adb: add trace-events for monitoring keyboard/mouse during bus enumeration
[qemu.git] / target / xtensa / helper.c
blob5009fecedcb0df8b9006fb94d2fbe5803ded191e
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
37 static struct XtensaConfigList *xtensa_cores;
39 static void xtensa_core_class_init(ObjectClass *oc, void *data)
41 CPUClass *cc = CPU_CLASS(oc);
42 XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
43 const XtensaConfig *config = data;
45 xcc->config = config;
47 /* Use num_core_regs to see only non-privileged registers in an unmodified
48 * gdb. Use num_regs to see all registers. gdb modification is required
49 * for that: reset bit 0 in the 'flags' field of the registers definitions
50 * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
52 cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
55 static void init_libisa(XtensaConfig *config)
57 unsigned i, j;
58 unsigned opcodes;
60 config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
61 assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
62 opcodes = xtensa_isa_num_opcodes(config->isa);
63 config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
65 for (i = 0; i < opcodes; ++i) {
66 const char *opc_name = xtensa_opcode_name(config->isa, i);
67 XtensaOpcodeOps *ops = NULL;
69 assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
70 if (!config->opcode_translators) {
71 ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
72 } else {
73 for (j = 0; !ops && config->opcode_translators[j]; ++j) {
74 ops = xtensa_find_opcode_ops(config->opcode_translators[j],
75 opc_name);
78 #ifdef DEBUG
79 if (ops == NULL) {
80 fprintf(stderr,
81 "opcode translator not found for %s's opcode '%s'\n",
82 config->name, opc_name);
84 #endif
85 config->opcode_ops[i] = ops;
89 void xtensa_finalize_config(XtensaConfig *config)
91 unsigned i, n = 0;
93 if (config->isa_internal) {
94 init_libisa(config);
96 if (config->gdb_regmap.num_regs) {
97 return;
100 for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
101 n += (config->gdb_regmap.reg[i].type != 6);
103 config->gdb_regmap.num_regs = n;
106 void xtensa_register_core(XtensaConfigList *node)
108 TypeInfo type = {
109 .parent = TYPE_XTENSA_CPU,
110 .class_init = xtensa_core_class_init,
111 .class_data = (void *)node->config,
114 node->next = xtensa_cores;
115 xtensa_cores = node;
116 type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
117 type_register(&type);
118 g_free((gpointer)type.name);
121 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
123 unsigned i;
125 for (i = 0; i < env->config->ndbreak; ++i) {
126 if (env->cpu_watchpoint[i] &&
127 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
128 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
131 return 0;
134 void xtensa_breakpoint_handler(CPUState *cs)
136 XtensaCPU *cpu = XTENSA_CPU(cs);
137 CPUXtensaState *env = &cpu->env;
139 if (cs->watchpoint_hit) {
140 if (cs->watchpoint_hit->flags & BP_CPU) {
141 uint32_t cause;
143 cs->watchpoint_hit = NULL;
144 cause = check_hw_breakpoints(env);
145 if (cause) {
146 debug_exception_env(env, cause);
148 cpu_loop_exit_noexc(cs);
153 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
155 XtensaConfigList *core = xtensa_cores;
156 cpu_fprintf(f, "Available CPUs:\n");
157 for (; core; core = core->next) {
158 cpu_fprintf(f, " %s\n", core->config->name);
162 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
164 XtensaCPU *cpu = XTENSA_CPU(cs);
165 uint32_t paddr;
166 uint32_t page_size;
167 unsigned access;
169 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
170 &paddr, &page_size, &access) == 0) {
171 return paddr;
173 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
174 &paddr, &page_size, &access) == 0) {
175 return paddr;
177 return ~0;
180 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
182 if (xtensa_option_enabled(env->config,
183 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
184 return vector - env->config->vecbase + env->sregs[VECBASE];
185 } else {
186 return vector;
191 * Handle penging IRQ.
192 * For the high priority interrupt jump to the corresponding interrupt vector.
193 * For the level-1 interrupt convert it to either user, kernel or double
194 * exception with the 'level-1 interrupt' exception cause.
196 static void handle_interrupt(CPUXtensaState *env)
198 int level = env->pending_irq_level;
200 if (level > xtensa_get_cintlevel(env) &&
201 level <= env->config->nlevel &&
202 (env->config->level_mask[level] &
203 env->sregs[INTSET] &
204 env->sregs[INTENABLE])) {
205 CPUState *cs = CPU(xtensa_env_get_cpu(env));
207 if (level > 1) {
208 env->sregs[EPC1 + level - 1] = env->pc;
209 env->sregs[EPS2 + level - 2] = env->sregs[PS];
210 env->sregs[PS] =
211 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
212 env->pc = relocated_vector(env,
213 env->config->interrupt_vector[level]);
214 } else {
215 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
217 if (env->sregs[PS] & PS_EXCM) {
218 if (env->config->ndepc) {
219 env->sregs[DEPC] = env->pc;
220 } else {
221 env->sregs[EPC1] = env->pc;
223 cs->exception_index = EXC_DOUBLE;
224 } else {
225 env->sregs[EPC1] = env->pc;
226 cs->exception_index =
227 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
229 env->sregs[PS] |= PS_EXCM;
231 env->exception_taken = 1;
235 /* Called from cpu_handle_interrupt with BQL held */
236 void xtensa_cpu_do_interrupt(CPUState *cs)
238 XtensaCPU *cpu = XTENSA_CPU(cs);
239 CPUXtensaState *env = &cpu->env;
241 if (cs->exception_index == EXC_IRQ) {
242 qemu_log_mask(CPU_LOG_INT,
243 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
244 "pc = %08x, a0 = %08x, ps = %08x, "
245 "intset = %08x, intenable = %08x, "
246 "ccount = %08x\n",
247 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
248 env->pc, env->regs[0], env->sregs[PS],
249 env->sregs[INTSET], env->sregs[INTENABLE],
250 env->sregs[CCOUNT]);
251 handle_interrupt(env);
254 switch (cs->exception_index) {
255 case EXC_WINDOW_OVERFLOW4:
256 case EXC_WINDOW_UNDERFLOW4:
257 case EXC_WINDOW_OVERFLOW8:
258 case EXC_WINDOW_UNDERFLOW8:
259 case EXC_WINDOW_OVERFLOW12:
260 case EXC_WINDOW_UNDERFLOW12:
261 case EXC_KERNEL:
262 case EXC_USER:
263 case EXC_DOUBLE:
264 case EXC_DEBUG:
265 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
266 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
267 __func__, cs->exception_index,
268 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
269 if (env->config->exception_vector[cs->exception_index]) {
270 env->pc = relocated_vector(env,
271 env->config->exception_vector[cs->exception_index]);
272 env->exception_taken = 1;
273 } else {
274 qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
275 __func__, env->pc, cs->exception_index);
277 break;
279 case EXC_IRQ:
280 break;
282 default:
283 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
284 __func__, env->pc, cs->exception_index);
285 break;
287 check_interrupts(env);
290 bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
292 if (interrupt_request & CPU_INTERRUPT_HARD) {
293 cs->exception_index = EXC_IRQ;
294 xtensa_cpu_do_interrupt(cs);
295 return true;
297 return false;
300 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
301 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
303 unsigned wi, ei;
305 for (wi = 0; wi < tlb->nways; ++wi) {
306 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
307 entry[wi][ei].asid = 0;
308 entry[wi][ei].variable = true;
313 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
314 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
316 if (!tlb->varway56) {
317 static const xtensa_tlb_entry way5[] = {
319 .vaddr = 0xd0000000,
320 .paddr = 0,
321 .asid = 1,
322 .attr = 7,
323 .variable = false,
324 }, {
325 .vaddr = 0xd8000000,
326 .paddr = 0,
327 .asid = 1,
328 .attr = 3,
329 .variable = false,
332 static const xtensa_tlb_entry way6[] = {
334 .vaddr = 0xe0000000,
335 .paddr = 0xf0000000,
336 .asid = 1,
337 .attr = 7,
338 .variable = false,
339 }, {
340 .vaddr = 0xf0000000,
341 .paddr = 0xf0000000,
342 .asid = 1,
343 .attr = 3,
344 .variable = false,
347 memcpy(entry[5], way5, sizeof(way5));
348 memcpy(entry[6], way6, sizeof(way6));
349 } else {
350 uint32_t ei;
351 for (ei = 0; ei < 8; ++ei) {
352 entry[6][ei].vaddr = ei << 29;
353 entry[6][ei].paddr = ei << 29;
354 entry[6][ei].asid = 1;
355 entry[6][ei].attr = 3;
360 static void reset_tlb_region_way0(CPUXtensaState *env,
361 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
363 unsigned ei;
365 for (ei = 0; ei < 8; ++ei) {
366 entry[0][ei].vaddr = ei << 29;
367 entry[0][ei].paddr = ei << 29;
368 entry[0][ei].asid = 1;
369 entry[0][ei].attr = 2;
370 entry[0][ei].variable = true;
374 void reset_mmu(CPUXtensaState *env)
376 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
377 env->sregs[RASID] = 0x04030201;
378 env->sregs[ITLBCFG] = 0;
379 env->sregs[DTLBCFG] = 0;
380 env->autorefill_idx = 0;
381 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
382 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
383 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
384 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
385 } else {
386 reset_tlb_region_way0(env, env->itlb);
387 reset_tlb_region_way0(env, env->dtlb);
391 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
393 unsigned i;
394 for (i = 0; i < 4; ++i) {
395 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
396 return i;
399 return 0xff;
403 * Lookup xtensa TLB for the given virtual address.
404 * See ISA, 4.6.2.2
406 * \param pwi: [out] way index
407 * \param pei: [out] entry index
408 * \param pring: [out] access ring
409 * \return 0 if ok, exception cause code otherwise
411 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
412 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
414 const xtensa_tlb *tlb = dtlb ?
415 &env->config->dtlb : &env->config->itlb;
416 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
417 env->dtlb : env->itlb;
419 int nhits = 0;
420 unsigned wi;
422 for (wi = 0; wi < tlb->nways; ++wi) {
423 uint32_t vpn;
424 uint32_t ei;
425 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
426 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
427 unsigned ring = get_ring(env, entry[wi][ei].asid);
428 if (ring < 4) {
429 if (++nhits > 1) {
430 return dtlb ?
431 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
432 INST_TLB_MULTI_HIT_CAUSE;
434 *pwi = wi;
435 *pei = ei;
436 *pring = ring;
440 return nhits ? 0 :
441 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
445 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
446 * See ISA, 4.6.5.10
448 static unsigned mmu_attr_to_access(uint32_t attr)
450 unsigned access = 0;
452 if (attr < 12) {
453 access |= PAGE_READ;
454 if (attr & 0x1) {
455 access |= PAGE_EXEC;
457 if (attr & 0x2) {
458 access |= PAGE_WRITE;
461 switch (attr & 0xc) {
462 case 0:
463 access |= PAGE_CACHE_BYPASS;
464 break;
466 case 4:
467 access |= PAGE_CACHE_WB;
468 break;
470 case 8:
471 access |= PAGE_CACHE_WT;
472 break;
474 } else if (attr == 13) {
475 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
477 return access;
481 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
482 * See ISA, 4.6.3.3
484 static unsigned region_attr_to_access(uint32_t attr)
486 static const unsigned access[16] = {
487 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
488 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
489 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
490 [3] = PAGE_EXEC | PAGE_CACHE_WB,
491 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
492 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
493 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
496 return access[attr & 0xf];
500 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
501 * See ISA, A.2.14 The Cache Attribute Register
503 static unsigned cacheattr_attr_to_access(uint32_t attr)
505 static const unsigned access[16] = {
506 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
507 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
508 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
509 [3] = PAGE_EXEC | PAGE_CACHE_WB,
510 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
511 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
514 return access[attr & 0xf];
517 static bool is_access_granted(unsigned access, int is_write)
519 switch (is_write) {
520 case 0:
521 return access & PAGE_READ;
523 case 1:
524 return access & PAGE_WRITE;
526 case 2:
527 return access & PAGE_EXEC;
529 default:
530 return 0;
534 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
536 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
537 uint32_t vaddr, int is_write, int mmu_idx,
538 uint32_t *paddr, uint32_t *page_size, unsigned *access,
539 bool may_lookup_pt)
541 bool dtlb = is_write != 2;
542 uint32_t wi;
543 uint32_t ei;
544 uint8_t ring;
545 uint32_t vpn;
546 uint32_t pte;
547 const xtensa_tlb_entry *entry = NULL;
548 xtensa_tlb_entry tmp_entry;
549 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
551 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
552 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
553 ring = (pte >> 4) & 0x3;
554 wi = 0;
555 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
557 if (update_tlb) {
558 wi = ++env->autorefill_idx & 0x3;
559 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
560 env->sregs[EXCVADDR] = vaddr;
561 qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
562 __func__, vaddr, vpn, pte);
563 } else {
564 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
565 entry = &tmp_entry;
567 ret = 0;
569 if (ret != 0) {
570 return ret;
573 if (entry == NULL) {
574 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
577 if (ring < mmu_idx) {
578 return dtlb ?
579 LOAD_STORE_PRIVILEGE_CAUSE :
580 INST_FETCH_PRIVILEGE_CAUSE;
583 *access = mmu_attr_to_access(entry->attr) &
584 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
585 if (!is_access_granted(*access, is_write)) {
586 return dtlb ?
587 (is_write ?
588 STORE_PROHIBITED_CAUSE :
589 LOAD_PROHIBITED_CAUSE) :
590 INST_FETCH_PROHIBITED_CAUSE;
593 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
594 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
596 return 0;
599 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
601 CPUState *cs = CPU(xtensa_env_get_cpu(env));
602 uint32_t paddr;
603 uint32_t page_size;
604 unsigned access;
605 uint32_t pt_vaddr =
606 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
607 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
608 &paddr, &page_size, &access, false);
610 qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
611 __func__, vaddr, ret ? ~0 : paddr);
613 if (ret == 0) {
614 *pte = ldl_phys(cs->as, paddr);
616 return ret;
619 static int get_physical_addr_region(CPUXtensaState *env,
620 uint32_t vaddr, int is_write, int mmu_idx,
621 uint32_t *paddr, uint32_t *page_size, unsigned *access)
623 bool dtlb = is_write != 2;
624 uint32_t wi = 0;
625 uint32_t ei = (vaddr >> 29) & 0x7;
626 const xtensa_tlb_entry *entry =
627 xtensa_tlb_get_entry(env, dtlb, wi, ei);
629 *access = region_attr_to_access(entry->attr);
630 if (!is_access_granted(*access, is_write)) {
631 return dtlb ?
632 (is_write ?
633 STORE_PROHIBITED_CAUSE :
634 LOAD_PROHIBITED_CAUSE) :
635 INST_FETCH_PROHIBITED_CAUSE;
638 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
639 *page_size = ~REGION_PAGE_MASK + 1;
641 return 0;
645 * Convert virtual address to physical addr.
646 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
648 * \return 0 if ok, exception cause code otherwise
650 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
651 uint32_t vaddr, int is_write, int mmu_idx,
652 uint32_t *paddr, uint32_t *page_size, unsigned *access)
654 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
655 return get_physical_addr_mmu(env, update_tlb,
656 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
657 } else if (xtensa_option_bits_enabled(env->config,
658 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
659 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
660 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
661 paddr, page_size, access);
662 } else {
663 *paddr = vaddr;
664 *page_size = TARGET_PAGE_SIZE;
665 *access = cacheattr_attr_to_access(
666 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
667 return 0;
671 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
672 CPUXtensaState *env, bool dtlb)
674 unsigned wi, ei;
675 const xtensa_tlb *conf =
676 dtlb ? &env->config->dtlb : &env->config->itlb;
677 unsigned (*attr_to_access)(uint32_t) =
678 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
679 mmu_attr_to_access : region_attr_to_access;
681 for (wi = 0; wi < conf->nways; ++wi) {
682 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
683 const char *sz_text;
684 bool print_header = true;
686 if (sz >= 0x100000) {
687 sz >>= 20;
688 sz_text = "MB";
689 } else {
690 sz >>= 10;
691 sz_text = "KB";
694 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
695 const xtensa_tlb_entry *entry =
696 xtensa_tlb_get_entry(env, dtlb, wi, ei);
698 if (entry->asid) {
699 static const char * const cache_text[8] = {
700 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
701 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
702 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
703 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
705 unsigned access = attr_to_access(entry->attr);
706 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
707 PAGE_CACHE_SHIFT;
709 if (print_header) {
710 print_header = false;
711 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
712 cpu_fprintf(f,
713 "\tVaddr Paddr ASID Attr RWX Cache\n"
714 "\t---------- ---------- ---- ---- --- -------\n");
716 cpu_fprintf(f,
717 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
718 entry->vaddr,
719 entry->paddr,
720 entry->asid,
721 entry->attr,
722 (access & PAGE_READ) ? 'R' : '-',
723 (access & PAGE_WRITE) ? 'W' : '-',
724 (access & PAGE_EXEC) ? 'X' : '-',
725 cache_text[cache_idx] ? cache_text[cache_idx] :
726 "Invalid");
732 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
734 if (xtensa_option_bits_enabled(env->config,
735 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
736 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
737 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
739 cpu_fprintf(f, "ITLB:\n");
740 dump_tlb(f, cpu_fprintf, env, false);
741 cpu_fprintf(f, "\nDTLB:\n");
742 dump_tlb(f, cpu_fprintf, env, true);
743 } else {
744 cpu_fprintf(f, "No TLB for this CPU core\n");
748 void xtensa_runstall(CPUXtensaState *env, bool runstall)
750 CPUState *cpu = CPU(xtensa_env_get_cpu(env));
752 env->runstall = runstall;
753 cpu->halted = runstall;
754 if (runstall) {
755 cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
756 } else {
757 cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);