecognised register. */
645 return 0;
648 #elif defined (TARGET_PPC)
650 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
651 expects whatever the target description contains. Due to a
652 historical mishap the FP registers appear in between core integer
653 regs and PC, MSR, CR, and so forth. We hack round this by giving the
654 FP regs zero size when talking to a newer gdb. */
655 #define NUM_CORE_REGS 71
656 #if defined (TARGET_PPC64)
657 #define GDB_CORE_XML "power64-core.xml"
658 #else
659 #define GDB_CORE_XML "power-core.xml"
660 #endif
662 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
664 if (n < 32) {
665 /* gprs */
666 GET_REGL(env->gpr[n]);
667 } else if (n < 64) {
668 /* fprs */
669 if (gdb_has_xml)
670 return 0;
671 stfq_p(mem_buf, env->fpr[n-32]);
672 return 8;
673 } else {
674 switch (n) {
675 case 64: GET_REGL(env->nip);
676 case 65: GET_REGL(env->msr);
677 case 66:
679 uint32_t cr = 0;
680 int i;
681 for (i = 0; i < 8; i++)
682 cr |= env->crf[i] << (32 - ((i + 1) * 4));
683 GET_REG32(cr);
685 case 67: GET_REGL(env->lr);
686 case 68: GET_REGL(env->ctr);
687 case 69: GET_REGL(env->xer);
688 case 70:
690 if (gdb_has_xml)
691 return 0;
692 GET_REG32(0); /* fpscr */
696 return 0;
699 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
701 if (n < 32) {
702 /* gprs */
703 env->gpr[n] = ldtul_p(mem_buf);
704 return sizeof(target_ulong);
705 } else if (n < 64) {
706 /* fprs */
707 if (gdb_has_xml)
708 return 0;
709 env->fpr[n-32] = ldfq_p(mem_buf);
710 return 8;
711 } else {
712 switch (n) {
713 case 64:
714 env->nip = ldtul_p(mem_buf);
715 return sizeof(target_ulong);
716 case 65:
717 ppc_store_msr(env, ldtul_p(mem_buf));
718 return sizeof(target_ulong);
719 case 66:
721 uint32_t cr = ldl_p(mem_buf);
722 int i;
723 for (i = 0; i < 8; i++)
724 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
725 return 4;
727 case 67:
728 env->lr = ldtul_p(mem_buf);
729 return sizeof(target_ulong);
730 case 68:
731 env->ctr = ldtul_p(mem_buf);
732 return sizeof(target_ulong);
733 case 69:
734 env->xer = ldtul_p(mem_buf);
735 return sizeof(target_ulong);
736 case 70:
737 /* fpscr */
738 if (gdb_has_xml)
739 return 0;
740 return 4;
743 return 0;
746 #elif defined (TARGET_SPARC)
748 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
749 #define NUM_CORE_REGS 86
750 #else
751 #define NUM_CORE_REGS 72
752 #endif
754 #ifdef TARGET_ABI32
755 #define GET_REGA(val) GET_REG32(val)
756 #else
757 #define GET_REGA(val) GET_REGL(val)
758 #endif
760 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
762 if (n < 8) {
763 /* g0..g7 */
764 GET_REGA(env->gregs[n]);
766 if (n < 32) {
767 /* register window */
768 GET_REGA(env->regwptr[n - 8]);
770 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
771 if (n < 64) {
772 /* fprs */
773 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
775 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
776 switch (n) {
777 case 64: GET_REGA(env->y);
778 case 65: GET_REGA(GET_PSR(env));
779 case 66: GET_REGA(env->wim);
780 case 67: GET_REGA(env->tbr);
781 case 68: GET_REGA(env->pc);
782 case 69: GET_REGA(env->npc);
783 case 70: GET_REGA(env->fsr);
784 case 71: GET_REGA(0); /* csr */
785 default: GET_REGA(0);
787 #else
788 if (n < 64) {
789 /* f0-f31 */
790 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
792 if (n < 80) {
793 /* f32-f62 (double width, even numbers only) */
794 uint64_t val;
796 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
797 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
798 GET_REG64(val);
800 switch (n) {
801 case 80: GET_REGL(env->pc);
802 case 81: GET_REGL(env->npc);
803 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
804 ((env->asi & 0xff) << 24) |
805 ((env->pstate & 0xfff) << 8) |
806 GET_CWP64(env));
807 case 83: GET_REGL(env->fsr);
808 case 84: GET_REGL(env->fprs);
809 case 85: GET_REGL(env->y);
811 #endif
812 return 0;
815 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
817 #if defined(TARGET_ABI32)
818 abi_ulong tmp;
820 tmp = ldl_p(mem_buf);
821 #else
822 target_ulong tmp;
824 tmp = ldtul_p(mem_buf);
825 #endif
827 if (n < 8) {
828 /* g0..g7 */
829 env->gregs[n] = tmp;
830 } else if (n < 32) {
831 /* register window */
832 env->regwptr[n - 8] = tmp;
834 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
835 else if (n < 64) {
836 /* fprs */
837 *((uint32_t *)&env->fpr[n - 32]) = tmp;
838 } else {
839 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
840 switch (n) {
841 case 64: env->y = tmp; break;
842 case 65: PUT_PSR(env, tmp); break;
843 case 66: env->wim = tmp; break;
844 case 67: env->tbr = tmp; break;
845 case 68: env->pc = tmp; break;
846 case 69: env->npc = tmp; break;
847 case 70: env->fsr = tmp; break;
848 default: return 0;
851 return 4;
852 #else
853 else if (n < 64) {
854 /* f0-f31 */
855 env->fpr[n] = ldfl_p(mem_buf);
856 return 4;
857 } else if (n < 80) {
858 /* f32-f62 (double width, even numbers only) */
859 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
860 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
861 } else {
862 switch (n) {
863 case 80: env->pc = tmp; break;
864 case 81: env->npc = tmp; break;
865 case 82:
866 PUT_CCR(env, tmp >> 32);
867 env->asi = (tmp >> 24) & 0xff;
868 env->pstate = (tmp >> 8) & 0xfff;
869 PUT_CWP64(env, tmp & 0xff);
870 break;
871 case 83: env->fsr = tmp; break;
872 case 84: env->fprs = tmp; break;
873 case 85: env->y = tmp; break;
874 default: return 0;
877 return 8;
878 #endif
880 #elif defined (TARGET_ARM)
882 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
883 whatever the target description contains. Due to a historical mishap
884 the FPA registers appear in between core integer regs and the CPSR.
885 We hack round this by giving the FPA regs zero size when talking to a
886 newer gdb. */
887 #define NUM_CORE_REGS 26
888 #define GDB_CORE_XML "arm-core.xml"
890 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
892 if (n < 16) {
893 /* Core integer register. */
894 GET_REG32(env->regs[n]);
896 if (n < 24) {
897 /* FPA registers. */
898 if (gdb_has_xml)
899 return 0;
900 memset(mem_buf, 0, 12);
901 return 12;
903 switch (n) {
904 case 24:
905 /* FPA status register. */
906 if (gdb_has_xml)
907 return 0;
908 GET_REG32(0);
909 case 25:
910 /* CPSR */
911 GET_REG32(cpsr_read(env));
913 /* Unknown register. */
914 return 0;
917 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
919 uint32_t tmp;
921 tmp = ldl_p(mem_buf);
923 /* Mask out low bit of PC to workaround gdb bugs. This will probably
924 cause problems if we ever implement the Jazelle DBX extensions. */
925 if (n == 15)
926 tmp &= ~1;
928 if (n < 16) {
929 /* Core integer register. */
930 env->regs[n] = tmp;
931 return 4;
933 if (n < 24) { /* 16-23 */
934 /* FPA registers (ignored). */
935 if (gdb_has_xml)
936 return 0;
937 return 12;
939 switch (n) {
940 case 24:
941 /* FPA status register (ignored). */
942 if (gdb_has_xml)
943 return 0;
944 return 4;
945 case 25:
946 /* CPSR */
947 cpsr_write (env, tmp, 0xffffffff);
948 return 4;
950 /* Unknown register. */
951 return 0;
954 #elif defined (TARGET_M68K)
956 #define NUM_CORE_REGS 18
958 #define GDB_CORE_XML "cf-core.xml"
960 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
962 if (n < 8) {
963 /* D0-D7 */
964 GET_REG32(env->dregs[n]);
965 } else if (n < 16) {
966 /* A0-A7 */
967 GET_REG32(env->aregs[n - 8]);
968 } else {
969 switch (n) {
970 case 16: GET_REG32(env->sr);
971 case 17: GET_REG32(env->pc);
974 /* FP registers not included here because they vary between
975 ColdFire and m68k. Use XML bits for these. */
976 return 0;
979 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
981 uint32_t tmp;
983 tmp = ldl_p(mem_buf);
985 if (n < 8) {
986 /* D0-D7 */
987 env->dregs[n] = tmp;
988 } else if (n < 8) {
989 /* A0-A7 */
990 env->aregs[n - 8] = tmp;
991 } else {
992 switch (n) {
993 case 16: env->sr = tmp; break;
994 case 17: env->pc = tmp; break;
995 default: return 0;
998 return 4;
1000 #elif defined (TARGET_MIPS)
1002 #define NUM_CORE_REGS 73
1004 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1006 if (n < 32) {
1007 GET_REGL(env->active_tc.gpr[n]);
1009 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1010 if (n >= 38 && n < 70) {
1011 if (env->CP0_Status & (1 << CP0St_FR))
1012 GET_REGL(env->active_fpu.fpr[n - 38].d);
1013 else
1014 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1016 switch (n) {
1017 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1018 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1021 switch (n) {
1022 case 32: GET_REGL((int32_t)env->CP0_Status);
1023 case 33: GET_REGL(env->active_tc.LO[0]);
1024 case 34: GET_REGL(env->active_tc.HI[0]);
1025 case 35: GET_REGL(env->CP0_BadVAddr);
1026 case 36: GET_REGL((int32_t)env->CP0_Cause);
1027 case 37: GET_REGL(env->active_tc.PC);
1028 case 72: GET_REGL(0); /* fp */
1029 case 89: GET_REGL((int32_t)env->CP0_PRid);
1031 if (n >= 73 && n <= 88) {
1032 /* 16 embedded regs. */
1033 GET_REGL(0);
1036 return 0;
1039 /* convert MIPS rounding mode in FCR31 to IEEE library */
1040 static unsigned int ieee_rm[] =
1042 float_round_nearest_even,
1043 float_round_to_zero,
1044 float_round_up,
1045 float_round_down
1047 #define RESTORE_ROUNDING_MODE \
1048 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1050 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1052 target_ulong tmp;
1054 tmp = ldtul_p(mem_buf);
1056 if (n < 32) {
1057 env->active_tc.gpr[n] = tmp;
1058 return sizeof(target_ulong);
1060 if (env->CP0_Config1 & (1 << CP0C1_FP)
1061 && n >= 38 && n < 73) {
1062 if (n < 70) {
1063 if (env->CP0_Status & (1 << CP0St_FR))
1064 env->active_fpu.fpr[n - 38].d = tmp;
1065 else
1066 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1068 switch (n) {
1069 case 70:
1070 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1071 /* set rounding mode */
1072 RESTORE_ROUNDING_MODE;
1073 #ifndef CONFIG_SOFTFLOAT
1074 /* no floating point exception for native float */
1075 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1076 #endif
1077 break;
1078 case 71: env->active_fpu.fcr0 = tmp; break;
1080 return sizeof(target_ulong);
1082 switch (n) {
1083 case 32: env->CP0_Status = tmp; break;
1084 case 33: env->active_tc.LO[0] = tmp; break;
1085 case 34: env->active_tc.HI[0] = tmp; break;
1086 case 35: env->CP0_BadVAddr = tmp; break;
1087 case 36: env->CP0_Cause = tmp; break;
1088 case 37: env->active_tc.PC = tmp; break;
1089 case 72: /* fp, ignored */ break;
1090 default:
1091 if (n > 89)
1092 return 0;
1093 /* Other registers are readonly. Ignore writes. */
1094 break;
1097 return sizeof(target_ulong);
1099 #elif defined (TARGET_SH4)
1101 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1102 /* FIXME: We should use XML for this. */
1104 #define NUM_CORE_REGS 59
1106 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1108 if (n < 8) {
1109 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1110 GET_REGL(env->gregs[n + 16]);
1111 } else {
1112 GET_REGL(env->gregs[n]);
1114 } else if (n < 16) {
1115 GET_REGL(env->gregs[n - 8]);
1116 } else if (n >= 25 && n < 41) {
1117 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1118 } else if (n >= 43 && n < 51) {
1119 GET_REGL(env->gregs[n - 43]);
1120 } else if (n >= 51 && n < 59) {
1121 GET_REGL(env->gregs[n - (51 - 16)]);
1123 switch (n) {
1124 case 16: GET_REGL(env->pc);
1125 case 17: GET_REGL(env->pr);
1126 case 18: GET_REGL(env->gbr);
1127 case 19: GET_REGL(env->vbr);
1128 case 20: GET_REGL(env->mach);
1129 case 21: GET_REGL(env->macl);
1130 case 22: GET_REGL(env->sr);
1131 case 23: GET_REGL(env->fpul);
1132 case 24: GET_REGL(env->fpscr);
1133 case 41: GET_REGL(env->ssr);
1134 case 42: GET_REGL(env->spc);
1137 return 0;
1140 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1142 uint32_t tmp;
1144 tmp = ldl_p(mem_buf);
1146 if (n < 8) {
1147 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1148 env->gregs[n + 16] = tmp;
1149 } else {
1150 env->gregs[n] = tmp;
1152 return 4;
1153 } else if (n < 16) {
1154 env->gregs[n - 8] = tmp;
1155 return 4;
1156 } else if (n >= 25 && n < 41) {
1157 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1158 } else if (n >= 43 && n < 51) {
1159 env->gregs[n - 43] = tmp;
1160 return 4;
1161 } else if (n >= 51 && n < 59) {
1162 env->gregs[n - (51 - 16)] = tmp;
1163 return 4;
1165 switch (n) {
1166 case 16: env->pc = tmp;
1167 case 17: env->pr = tmp;
1168 case 18: env->gbr = tmp;
1169 case 19: env->vbr = tmp;
1170 case 20: env->mach = tmp;
1171 case 21: env->macl = tmp;
1172 case 22: env->sr = tmp;
1173 case 23: env->fpul = tmp;
1174 case 24: env->fpscr = tmp;
1175 case 41: env->ssr = tmp;
1176 case 42: env->spc = tmp;
1177 default: return 0;
1180 return 4;
1182 #elif defined (TARGET_MICROBLAZE)
1184 #define NUM_CORE_REGS (32 + 5)
1186 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1188 if (n < 32) {
1189 GET_REG32(env->regs[n]);
1190 } else {
1191 GET_REG32(env->sregs[n - 32]);
1193 return 0;
1196 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1198 uint32_t tmp;
1200 if (n > NUM_CORE_REGS)
1201 return 0;
1203 tmp = ldl_p(mem_buf);
1205 if (n < 32) {
1206 env->regs[n] = tmp;
1207 } else {
1208 env->sregs[n - 32] = tmp;
1210 return 4;
1212 #elif defined (TARGET_CRIS)
1214 #define NUM_CORE_REGS 49
1216 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1218 uint8_t srs;
1220 srs = env->pregs[PR_SRS];
1221 if (n < 16) {
1222 GET_REG32(env->regs[n]);
1225 if (n >= 21 && n < 32) {
1226 GET_REG32(env->pregs[n - 16]);
1228 if (n >= 33 && n < 49) {
1229 GET_REG32(env->sregs[srs][n - 33]);
1231 switch (n) {
1232 case 16: GET_REG8(env->pregs[0]);
1233 case 17: GET_REG8(env->pregs[1]);
1234 case 18: GET_REG32(env->pregs[2]);
1235 case 19: GET_REG8(srs);
1236 case 20: GET_REG16(env->pregs[4]);
1237 case 32: GET_REG32(env->pc);
1240 return 0;
1243 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1245 uint32_t tmp;
1247 if (n > 49)
1248 return 0;
1250 tmp = ldl_p(mem_buf);
1252 if (n < 16) {
1253 env->regs[n] = tmp;
1256 if (n >= 21 && n < 32) {
1257 env->pregs[n - 16] = tmp;
1260 /* FIXME: Should support function regs be writable? */
1261 switch (n) {
1262 case 16: return 1;
1263 case 17: return 1;
1264 case 18: env->pregs[PR_PID] = tmp; break;
1265 case 19: return 1;
1266 case 20: return 2;
1267 case 32: env->pc = tmp; break;
1270 return 4;
1272 #elif defined (TARGET_ALPHA)
1274 #define NUM_CORE_REGS 65
1276 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1278 if (n < 31) {
1279 GET_REGL(env->ir[n]);
1281 else if (n == 31) {
1282 GET_REGL(0);
1284 else if (n<63) {
1285 uint64_t val;
1287 val=*((uint64_t *)&env->fir[n-32]);
1288 GET_REGL(val);
1290 else if (n==63) {
1291 GET_REGL(env->fpcr);
1293 else if (n==64) {
1294 GET_REGL(env->pc);
1296 else {
1297 GET_REGL(0);
1300 return 0;
1303 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1305 target_ulong tmp;
1306 tmp = ldtul_p(mem_buf);
1308 if (n < 31) {
1309 env->ir[n] = tmp;
1312 if (n > 31 && n < 63) {
1313 env->fir[n - 32] = ldfl_p(mem_buf);
1316 if (n == 64 ) {
1317 env->pc=tmp;
1320 return 8;
1322 #else
1324 #define NUM_CORE_REGS 0
1326 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1328 return 0;
1331 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1333 return 0;
1336 #endif
1338 static int num_g_regs = NUM_CORE_REGS;
1340 #ifdef GDB_CORE_XML
1341 /* Encode data using the encoding for 'x' packets. */
1342 static int memtox(char *buf, const char *mem, int len)
1344 char *p = buf;
1345 char c;
1347 while (len--) {
1348 c = *(mem++);
1349 switch (c) {
1350 case '#': case '$': case '*': case '}':
1351 *(p++) = '}';
1352 *(p++) = c ^ 0x20;
1353 break;
1354 default:
1355 *(p++) = c;
1356 break;
1359 return p - buf;
1362 static const char *get_feature_xml(const char *p, const char **newp)
1364 extern const char *const xml_builtin[][2];
1365 size_t len;
1366 int i;
1367 const char *name;
1368 static char target_xml[1024];
1370 len = 0;
1371 while (p[len] && p[len] != ':')
1372 len++;
1373 *newp = p + len;
1375 name = NULL;
1376 if (strncmp(p, "target.xml", len) == 0) {
1377 /* Generate the XML description for this CPU. */
1378 if (!target_xml[0]) {
1379 GDBRegisterState *r;
1381 snprintf(target_xml, sizeof(target_xml),
1382 "<?xml version=\"1.0\"?>"
1383 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1384 "<target>"
1385 "<xi:include href=\"%s\"/>",
1386 GDB_CORE_XML);
1388 for (r = first_cpu->gdb_regs; r; r = r->next) {
1389 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1390 pstrcat(target_xml, sizeof(target_xml), r->xml);
1391 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1393 pstrcat(target_xml, sizeof(target_xml), "</target>");
1395 return target_xml;
1397 for (i = 0; ; i++) {
1398 name = xml_builtin[i][0];
1399 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1400 break;
1402 return name ? xml_builtin[i][1] : NULL;
1404 #endif
1406 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1408 GDBRegisterState *r;
1410 if (reg < NUM_CORE_REGS)
1411 return cpu_gdb_read_register(env, mem_buf, reg);
1413 for (r = env->gdb_regs; r; r = r->next) {
1414 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1415 return r->get_reg(env, mem_buf, reg - r->base_reg);
1418 return 0;
1421 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1423 GDBRegisterState *r;
1425 if (reg < NUM_CORE_REGS)
1426 return cpu_gdb_write_register(env, mem_buf, reg);
1428 for (r = env->gdb_regs; r; r = r->next) {
1429 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1430 return r->set_reg(env, mem_buf, reg - r->base_reg);
1433 return 0;
1436 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1437 specifies the first register number and these registers are included in
1438 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1439 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1442 void gdb_register_coprocessor(CPUState * env,
1443 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1444 int num_regs, const char *xml, int g_pos)
1446 GDBRegisterState *s;
1447 GDBRegisterState **p;
1448 static int last_reg = NUM_CORE_REGS;
1450 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1451 s->base_reg = last_reg;
1452 s->num_regs = num_regs;
1453 s->get_reg = get_reg;
1454 s->set_reg = set_reg;
1455 s->xml = xml;
1456 p = &env->gdb_regs;
1457 while (*p) {
1458 /* Check for duplicates. */
1459 if (strcmp((*p)->xml, xml) == 0)
1460 return;
1461 p = &(*p)->next;
1463 /* Add to end of list. */
1464 last_reg += num_regs;
1465 *p = s;
1466 if (g_pos) {
1467 if (g_pos != s->base_reg) {
1468 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1469 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1470 } else {
1471 num_g_regs = last_reg;
1476 #ifndef CONFIG_USER_ONLY
1477 static const int xlat_gdb_type[] = {
1478 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1479 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1480 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1482 #endif
1484 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1486 CPUState *env;
1487 int err = 0;
1489 if (kvm_enabled())
1490 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1492 switch (type) {
1493 case GDB_BREAKPOINT_SW:
1494 case GDB_BREAKPOINT_HW:
1495 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1496 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1497 if (err)
1498 break;
1500 return err;
1501 #ifndef CONFIG_USER_ONLY
1502 case GDB_WATCHPOINT_WRITE:
1503 case GDB_WATCHPOINT_READ:
1504 case GDB_WATCHPOINT_ACCESS:
1505 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1506 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1507 NULL);
1508 if (err)
1509 break;
1511 return err;
1512 #endif
1513 default:
1514 return -ENOSYS;
1518 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1520 CPUState *env;
1521 int err = 0;
1523 if (kvm_enabled())
1524 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1526 switch (type) {
1527 case GDB_BREAKPOINT_SW:
1528 case GDB_BREAKPOINT_HW:
1529 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1530 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1531 if (err)
1532 break;
1534 return err;
1535 #ifndef CONFIG_USER_ONLY
1536 case GDB_WATCHPOINT_WRITE:
1537 case GDB_WATCHPOINT_READ:
1538 case GDB_WATCHPOINT_ACCESS:
1539 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1540 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1541 if (err)
1542 break;
1544 return err;
1545 #endif
1546 default:
1547 return -ENOSYS;
1551 static void gdb_breakpoint_remove_all(void)
1553 CPUState *env;
1555 if (kvm_enabled()) {
1556 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1557 return;
1560 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1561 cpu_breakpoint_remove_all(env, BP_GDB);
1562 #ifndef CONFIG_USER_ONLY
1563 cpu_watchpoint_remove_all(env, BP_GDB);
1564 #endif
1568 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1570 #if defined(TARGET_I386)
1571 cpu_synchronize_state(s->c_cpu);
1572 s->c_cpu->eip = pc;
1573 #elif defined (TARGET_PPC)
1574 s->c_cpu->nip = pc;
1575 #elif defined (TARGET_SPARC)
1576 s->c_cpu->pc = pc;
1577 s->c_cpu->npc = pc + 4;
1578 #elif defined (TARGET_ARM)
1579 s->c_cpu->regs[15] = pc;
1580 #elif defined (TARGET_SH4)
1581 s->c_cpu->pc = pc;
1582 #elif defined (TARGET_MIPS)
1583 s->c_cpu->active_tc.PC = pc;
1584 #elif defined (TARGET_MICROBLAZE)
1585 s->c_cpu->sregs[SR_PC] = pc;
1586 #elif defined (TARGET_CRIS)
1587 s->c_cpu->pc = pc;
1588 #elif defined (TARGET_ALPHA)
1589 s->c_cpu->pc = pc;
1590 #endif
1593 static inline int gdb_id(CPUState *env)
1595 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1596 return env->host_tid;
1597 #else
1598 return env->cpu_index + 1;
1599 #endif
1602 static CPUState *find_cpu(uint32_t thread_id)
1604 CPUState *env;
1606 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1607 if (gdb_id(env) == thread_id) {
1608 return env;
1612 return NULL;
1615 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1617 CPUState *env;
1618 const char *p;
1619 uint32_t thread;
1620 int ch, reg_size, type, res;
1621 char buf[MAX_PACKET_LENGTH];
1622 uint8_t mem_buf[MAX_PACKET_LENGTH];
1623 uint8_t *registers;
1624 target_ulong addr, len;
1626 #ifdef DEBUG_GDB
1627 printf("command='%s'\n", line_buf);
1628 #endif
1629 p = line_buf;
1630 ch = *p++;
1631 switch(ch) {
1632 case '?':
1633 /* TODO: Make this return the correct value for user-mode. */
1634 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1635 gdb_id(s->c_cpu));
1636 put_packet(s, buf);
1637 /* Remove all the breakpoints when this query is issued,
1638 * because gdb is doing and initial connect and the state
1639 * should be cleaned up.
1641 gdb_breakpoint_remove_all();
1642 break;
1643 case 'c':
1644 if (*p != '\0') {
1645 addr = strtoull(p, (char **)&p, 16);
1646 gdb_set_cpu_pc(s, addr);
1648 s->signal = 0;
1649 gdb_continue(s);
1650 return RS_IDLE;
1651 case 'C':
1652 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1653 if (s->signal == -1)
1654 s->signal = 0;
1655 gdb_continue(s);
1656 return RS_IDLE;
1657 case 'v':
1658 if (strncmp(p, "Cont", 4) == 0) {
1659 int res_signal, res_thread;
1661 p += 4;
1662 if (*p == '?') {
1663 put_packet(s, "vCont;c;C;s;S");
1664 break;
1666 res = 0;
1667 res_signal = 0;
1668 res_thread = 0;
1669 while (*p) {
1670 int action, signal;
1672 if (*p++ != ';') {
1673 res = 0;
1674 break;
1676 action = *p++;
1677 signal = 0;
1678 if (action == 'C' || action == 'S') {
1679 signal = strtoul(p, (char **)&p, 16);
1680 } else if (action != 'c' && action != 's') {
1681 res = 0;
1682 break;
1684 thread = 0;
1685 if (*p == ':') {
1686 thread = strtoull(p+1, (char **)&p, 16);
1688 action = tolower(action);
1689 if (res == 0 || (res == 'c' && action == 's')) {
1690 res = action;
1691 res_signal = signal;
1692 res_thread = thread;
1695 if (res) {
1696 if (res_thread != -1 && res_thread != 0) {
1697 env = find_cpu(res_thread);
1698 if (env == NULL) {
1699 put_packet(s, "E22");
1700 break;
1702 s->c_cpu = env;
1704 if (res == 's') {
1705 cpu_single_step(s->c_cpu, sstep_flags);
1707 s->signal = res_signal;
1708 gdb_continue(s);
1709 return RS_IDLE;
1711 break;
1712 } else {
1713 goto unknown_command;
1715 case 'k':
1716 /* Kill the target */
1717 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1718 exit(0);
1719 case 'D':
1720 /* Detach packet */
1721 gdb_breakpoint_remove_all();
1722 gdb_continue(s);
1723 put_packet(s, "OK");
1724 break;
1725 case 's':
1726 if (*p != '\0') {
1727 addr = strtoull(p, (char **)&p, 16);
1728 gdb_set_cpu_pc(s, addr);
1730 cpu_single_step(s->c_cpu, sstep_flags);
1731 gdb_continue(s);
1732 return RS_IDLE;
1733 case 'F':
1735 target_ulong ret;
1736 target_ulong err;
1738 ret = strtoull(p, (char **)&p, 16);
1739 if (*p == ',') {
1740 p++;
1741 err = strtoull(p, (char **)&p, 16);
1742 } else {
1743 err = 0;
1745 if (*p == ',')
1746 p++;
1747 type = *p;
1748 if (gdb_current_syscall_cb)
1749 gdb_current_syscall_cb(s->c_cpu, ret, err);
1750 if (type == 'C') {
1751 put_packet(s, "T02");
1752 } else {
1753 gdb_continue(s);
1756 break;
1757 case 'g':
1758 cpu_synchronize_state(s->g_cpu);
1759 len = 0;
1760 for (addr = 0; addr < num_g_regs; addr++) {
1761 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1762 len += reg_size;
1764 memtohex(buf, mem_buf, len);
1765 put_packet(s, buf);
1766 break;
1767 case 'G':
1768 cpu_synchronize_state(s->g_cpu);
1769 registers = mem_buf;
1770 len = strlen(p) / 2;
1771 hextomem((uint8_t *)registers, p, len);
1772 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1773 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1774 len -= reg_size;
1775 registers += reg_size;
1777 put_packet(s, "OK");
1778 break;
1779 case 'm':
1780 addr = strtoull(p, (char **)&p, 16);
1781 if (*p == ',')
1782 p++;
1783 len = strtoull(p, NULL, 16);
1784 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1785 put_packet (s, "E14");
1786 } else {
1787 memtohex(buf, mem_buf, len);
1788 put_packet(s, buf);
1790 break;
1791 case 'M':
1792 addr = strtoull(p, (char **)&p, 16);
1793 if (*p == ',')
1794 p++;
1795 len = strtoull(p, (char **)&p, 16);
1796 if (*p == ':')
1797 p++;
1798 hextomem(mem_buf, p, len);
1799 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1800 put_packet(s, "E14");
1801 else
1802 put_packet(s, "OK");
1803 break;
1804 case 'p':
1805 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1806 This works, but can be very slow. Anything new enough to
1807 understand XML also knows how to use this properly. */
1808 if (!gdb_has_xml)
1809 goto unknown_command;
1810 addr = strtoull(p, (char **)&p, 16);
1811 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1812 if (reg_size) {
1813 memtohex(buf, mem_buf, reg_size);
1814 put_packet(s, buf);
1815 } else {
1816 put_packet(s, "E14");
1818 break;
1819 case 'P':
1820 if (!gdb_has_xml)
1821 goto unknown_command;
1822 addr = strtoull(p, (char **)&p, 16);
1823 if (*p == '=')
1824 p++;
1825 reg_size = strlen(p) / 2;
1826 hextomem(mem_buf, p, reg_size);
1827 gdb_write_register(s->g_cpu, mem_buf, addr);
1828 put_packet(s, "OK");
1829 break;
1830 case 'Z':
1831 case 'z':
1832 type = strtoul(p, (char **)&p, 16);
1833 if (*p == ',')
1834 p++;
1835 addr = strtoull(p, (char **)&p, 16);
1836 if (*p == ',')
1837 p++;
1838 len = strtoull(p, (char **)&p, 16);
1839 if (ch == 'Z')
1840 res = gdb_breakpoint_insert(addr, len, type);
1841 else
1842 res = gdb_breakpoint_remove(addr, len, type);
1843 if (res >= 0)
1844 put_packet(s, "OK");
1845 else if (res == -ENOSYS)
1846 put_packet(s, "");
1847 else
1848 put_packet(s, "E22");
1849 break;
1850 case 'H':
1851 type = *p++;
1852 thread = strtoull(p, (char **)&p, 16);
1853 if (thread == -1 || thread == 0) {
1854 put_packet(s, "OK");
1855 break;
1857 env = find_cpu(thread);
1858 if (env == NULL) {
1859 put_packet(s, "E22");
1860 break;
1862 switch (type) {
1863 case 'c':
1864 s->c_cpu = env;
1865 put_packet(s, "OK");
1866 break;
1867 case 'g':
1868 s->g_cpu = env;
1869 put_packet(s, "OK");
1870 break;
1871 default:
1872 put_packet(s, "E22");
1873 break;
1875 break;
1876 case 'T':
1877 thread = strtoull(p, (char **)&p, 16);
1878 env = find_cpu(thread);
1880 if (env != NULL) {
1881 put_packet(s, "OK");
1882 } else {
1883 put_packet(s, "E22");
1885 break;
1886 case 'q':
1887 case 'Q':
1888 /* parse any 'q' packets here */
1889 if (!strcmp(p,"qemu.sstepbits")) {
1890 /* Query Breakpoint bit definitions */
1891 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1892 SSTEP_ENABLE,
1893 SSTEP_NOIRQ,
1894 SSTEP_NOTIMER);
1895 put_packet(s, buf);
1896 break;
1897 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1898 /* Display or change the sstep_flags */
1899 p += 10;
1900 if (*p != '=') {
1901 /* Display current setting */
1902 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1903 put_packet(s, buf);
1904 break;
1906 p++;
1907 type = strtoul(p, (char **)&p, 16);
1908 sstep_flags = type;
1909 put_packet(s, "OK");
1910 break;
1911 } else if (strcmp(p,"C") == 0) {
1912 /* "Current thread" remains vague in the spec, so always return
1913 * the first CPU (gdb returns the first thread). */
1914 put_packet(s, "QC1");
1915 break;
1916 } else if (strcmp(p,"fThreadInfo") == 0) {
1917 s->query_cpu = first_cpu;
1918 goto report_cpuinfo;
1919 } else if (strcmp(p,"sThreadInfo") == 0) {
1920 report_cpuinfo:
1921 if (s->query_cpu) {
1922 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
1923 put_packet(s, buf);
1924 s->query_cpu = s->query_cpu->next_cpu;
1925 } else
1926 put_packet(s, "l");
1927 break;
1928 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1929 thread = strtoull(p+16, (char **)&p, 16);
1930 env = find_cpu(thread);
1931 if (env != NULL) {
1932 cpu_synchronize_state(env);
1933 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1934 "CPU#%d [%s]", env->cpu_index,
1935 env->halted ? "halted " : "running");
1936 memtohex(buf, mem_buf, len);
1937 put_packet(s, buf);
1939 break;
1941 #ifdef CONFIG_USER_ONLY
1942 else if (strncmp(p, "Offsets", 7) == 0) {
1943 TaskState *ts = s->c_cpu->opaque;
1945 snprintf(buf, sizeof(buf),
1946 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1947 ";Bss=" TARGET_ABI_FMT_lx,
1948 ts->info->code_offset,
1949 ts->info->data_offset,
1950 ts->info->data_offset);
1951 put_packet(s, buf);
1952 break;
1954 #else /* !CONFIG_USER_ONLY */
1955 else if (strncmp(p, "Rcmd,", 5) == 0) {
1956 int len = strlen(p + 5);
1958 if ((len % 2) != 0) {
1959 put_packet(s, "E01");
1960 break;
1962 hextomem(mem_buf, p + 5, len);
1963 len = len / 2;
1964 mem_buf[len++] = 0;
1965 qemu_chr_read(s->mon_chr, mem_buf, len);
1966 put_packet(s, "OK");
1967 break;
1969 #endif /* !CONFIG_USER_ONLY */
1970 if (strncmp(p, "Supported", 9) == 0) {
1971 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1972 #ifdef GDB_CORE_XML
1973 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1974 #endif
1975 put_packet(s, buf);
1976 break;
1978 #ifdef GDB_CORE_XML
1979 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1980 const char *xml;
1981 target_ulong total_len;
1983 gdb_has_xml = 1;
1984 p += 19;
1985 xml = get_feature_xml(p, &p);
1986 if (!xml) {
1987 snprintf(buf, sizeof(buf), "E00");
1988 put_packet(s, buf);
1989 break;
1992 if (*p == ':')
1993 p++;
1994 addr = strtoul(p, (char **)&p, 16);
1995 if (*p == ',')
1996 p++;
1997 len = strtoul(p, (char **)&p, 16);
1999 total_len = strlen(xml);
2000 if (addr > total_len) {
2001 snprintf(buf, sizeof(buf), "E00");
2002 put_packet(s, buf);
2003 break;
2005 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2006 len = (MAX_PACKET_LENGTH - 5) / 2;
2007 if (len < total_len - addr) {
2008 buf[0] = 'm';
2009 len = memtox(buf + 1, xml + addr, len);
2010 } else {
2011 buf[0] = 'l';
2012 len = memtox(buf + 1, xml + addr, total_len - addr);
2014 put_packet_binary(s, buf, len + 1);
2015 break;
2017 #endif
2018 /* Unrecognised 'q' command. */
2019 goto unknown_command;
2021 default:
2022 unknown_command:
2023 /* put empty packet */
2024 buf[0] = '\0';
2025 put_packet(s, buf);
2026 break;
2028 return RS_IDLE;
2031 void gdb_set_stop_cpu(CPUState *env)
2033 gdbserver_state->c_cpu = env;
2034 gdbserver_state->g_cpu = env;
2037 #ifndef CONFIG_USER_ONLY
2038 static void gdb_vm_state_change(void *opaque, int running, int reason)
2040 GDBState *s = gdbserver_state;
2041 CPUState *env = s->c_cpu;
2042 char buf[256];
2043 const char *type;
2044 int ret;
2046 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2047 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2048 return;
2050 /* disable single step if it was enable */
2051 cpu_single_step(env, 0);
2053 if (reason == EXCP_DEBUG) {
2054 if (env->watchpoint_hit) {
2055 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2056 case BP_MEM_READ:
2057 type = "r";
2058 break;
2059 case BP_MEM_ACCESS:
2060 type = "a";
2061 break;
2062 default:
2063 type = "";
2064 break;
2066 snprintf(buf, sizeof(buf),
2067 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2068 GDB_SIGNAL_TRAP, gdb_id(env), type,
2069 env->watchpoint_hit->vaddr);
2070 put_packet(s, buf);
2071 env->watchpoint_hit = NULL;
2072 return;
2074 tb_flush(env);
2075 ret = GDB_SIGNAL_TRAP;
2076 } else {
2077 ret = GDB_SIGNAL_INT;
2079 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2080 put_packet(s, buf);
2082 #endif
2084 /* Send a gdb syscall request.
2085 This accepts limited printf-style format specifiers, specifically:
2086 %x - target_ulong argument printed in hex.
2087 %lx - 64-bit argument printed in hex.
2088 %s - string pointer (target_ulong) and length (int) pair. */
2089 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2091 va_list va;
2092 char buf[256];
2093 char *p;
2094 target_ulong addr;
2095 uint64_t i64;
2096 GDBState *s;
2098 s = gdbserver_state;
2099 if (!s)
2100 return;
2101 gdb_current_syscall_cb = cb;
2102 s->state = RS_SYSCALL;
2103 #ifndef CONFIG_USER_ONLY
2104 vm_stop(EXCP_DEBUG);
2105 #endif
2106 s->state = RS_IDLE;
2107 va_start(va, fmt);
2108 p = buf;
2109 *(p++) = 'F';
2110 while (*fmt) {
2111 if (*fmt == '%') {
2112 fmt++;
2113 switch (*fmt++) {
2114 case 'x':
2115 addr = va_arg(va, target_ulong);
2116 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2117 break;
2118 case 'l':
2119 if (*(fmt++) != 'x')
2120 goto bad_format;
2121 i64 = va_arg(va, uint64_t);
2122 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2123 break;
2124 case 's':
2125 addr = va_arg(va, target_ulong);
2126 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2127 addr, va_arg(va, int));
2128 break;
2129 default:
2130 bad_format:
2131 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2132 fmt - 1);
2133 break;
2135 } else {
2136 *(p++) = *(fmt++);
2139 *p = 0;
2140 va_end(va);
2141 put_packet(s, buf);
2142 #ifdef CONFIG_USER_ONLY
2143 gdb_handlesig(s->c_cpu, 0);
2144 #else
2145 cpu_exit(s->c_cpu);
2146 #endif
2149 static void gdb_read_byte(GDBState *s, int ch)
2151 int i, csum;
2152 uint8_t reply;
2154 #ifndef CONFIG_USER_ONLY
2155 if (s->last_packet_len) {
2156 /* Waiting for a response to the last packet. If we see the start
2157 of a new command then abandon the previous response. */
2158 if (ch == '-') {
2159 #ifdef DEBUG_GDB
2160 printf("Got NACK, retransmitting\n");
2161 #endif
2162 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2164 #ifdef DEBUG_GDB
2165 else if (ch == '+')
2166 printf("Got ACK\n");
2167 else
2168 printf("Got '%c' when expecting ACK/NACK\n", ch);
2169 #endif
2170 if (ch == '+' || ch == '$')
2171 s->last_packet_len = 0;
2172 if (ch != '$')
2173 return;
2175 if (vm_running) {
2176 /* when the CPU is running, we cannot do anything except stop
2177 it when receiving a char */
2178 vm_stop(EXCP_INTERRUPT);
2179 } else
2180 #endif
2182 switch(s->state) {
2183 case RS_IDLE:
2184 if (ch == '$') {
2185 s->line_buf_index = 0;
2186 s->state = RS_GETLINE;
2188 break;
2189 case RS_GETLINE:
2190 if (ch == '#') {
2191 s->state = RS_CHKSUM1;
2192 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2193 s->state = RS_IDLE;
2194 } else {
2195 s->line_buf[s->line_buf_index++] = ch;
2197 break;
2198 case RS_CHKSUM1:
2199 s->line_buf[s->line_buf_index] = '\0';
2200 s->line_csum = fromhex(ch) << 4;
2201 s->state = RS_CHKSUM2;
2202 break;
2203 case RS_CHKSUM2:
2204 s->line_csum |= fromhex(ch);
2205 csum = 0;
2206 for(i = 0; i < s->line_buf_index; i++) {
2207 csum += s->line_buf[i];
2209 if (s->line_csum != (csum & 0xff)) {
2210 reply = '-';
2211 put_buffer(s, &reply, 1);
2212 s->state = RS_IDLE;
2213 } else {
2214 reply = '+';
2215 put_buffer(s, &reply, 1);
2216 s->state = gdb_handle_packet(s, s->line_buf);
2218 break;
2219 default:
2220 abort();
2225 #ifdef CONFIG_USER_ONLY
2227 gdb_queuesig (void)
2229 GDBState *s;
2231 s = gdbserver_state;
2233 if (gdbserver_fd < 0 || s->fd < 0)
2234 return 0;
2235 else
2236 return 1;
2240 gdb_handlesig (CPUState *env, int sig)
2242 GDBState *s;
2243 char buf[256];
2244 int n;
2246 s = gdbserver_state;
2247 if (gdbserver_fd < 0 || s->fd < 0)
2248 return sig;
2250 /* disable single step if it was enabled */
2251 cpu_single_step(env, 0);
2252 tb_flush(env);
2254 if (sig != 0)
2256 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2257 put_packet(s, buf);
2259 /* put_packet() might have detected that the peer terminated the
2260 connection. */
2261 if (s->fd < 0)
2262 return sig;
2264 sig = 0;
2265 s->state = RS_IDLE;
2266 s->running_state = 0;
2267 while (s->running_state == 0) {
2268 n = read (s->fd, buf, 256);
2269 if (n > 0)
2271 int i;
2273 for (i = 0; i < n; i++)
2274 gdb_read_byte (s, buf[i]);
2276 else if (n == 0 || errno != EAGAIN)
2278 /* XXX: Connection closed. Should probably wait for annother
2279 connection before continuing. */
2280 return sig;
2283 sig = s->signal;
2284 s->signal = 0;
2285 return sig;
2288 /* Tell the remote gdb that the process has exited. */
2289 void gdb_exit(CPUState *env, int code)
2291 GDBState *s;
2292 char buf[4];
2294 s = gdbserver_state;
2295 if (gdbserver_fd < 0 || s->fd < 0)
2296 return;
2298 snprintf(buf, sizeof(buf), "W%02x", code);
2299 put_packet(s, buf);
2302 /* Tell the remote gdb that the process has exited due to SIG. */
2303 void gdb_signalled(CPUState *env, int sig)
2305 GDBState *s;
2306 char buf[4];
2308 s = gdbserver_state;
2309 if (gdbserver_fd < 0 || s->fd < 0)
2310 return;
2312 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2313 put_packet(s, buf);
2316 static void gdb_accept(void)
2318 GDBState *s;
2319 struct sockaddr_in sockaddr;
2320 socklen_t len;
2321 int val, fd;
2323 for(;;) {
2324 len = sizeof(sockaddr);
2325 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2326 if (fd < 0 && errno != EINTR) {
2327 perror("accept");
2328 return;
2329 } else if (fd >= 0) {
2330 break;
2334 /* set short latency */
2335 val = 1;
2336 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2338 s = qemu_mallocz(sizeof(GDBState));
2339 s->c_cpu = first_cpu;
2340 s->g_cpu = first_cpu;
2341 s->fd = fd;
2342 gdb_has_xml = 0;
2344 gdbserver_state = s;
2346 fcntl(fd, F_SETFL, O_NONBLOCK);
2349 static int gdbserver_open(int port)
2351 struct sockaddr_in sockaddr;
2352 int fd, val, ret;
2354 fd = socket(PF_INET, SOCK_STREAM, 0);
2355 if (fd < 0) {
2356 perror("socket");
2357 return -1;
2360 /* allow fast reuse */
2361 val = 1;
2362 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2364 sockaddr.sin_family = AF_INET;
2365 sockaddr.sin_port = htons(port);
2366 sockaddr.sin_addr.s_addr = 0;
2367 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2368 if (ret < 0) {
2369 perror("bind");
2370 return -1;
2372 ret = listen(fd, 0);
2373 if (ret < 0) {
2374 perror("listen");
2375 return -1;
2377 return fd;
2380 int gdbserver_start(int port)
2382 gdbserver_fd = gdbserver_open(port);
2383 if (gdbserver_fd < 0)
2384 return -1;
2385 /* accept connections */
2386 gdb_accept();
2387 return 0;
2390 /* Disable gdb stub for child processes. */
2391 void gdbserver_fork(CPUState *env)
2393 GDBState *s = gdbserver_state;
2394 if (gdbserver_fd < 0 || s->fd < 0)
2395 return;
2396 close(s->fd);
2397 s->fd = -1;
2398 cpu_breakpoint_remove_all(env, BP_GDB);
2399 cpu_watchpoint_remove_all(env, BP_GDB);
2401 #else
2402 static int gdb_chr_can_receive(void *opaque)
2404 /* We can handle an arbitrarily large amount of data.
2405 Pick the maximum packet size, which is as good as anything. */
2406 return MAX_PACKET_LENGTH;
2409 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2411 int i;
2413 for (i = 0; i < size; i++) {
2414 gdb_read_byte(gdbserver_state, buf[i]);
2418 static void gdb_chr_event(void *opaque, int event)
2420 switch (event) {
2421 case CHR_EVENT_RESET:
2422 vm_stop(EXCP_INTERRUPT);
2423 gdb_has_xml = 0;
2424 break;
2425 default:
2426 break;
2430 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2432 char buf[MAX_PACKET_LENGTH];
2434 buf[0] = 'O';
2435 if (len > (MAX_PACKET_LENGTH/2) - 1)
2436 len = (MAX_PACKET_LENGTH/2) - 1;
2437 memtohex(buf + 1, (uint8_t *)msg, len);
2438 put_packet(s, buf);
2441 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2443 const char *p = (const char *)buf;
2444 int max_sz;
2446 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2447 for (;;) {
2448 if (len <= max_sz) {
2449 gdb_monitor_output(gdbserver_state, p, len);
2450 break;
2452 gdb_monitor_output(gdbserver_state, p, max_sz);
2453 p += max_sz;
2454 len -= max_sz;
2456 return len;
2459 #ifndef _WIN32
2460 static void gdb_sigterm_handler(int signal)
2462 if (vm_running)
2463 vm_stop(EXCP_INTERRUPT);
2465 #endif
2467 int gdbserver_start(const char *device)
2469 GDBState *s;
2470 char gdbstub_device_name[128];
2471 CharDriverState *chr = NULL;
2472 CharDriverState *mon_chr;
2474 if (!device)
2475 return -1;
2476 if (strcmp(device, "none") != 0) {
2477 if (strstart(device, "tcp:", NULL)) {
2478 /* enforce required TCP attributes */
2479 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2480 "%s,nowait,nodelay,server", device);
2481 device = gdbstub_device_name;
2483 #ifndef _WIN32
2484 else if (strcmp(device, "stdio") == 0) {
2485 struct sigaction act;
2487 memset(&act, 0, sizeof(act));
2488 act.sa_handler = gdb_sigterm_handler;
2489 sigaction(SIGINT, &act, NULL);
2491 #endif
2492 chr = qemu_chr_open("gdb", device, NULL);
2493 if (!chr)
2494 return -1;
2496 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2497 gdb_chr_event, NULL);
2500 s = gdbserver_state;
2501 if (!s) {
2502 s = qemu_mallocz(sizeof(GDBState));
2503 gdbserver_state = s;
2505 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2507 /* Initialize a monitor terminal for gdb */
2508 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2509 mon_chr->chr_write = gdb_monitor_write;
2510 monitor_init(mon_chr, 0);
2511 } else {
2512 if (s->chr)
2513 qemu_chr_close(s->chr);
2514 mon_chr = s->mon_chr;
2515 memset(s, 0, sizeof(GDBState));
2517 s->c_cpu = first_cpu;
2518 s->g_cpu = first_cpu;
2519 s->chr = chr;
2520 s->state = chr ? RS_IDLE : RS_INACTIVE;
2521 s->mon_chr = mon_chr;
2523 return 0;
2525 #endif