2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "disas/disas.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
28 /* -icount align implementation. */
30 typedef struct SyncClocks
{
32 int64_t last_cpu_icount
;
33 int64_t realtime_clock
;
36 #if !defined(CONFIG_USER_ONLY)
37 /* Allow the guest to have a max 3ms advance.
38 * The difference between the 2 clocks could therefore
41 #define VM_CLOCK_ADVANCE 3000000
42 #define THRESHOLD_REDUCE 1.5
43 #define MAX_DELAY_PRINT_RATE 2000000000LL
44 #define MAX_NB_PRINTS 100
46 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
50 if (!icount_align_option
) {
54 cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
55 sc
->diff_clk
+= cpu_icount_to_ns(sc
->last_cpu_icount
- cpu_icount
);
56 sc
->last_cpu_icount
= cpu_icount
;
58 if (sc
->diff_clk
> VM_CLOCK_ADVANCE
) {
60 struct timespec sleep_delay
, rem_delay
;
61 sleep_delay
.tv_sec
= sc
->diff_clk
/ 1000000000LL;
62 sleep_delay
.tv_nsec
= sc
->diff_clk
% 1000000000LL;
63 if (nanosleep(&sleep_delay
, &rem_delay
) < 0) {
64 sc
->diff_clk
-= (sleep_delay
.tv_sec
- rem_delay
.tv_sec
) * 1000000000LL;
65 sc
->diff_clk
-= sleep_delay
.tv_nsec
- rem_delay
.tv_nsec
;
70 Sleep(sc
->diff_clk
/ SCALE_MS
);
76 static void print_delay(const SyncClocks
*sc
)
78 static float threshold_delay
;
79 static int64_t last_realtime_clock
;
82 if (icount_align_option
&&
83 sc
->realtime_clock
- last_realtime_clock
>= MAX_DELAY_PRINT_RATE
&&
84 nb_prints
< MAX_NB_PRINTS
) {
85 if ((-sc
->diff_clk
/ (float)1000000000LL > threshold_delay
) ||
86 (-sc
->diff_clk
/ (float)1000000000LL <
87 (threshold_delay
- THRESHOLD_REDUCE
))) {
88 threshold_delay
= (-sc
->diff_clk
/ 1000000000LL) + 1;
89 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
93 last_realtime_clock
= sc
->realtime_clock
;
98 static void init_delay_params(SyncClocks
*sc
,
101 if (!icount_align_option
) {
104 sc
->realtime_clock
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
105 sc
->diff_clk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) -
107 cpu_get_clock_offset();
108 sc
->last_cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
109 if (sc
->diff_clk
< max_delay
) {
110 max_delay
= sc
->diff_clk
;
112 if (sc
->diff_clk
> max_advance
) {
113 max_advance
= sc
->diff_clk
;
116 /* Print every 2s max if the guest is late. We limit the number
117 of printed messages to NB_PRINT_MAX(currently 100) */
121 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
125 static void init_delay_params(SyncClocks
*sc
, const CPUState
*cpu
)
128 #endif /* CONFIG USER ONLY */
130 void cpu_loop_exit(CPUState
*cpu
)
132 cpu
->current_tb
= NULL
;
133 siglongjmp(cpu
->jmp_env
, 1);
136 /* exit the current TB from a signal handler. The host registers are
137 restored in a state compatible with the CPU emulator
139 #if defined(CONFIG_SOFTMMU)
140 void cpu_resume_from_signal(CPUState
*cpu
, void *puc
)
142 /* XXX: restore cpu registers saved in host registers */
144 cpu
->exception_index
= -1;
145 siglongjmp(cpu
->jmp_env
, 1);
149 /* Execute a TB, and fix up the CPU state afterwards if necessary */
150 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
152 CPUArchState
*env
= cpu
->env_ptr
;
155 #if defined(DEBUG_DISAS)
156 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
157 #if defined(TARGET_I386)
158 log_cpu_state(cpu
, CPU_DUMP_CCOP
);
159 #elif defined(TARGET_M68K)
160 /* ??? Should not modify env state for dumping. */
161 cpu_m68k_flush_flags(env
, env
->cc_op
);
162 env
->cc_op
= CC_OP_FLAGS
;
163 env
->sr
= (env
->sr
& 0xffe0) | env
->cc_dest
| (env
->cc_x
<< 4);
164 log_cpu_state(cpu
, 0);
166 log_cpu_state(cpu
, 0);
169 #endif /* DEBUG_DISAS */
171 next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
172 trace_exec_tb_exit((void *) (next_tb
& ~TB_EXIT_MASK
),
173 next_tb
& TB_EXIT_MASK
);
175 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
176 /* We didn't start executing this TB (eg because the instruction
177 * counter hit zero); we must restore the guest PC to the address
178 * of the start of the TB.
180 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
181 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
182 if (cc
->synchronize_from_tb
) {
183 cc
->synchronize_from_tb(cpu
, tb
);
186 cc
->set_pc(cpu
, tb
->pc
);
189 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
190 /* We were asked to stop executing TBs (probably a pending
191 * interrupt. We've now stopped, so clear the flag.
193 cpu
->tcg_exit_req
= 0;
198 /* Execute the code without caching the generated code. An interpreter
199 could be used if available. */
200 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
201 TranslationBlock
*orig_tb
)
203 CPUState
*cpu
= ENV_GET_CPU(env
);
204 TranslationBlock
*tb
;
206 /* Should never happen.
207 We only end up here when an existing TB is too long. */
208 if (max_cycles
> CF_COUNT_MASK
)
209 max_cycles
= CF_COUNT_MASK
;
211 tb
= tb_gen_code(cpu
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
213 cpu
->current_tb
= tb
;
214 /* execute the generated code */
215 trace_exec_tb_nocache(tb
, tb
->pc
);
216 cpu_tb_exec(cpu
, tb
->tc_ptr
);
217 cpu
->current_tb
= NULL
;
218 tb_phys_invalidate(tb
, -1);
222 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
224 target_ulong cs_base
,
227 CPUState
*cpu
= ENV_GET_CPU(env
);
228 TranslationBlock
*tb
, **ptb1
;
230 tb_page_addr_t phys_pc
, phys_page1
;
231 target_ulong virt_page2
;
233 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
235 /* find translated block using physical mappings */
236 phys_pc
= get_page_addr_code(env
, pc
);
237 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
238 h
= tb_phys_hash_func(phys_pc
);
239 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
245 tb
->page_addr
[0] == phys_page1
&&
246 tb
->cs_base
== cs_base
&&
247 tb
->flags
== flags
) {
248 /* check next page if needed */
249 if (tb
->page_addr
[1] != -1) {
250 tb_page_addr_t phys_page2
;
252 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
254 phys_page2
= get_page_addr_code(env
, virt_page2
);
255 if (tb
->page_addr
[1] == phys_page2
)
261 ptb1
= &tb
->phys_hash_next
;
264 /* if no translated code available, then translate it now */
265 tb
= tb_gen_code(cpu
, pc
, cs_base
, flags
, 0);
268 /* Move the last found TB to the head of the list */
270 *ptb1
= tb
->phys_hash_next
;
271 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
272 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
274 /* we add the TB in the virtual pc hash table */
275 cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
279 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
281 CPUState
*cpu
= ENV_GET_CPU(env
);
282 TranslationBlock
*tb
;
283 target_ulong cs_base
, pc
;
286 /* we record a subset of the CPU state. It will
287 always be the same before a given translated block
289 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
290 tb
= cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
291 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
292 tb
->flags
!= flags
)) {
293 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
298 static void cpu_handle_debug_exception(CPUArchState
*env
)
300 CPUState
*cpu
= ENV_GET_CPU(env
);
301 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
304 if (!cpu
->watchpoint_hit
) {
305 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
306 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
310 cc
->debug_excp_handler(cpu
);
313 /* main execution loop */
315 volatile sig_atomic_t exit_request
;
317 int cpu_exec(CPUArchState
*env
)
319 CPUState
*cpu
= ENV_GET_CPU(env
);
320 #if !(defined(CONFIG_USER_ONLY) && \
321 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
322 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
325 X86CPU
*x86_cpu
= X86_CPU(cpu
);
327 int ret
, interrupt_request
;
328 TranslationBlock
*tb
;
333 /* This must be volatile so it is not trashed by longjmp() */
334 volatile bool have_tb_lock
= false;
337 if (!cpu_has_work(cpu
)) {
346 /* As long as current_cpu is null, up to the assignment just above,
347 * requests by other threads to exit the execution loop are expected to
348 * be issued using the exit_request global. We must make sure that our
349 * evaluation of the global value is performed past the current_cpu
350 * value transition point, which requires a memory barrier as well as
351 * an instruction scheduling constraint on modern architectures. */
354 if (unlikely(exit_request
)) {
355 cpu
->exit_request
= 1;
358 #if defined(TARGET_I386)
359 /* put eflags in CPU temporary format */
360 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
361 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
362 CC_OP
= CC_OP_EFLAGS
;
363 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
364 #elif defined(TARGET_SPARC)
365 #elif defined(TARGET_M68K)
366 env
->cc_op
= CC_OP_FLAGS
;
367 env
->cc_dest
= env
->sr
& 0xf;
368 env
->cc_x
= (env
->sr
>> 4) & 1;
369 #elif defined(TARGET_ALPHA)
370 #elif defined(TARGET_ARM)
371 #elif defined(TARGET_UNICORE32)
372 #elif defined(TARGET_PPC)
373 env
->reserve_addr
= -1;
374 #elif defined(TARGET_LM32)
375 #elif defined(TARGET_MICROBLAZE)
376 #elif defined(TARGET_MIPS)
377 #elif defined(TARGET_MOXIE)
378 #elif defined(TARGET_OPENRISC)
379 #elif defined(TARGET_SH4)
380 #elif defined(TARGET_CRIS)
381 #elif defined(TARGET_S390X)
382 #elif defined(TARGET_XTENSA)
383 #elif defined(TARGET_TRICORE)
386 #error unsupported target CPU
388 cpu
->exception_index
= -1;
390 /* Calculate difference between guest clock and host clock.
391 * This delay includes the delay of the last cycle, so
392 * what we have to do is sleep until it is 0. As for the
393 * advance/delay we gain here, we try to fix it next time.
395 init_delay_params(&sc
, cpu
);
397 /* prepare setjmp context for exception handling */
399 if (sigsetjmp(cpu
->jmp_env
, 0) == 0) {
400 /* if an exception is pending, we execute it here */
401 if (cpu
->exception_index
>= 0) {
402 if (cpu
->exception_index
>= EXCP_INTERRUPT
) {
403 /* exit request from the cpu execution loop */
404 ret
= cpu
->exception_index
;
405 if (ret
== EXCP_DEBUG
) {
406 cpu_handle_debug_exception(env
);
410 #if defined(CONFIG_USER_ONLY)
411 /* if user mode only, we simulate a fake exception
412 which will be handled outside the cpu execution
414 #if defined(TARGET_I386)
415 cc
->do_interrupt(cpu
);
417 ret
= cpu
->exception_index
;
420 cc
->do_interrupt(cpu
);
421 cpu
->exception_index
= -1;
426 next_tb
= 0; /* force lookup of first TB */
428 interrupt_request
= cpu
->interrupt_request
;
429 if (unlikely(interrupt_request
)) {
430 if (unlikely(cpu
->singlestep_enabled
& SSTEP_NOIRQ
)) {
431 /* Mask out external interrupts for this step. */
432 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
434 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
435 cpu
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
436 cpu
->exception_index
= EXCP_DEBUG
;
439 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
440 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
441 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || \
442 defined(TARGET_UNICORE32) || defined(TARGET_TRICORE)
443 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
444 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
446 cpu
->exception_index
= EXCP_HLT
;
450 #if defined(TARGET_I386)
451 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
452 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
, 0);
453 do_cpu_init(x86_cpu
);
454 cpu
->exception_index
= EXCP_HALTED
;
458 if (interrupt_request
& CPU_INTERRUPT_RESET
) {
462 #if defined(TARGET_I386)
463 #if !defined(CONFIG_USER_ONLY)
464 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
465 cpu
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
466 apic_poll_irq(x86_cpu
->apic_state
);
469 if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
470 do_cpu_sipi(x86_cpu
);
471 } else if (env
->hflags2
& HF2_GIF_MASK
) {
472 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
473 !(env
->hflags
& HF_SMM_MASK
)) {
474 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
476 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
477 do_smm_enter(x86_cpu
);
479 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
480 !(env
->hflags2
& HF2_NMI_MASK
)) {
481 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
482 env
->hflags2
|= HF2_NMI_MASK
;
483 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
485 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
486 cpu
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
487 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
489 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
490 (((env
->hflags2
& HF2_VINTR_MASK
) &&
491 (env
->hflags2
& HF2_HIF_MASK
)) ||
492 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
493 (env
->eflags
& IF_MASK
&&
494 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
496 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
498 cpu
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
500 intno
= cpu_get_pic_interrupt(env
);
501 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
502 do_interrupt_x86_hardirq(env
, intno
, 1);
503 /* ensure that no TB jump will be modified as
504 the program flow was changed */
506 #if !defined(CONFIG_USER_ONLY)
507 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
508 (env
->eflags
& IF_MASK
) &&
509 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
511 /* FIXME: this should respect TPR */
512 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
514 intno
= ldl_phys(cpu
->as
,
516 + offsetof(struct vmcb
,
517 control
.int_vector
));
518 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
519 do_interrupt_x86_hardirq(env
, intno
, 1);
520 cpu
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
525 #elif defined(TARGET_PPC)
526 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
527 ppc_hw_interrupt(env
);
528 if (env
->pending_interrupts
== 0) {
529 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
533 #elif defined(TARGET_LM32)
534 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
535 && (env
->ie
& IE_IE
)) {
536 cpu
->exception_index
= EXCP_IRQ
;
537 cc
->do_interrupt(cpu
);
540 #elif defined(TARGET_MICROBLAZE)
541 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
542 && (env
->sregs
[SR_MSR
] & MSR_IE
)
543 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
544 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
545 cpu
->exception_index
= EXCP_IRQ
;
546 cc
->do_interrupt(cpu
);
549 #elif defined(TARGET_MIPS)
550 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
551 cpu_mips_hw_interrupts_pending(env
)) {
553 cpu
->exception_index
= EXCP_EXT_INTERRUPT
;
555 cc
->do_interrupt(cpu
);
558 #elif defined(TARGET_TRICORE)
559 if ((interrupt_request
& CPU_INTERRUPT_HARD
)) {
560 cc
->do_interrupt(cpu
);
564 #elif defined(TARGET_OPENRISC)
567 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
568 && (env
->sr
& SR_IEE
)) {
571 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
572 && (env
->sr
& SR_TEE
)) {
576 cpu
->exception_index
= idx
;
577 cc
->do_interrupt(cpu
);
581 #elif defined(TARGET_SPARC)
582 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
583 if (cpu_interrupts_enabled(env
) &&
584 env
->interrupt_index
> 0) {
585 int pil
= env
->interrupt_index
& 0xf;
586 int type
= env
->interrupt_index
& 0xf0;
588 if (((type
== TT_EXTINT
) &&
589 cpu_pil_allowed(env
, pil
)) ||
591 cpu
->exception_index
= env
->interrupt_index
;
592 cc
->do_interrupt(cpu
);
597 #elif defined(TARGET_ARM)
598 if (interrupt_request
& CPU_INTERRUPT_FIQ
599 && !(env
->daif
& PSTATE_F
)) {
600 cpu
->exception_index
= EXCP_FIQ
;
601 cc
->do_interrupt(cpu
);
604 /* ARMv7-M interrupt return works by loading a magic value
605 into the PC. On real hardware the load causes the
606 return to occur. The qemu implementation performs the
607 jump normally, then does the exception return when the
608 CPU tries to execute code at the magic address.
609 This will cause the magic PC value to be pushed to
610 the stack if an interrupt occurred at the wrong time.
611 We avoid this by disabling interrupts when
612 pc contains a magic address. */
613 if (interrupt_request
& CPU_INTERRUPT_HARD
614 && !(env
->daif
& PSTATE_I
)
615 && (!IS_M(env
) || env
->regs
[15] < 0xfffffff0)) {
616 cpu
->exception_index
= EXCP_IRQ
;
617 cc
->do_interrupt(cpu
);
620 #elif defined(TARGET_UNICORE32)
621 if (interrupt_request
& CPU_INTERRUPT_HARD
622 && !(env
->uncached_asr
& ASR_I
)) {
623 cpu
->exception_index
= UC32_EXCP_INTR
;
624 cc
->do_interrupt(cpu
);
627 #elif defined(TARGET_SH4)
628 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
629 cc
->do_interrupt(cpu
);
632 #elif defined(TARGET_ALPHA)
635 /* ??? This hard-codes the OSF/1 interrupt levels. */
636 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
638 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
639 idx
= EXCP_DEV_INTERRUPT
;
643 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
644 idx
= EXCP_CLK_INTERRUPT
;
648 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
649 idx
= EXCP_SMP_INTERRUPT
;
653 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
658 cpu
->exception_index
= idx
;
660 cc
->do_interrupt(cpu
);
664 #elif defined(TARGET_CRIS)
665 if (interrupt_request
& CPU_INTERRUPT_HARD
666 && (env
->pregs
[PR_CCS
] & I_FLAG
)
667 && !env
->locked_irq
) {
668 cpu
->exception_index
= EXCP_IRQ
;
669 cc
->do_interrupt(cpu
);
672 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
673 unsigned int m_flag_archval
;
674 if (env
->pregs
[PR_VR
] < 32) {
675 m_flag_archval
= M_FLAG_V10
;
677 m_flag_archval
= M_FLAG_V32
;
679 if ((env
->pregs
[PR_CCS
] & m_flag_archval
)) {
680 cpu
->exception_index
= EXCP_NMI
;
681 cc
->do_interrupt(cpu
);
685 #elif defined(TARGET_M68K)
686 if (interrupt_request
& CPU_INTERRUPT_HARD
687 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
688 < env
->pending_level
) {
689 /* Real hardware gets the interrupt vector via an
690 IACK cycle at this point. Current emulated
691 hardware doesn't rely on this, so we
692 provide/save the vector when the interrupt is
694 cpu
->exception_index
= env
->pending_vector
;
695 do_interrupt_m68k_hardirq(env
);
698 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
699 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
700 (env
->psw
.mask
& PSW_MASK_EXT
)) {
701 cc
->do_interrupt(cpu
);
704 #elif defined(TARGET_XTENSA)
705 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
706 cpu
->exception_index
= EXC_IRQ
;
707 cc
->do_interrupt(cpu
);
711 /* Don't use the cached interrupt_request value,
712 do_interrupt may have updated the EXITTB flag. */
713 if (cpu
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
714 cpu
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
715 /* ensure that no TB jump will be modified as
716 the program flow was changed */
720 if (unlikely(cpu
->exit_request
)) {
721 cpu
->exit_request
= 0;
722 cpu
->exception_index
= EXCP_INTERRUPT
;
725 spin_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
727 tb
= tb_find_fast(env
);
728 /* Note: we do it here to avoid a gcc bug on Mac OS X when
729 doing it in tb_find_slow */
730 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
731 /* as some TB could have been invalidated because
732 of memory exceptions while generating the code, we
733 must recompute the hash index here */
735 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
737 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
738 qemu_log("Trace %p [" TARGET_FMT_lx
"] %s\n",
739 tb
->tc_ptr
, tb
->pc
, lookup_symbol(tb
->pc
));
741 /* see if we can patch the calling TB. When the TB
742 spans two pages, we cannot safely do a direct
744 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
745 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
746 next_tb
& TB_EXIT_MASK
, tb
);
748 have_tb_lock
= false;
749 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
751 /* cpu_interrupt might be called while translating the
752 TB, but before it is linked into a potentially
753 infinite loop and becomes env->current_tb. Avoid
754 starting execution if there is a pending interrupt. */
755 cpu
->current_tb
= tb
;
757 if (likely(!cpu
->exit_request
)) {
758 trace_exec_tb(tb
, tb
->pc
);
760 /* execute the generated code */
761 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
762 switch (next_tb
& TB_EXIT_MASK
) {
763 case TB_EXIT_REQUESTED
:
764 /* Something asked us to stop executing
765 * chained TBs; just continue round the main
766 * loop. Whatever requested the exit will also
767 * have set something else (eg exit_request or
768 * interrupt_request) which we will handle
769 * next time around the loop.
771 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
774 case TB_EXIT_ICOUNT_EXPIRED
:
776 /* Instruction counter expired. */
778 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
779 insns_left
= cpu
->icount_decr
.u32
;
780 if (cpu
->icount_extra
&& insns_left
>= 0) {
781 /* Refill decrementer and continue execution. */
782 cpu
->icount_extra
+= insns_left
;
783 if (cpu
->icount_extra
> 0xffff) {
786 insns_left
= cpu
->icount_extra
;
788 cpu
->icount_extra
-= insns_left
;
789 cpu
->icount_decr
.u16
.low
= insns_left
;
791 if (insns_left
> 0) {
792 /* Execute remaining instructions. */
793 cpu_exec_nocache(env
, insns_left
, tb
);
794 align_clocks(&sc
, cpu
);
796 cpu
->exception_index
= EXCP_INTERRUPT
;
806 cpu
->current_tb
= NULL
;
807 /* Try to align the host and virtual clocks
808 if the guest is in advance */
809 align_clocks(&sc
, cpu
);
810 /* reset soft MMU for next block (it can currently
811 only be set by a memory fault) */
814 /* Reload env after longjmp - the compiler may have smashed all
815 * local variables as longjmp is marked 'noreturn'. */
818 #if !(defined(CONFIG_USER_ONLY) && \
819 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
820 cc
= CPU_GET_CLASS(cpu
);
823 x86_cpu
= X86_CPU(cpu
);
826 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
827 have_tb_lock
= false;
833 #if defined(TARGET_I386)
834 /* restore flags in standard format */
835 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
836 | (env
->df
& DF_MASK
);
837 #elif defined(TARGET_ARM)
838 /* XXX: Save/restore host fpu exception state?. */
839 #elif defined(TARGET_UNICORE32)
840 #elif defined(TARGET_SPARC)
841 #elif defined(TARGET_PPC)
842 #elif defined(TARGET_LM32)
843 #elif defined(TARGET_M68K)
844 cpu_m68k_flush_flags(env
, env
->cc_op
);
845 env
->cc_op
= CC_OP_FLAGS
;
846 env
->sr
= (env
->sr
& 0xffe0)
847 | env
->cc_dest
| (env
->cc_x
<< 4);
848 #elif defined(TARGET_MICROBLAZE)
849 #elif defined(TARGET_MIPS)
850 #elif defined(TARGET_TRICORE)
851 #elif defined(TARGET_MOXIE)
852 #elif defined(TARGET_OPENRISC)
853 #elif defined(TARGET_SH4)
854 #elif defined(TARGET_ALPHA)
855 #elif defined(TARGET_CRIS)
856 #elif defined(TARGET_S390X)
857 #elif defined(TARGET_XTENSA)
860 #error unsupported target CPU
863 /* fail safe : never use current_cpu outside cpu_exec() */