MAINTAINERS/s390x: add terminal3270.c
[qemu.git] / target / alpha / cpu.h
blob6ae240969bee3c57a00993bc041e5e013ea88789
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ALPHA_CPU_H
21 #define ALPHA_CPU_H
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
29 #define CPUArchState struct CPUAlphaState
31 /* Alpha processors have a weak memory model */
32 #define TCG_GUEST_DEFAULT_MO (0)
34 #include "exec/cpu-defs.h"
36 #include "fpu/softfloat.h"
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
41 #define TARGET_PAGE_BITS 13
43 #ifdef CONFIG_USER_ONLY
44 /* ??? The kernel likes to give addresses in high memory. If the host has
45 more virtual address space than the guest, this can lead to impossible
46 allocations. Honor the long-standing assumption that only kernel addrs
47 are negative, but otherwise allow allocations anywhere. This could lead
48 to tricky emulation problems for programs doing tagged addressing, but
49 that's far fewer than encounter the impossible allocation problem. */
50 #define TARGET_PHYS_ADDR_SPACE_BITS 63
51 #define TARGET_VIRT_ADDR_SPACE_BITS 63
52 #else
53 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
54 #define TARGET_PHYS_ADDR_SPACE_BITS 44
55 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
56 #endif
58 /* Alpha major type */
59 enum {
60 ALPHA_EV3 = 1,
61 ALPHA_EV4 = 2,
62 ALPHA_SIM = 3,
63 ALPHA_LCA = 4,
64 ALPHA_EV5 = 5, /* 21164 */
65 ALPHA_EV45 = 6, /* 21064A */
66 ALPHA_EV56 = 7, /* 21164A */
69 /* EV4 minor type */
70 enum {
71 ALPHA_EV4_2 = 0,
72 ALPHA_EV4_3 = 1,
75 /* LCA minor type */
76 enum {
77 ALPHA_LCA_1 = 1, /* 21066 */
78 ALPHA_LCA_2 = 2, /* 20166 */
79 ALPHA_LCA_3 = 3, /* 21068 */
80 ALPHA_LCA_4 = 4, /* 21068 */
81 ALPHA_LCA_5 = 5, /* 21066A */
82 ALPHA_LCA_6 = 6, /* 21068A */
85 /* EV5 minor type */
86 enum {
87 ALPHA_EV5_1 = 1, /* Rev BA, CA */
88 ALPHA_EV5_2 = 2, /* Rev DA, EA */
89 ALPHA_EV5_3 = 3, /* Pass 3 */
90 ALPHA_EV5_4 = 4, /* Pass 3.2 */
91 ALPHA_EV5_5 = 5, /* Pass 4 */
94 /* EV45 minor type */
95 enum {
96 ALPHA_EV45_1 = 1, /* Pass 1 */
97 ALPHA_EV45_2 = 2, /* Pass 1.1 */
98 ALPHA_EV45_3 = 3, /* Pass 2 */
101 /* EV56 minor type */
102 enum {
103 ALPHA_EV56_1 = 1, /* Pass 1 */
104 ALPHA_EV56_2 = 2, /* Pass 2 */
107 enum {
108 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
109 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
110 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
111 IMPLVER_21364 = 3, /* EV7 & EV79 */
114 enum {
115 AMASK_BWX = 0x00000001,
116 AMASK_FIX = 0x00000002,
117 AMASK_CIX = 0x00000004,
118 AMASK_MVI = 0x00000100,
119 AMASK_TRAP = 0x00000200,
120 AMASK_PREFETCH = 0x00001000,
123 enum {
124 VAX_ROUND_NORMAL = 0,
125 VAX_ROUND_CHOPPED,
128 enum {
129 IEEE_ROUND_NORMAL = 0,
130 IEEE_ROUND_DYNAMIC,
131 IEEE_ROUND_PLUS,
132 IEEE_ROUND_MINUS,
133 IEEE_ROUND_CHOPPED,
136 /* IEEE floating-point operations encoding */
137 /* Trap mode */
138 enum {
139 FP_TRAP_I = 0x0,
140 FP_TRAP_U = 0x1,
141 FP_TRAP_S = 0x4,
142 FP_TRAP_SU = 0x5,
143 FP_TRAP_SUI = 0x7,
146 /* Rounding mode */
147 enum {
148 FP_ROUND_CHOPPED = 0x0,
149 FP_ROUND_MINUS = 0x1,
150 FP_ROUND_NORMAL = 0x2,
151 FP_ROUND_DYNAMIC = 0x3,
154 /* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
155 #define FPCR_SUM (1U << (63 - 32))
156 #define FPCR_INED (1U << (62 - 32))
157 #define FPCR_UNFD (1U << (61 - 32))
158 #define FPCR_UNDZ (1U << (60 - 32))
159 #define FPCR_DYN_SHIFT (58 - 32)
160 #define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
163 #define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
164 #define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
165 #define FPCR_IOV (1U << (57 - 32))
166 #define FPCR_INE (1U << (56 - 32))
167 #define FPCR_UNF (1U << (55 - 32))
168 #define FPCR_OVF (1U << (54 - 32))
169 #define FPCR_DZE (1U << (53 - 32))
170 #define FPCR_INV (1U << (52 - 32))
171 #define FPCR_OVFD (1U << (51 - 32))
172 #define FPCR_DZED (1U << (50 - 32))
173 #define FPCR_INVD (1U << (49 - 32))
174 #define FPCR_DNZ (1U << (48 - 32))
175 #define FPCR_DNOD (1U << (47 - 32))
176 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
177 | FPCR_OVF | FPCR_DZE | FPCR_INV)
179 /* The silly software trap enables implemented by the kernel emulation.
180 These are more or less architecturally required, since the real hardware
181 has read-as-zero bits in the FPCR when the features aren't implemented.
182 For the purposes of QEMU, we pretend the FPCR can hold everything. */
183 #define SWCR_TRAP_ENABLE_INV (1U << 1)
184 #define SWCR_TRAP_ENABLE_DZE (1U << 2)
185 #define SWCR_TRAP_ENABLE_OVF (1U << 3)
186 #define SWCR_TRAP_ENABLE_UNF (1U << 4)
187 #define SWCR_TRAP_ENABLE_INE (1U << 5)
188 #define SWCR_TRAP_ENABLE_DNO (1U << 6)
189 #define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
191 #define SWCR_MAP_DMZ (1U << 12)
192 #define SWCR_MAP_UMZ (1U << 13)
193 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
195 #define SWCR_STATUS_INV (1U << 17)
196 #define SWCR_STATUS_DZE (1U << 18)
197 #define SWCR_STATUS_OVF (1U << 19)
198 #define SWCR_STATUS_UNF (1U << 20)
199 #define SWCR_STATUS_INE (1U << 21)
200 #define SWCR_STATUS_DNO (1U << 22)
201 #define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
203 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
205 /* MMU modes definitions */
207 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
208 The Unix PALcode only exposes the kernel and user modes; presumably
209 executive and supervisor are used by VMS.
211 PALcode itself uses physical mode for code and kernel mode for data;
212 there are PALmode instructions that can access data via physical mode
213 or via an os-installed "alternate mode", which is one of the 4 above.
215 That said, we're only emulating Unix PALcode, and not attempting VMS,
216 so we don't need to implement Executive and Supervisor. QEMU's own
217 PALcode cheats and usees the KSEG mapping for its code+data rather than
218 physical addresses. */
220 #define NB_MMU_MODES 3
222 #define MMU_MODE0_SUFFIX _kernel
223 #define MMU_MODE1_SUFFIX _user
224 #define MMU_KERNEL_IDX 0
225 #define MMU_USER_IDX 1
226 #define MMU_PHYS_IDX 2
228 typedef struct CPUAlphaState CPUAlphaState;
230 struct CPUAlphaState {
231 uint64_t ir[31];
232 float64 fir[31];
233 uint64_t pc;
234 uint64_t unique;
235 uint64_t lock_addr;
236 uint64_t lock_value;
238 /* The FPCR, and disassembled portions thereof. */
239 uint32_t fpcr;
240 uint32_t fpcr_exc_enable;
241 float_status fp_status;
242 uint8_t fpcr_dyn_round;
243 uint8_t fpcr_flush_to_zero;
245 /* Mask of PALmode, Processor State et al. Most of this gets copied
246 into the TranslatorBlock flags and controls code generation. */
247 uint32_t flags;
249 /* The high 32-bits of the processor cycle counter. */
250 uint32_t pcc_ofs;
252 /* These pass data from the exception logic in the translator and
253 helpers to the OS entry point. This is used for both system
254 emulation and user-mode. */
255 uint64_t trap_arg0;
256 uint64_t trap_arg1;
257 uint64_t trap_arg2;
259 #if !defined(CONFIG_USER_ONLY)
260 /* The internal data required by our emulation of the Unix PALcode. */
261 uint64_t exc_addr;
262 uint64_t palbr;
263 uint64_t ptbr;
264 uint64_t vptptr;
265 uint64_t sysval;
266 uint64_t usp;
267 uint64_t shadow[8];
268 uint64_t scratch[24];
269 #endif
271 /* This alarm doesn't exist in real hardware; we wish it did. */
272 uint64_t alarm_expire;
274 /* Those resources are used only in QEMU core */
275 CPU_COMMON
277 int error_code;
279 uint32_t features;
280 uint32_t amask;
281 int implver;
285 * AlphaCPU:
286 * @env: #CPUAlphaState
288 * An Alpha CPU.
290 struct AlphaCPU {
291 /*< private >*/
292 CPUState parent_obj;
293 /*< public >*/
295 CPUAlphaState env;
297 /* This alarm doesn't exist in real hardware; we wish it did. */
298 QEMUTimer *alarm_timer;
301 static inline AlphaCPU *alpha_env_get_cpu(CPUAlphaState *env)
303 return container_of(env, AlphaCPU, env);
306 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
308 #define ENV_OFFSET offsetof(AlphaCPU, env)
310 #ifndef CONFIG_USER_ONLY
311 extern const struct VMStateDescription vmstate_alpha_cpu;
312 #endif
314 void alpha_cpu_do_interrupt(CPUState *cpu);
315 bool alpha_cpu_exec_interrupt(CPUState *cpu, int int_req);
316 void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
317 int flags);
318 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
319 int alpha_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
320 int alpha_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
321 void alpha_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
322 MMUAccessType access_type,
323 int mmu_idx, uintptr_t retaddr);
325 #define cpu_list alpha_cpu_list
326 #define cpu_signal_handler cpu_alpha_signal_handler
328 #include "exec/cpu-all.h"
330 enum {
331 FEATURE_ASN = 0x00000001,
332 FEATURE_SPS = 0x00000002,
333 FEATURE_VIRBND = 0x00000004,
334 FEATURE_TBCHK = 0x00000008,
337 enum {
338 EXCP_RESET,
339 EXCP_MCHK,
340 EXCP_SMP_INTERRUPT,
341 EXCP_CLK_INTERRUPT,
342 EXCP_DEV_INTERRUPT,
343 EXCP_MMFAULT,
344 EXCP_UNALIGN,
345 EXCP_OPCDEC,
346 EXCP_ARITH,
347 EXCP_FEN,
348 EXCP_CALL_PAL,
351 /* Alpha-specific interrupt pending bits. */
352 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
353 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
354 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
356 /* OSF/1 Page table bits. */
357 enum {
358 PTE_VALID = 0x0001,
359 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
360 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
361 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
362 PTE_ASM = 0x0010,
363 PTE_KRE = 0x0100,
364 PTE_URE = 0x0200,
365 PTE_KWE = 0x1000,
366 PTE_UWE = 0x2000
369 /* Hardware interrupt (entInt) constants. */
370 enum {
371 INT_K_IP,
372 INT_K_CLK,
373 INT_K_MCHK,
374 INT_K_DEV,
375 INT_K_PERF,
378 /* Memory management (entMM) constants. */
379 enum {
380 MM_K_TNV,
381 MM_K_ACV,
382 MM_K_FOR,
383 MM_K_FOE,
384 MM_K_FOW
387 /* Arithmetic exception (entArith) constants. */
388 enum {
389 EXC_M_SWC = 1, /* Software completion */
390 EXC_M_INV = 2, /* Invalid operation */
391 EXC_M_DZE = 4, /* Division by zero */
392 EXC_M_FOV = 8, /* Overflow */
393 EXC_M_UNF = 16, /* Underflow */
394 EXC_M_INE = 32, /* Inexact result */
395 EXC_M_IOV = 64 /* Integer Overflow */
398 /* Processor status constants. */
399 /* Low 3 bits are interrupt mask level. */
400 #define PS_INT_MASK 7u
402 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
403 The Unix PALcode only uses bit 4. */
404 #define PS_USER_MODE 8u
406 /* CPUAlphaState->flags constants. These are layed out so that we
407 can set or reset the pieces individually by assigning to the byte,
408 or manipulated as a whole. */
410 #define ENV_FLAG_PAL_SHIFT 0
411 #define ENV_FLAG_PS_SHIFT 8
412 #define ENV_FLAG_RX_SHIFT 16
413 #define ENV_FLAG_FEN_SHIFT 24
415 #define ENV_FLAG_PAL_MODE (1u << ENV_FLAG_PAL_SHIFT)
416 #define ENV_FLAG_PS_USER (PS_USER_MODE << ENV_FLAG_PS_SHIFT)
417 #define ENV_FLAG_RX_FLAG (1u << ENV_FLAG_RX_SHIFT)
418 #define ENV_FLAG_FEN (1u << ENV_FLAG_FEN_SHIFT)
420 #define ENV_FLAG_TB_MASK \
421 (ENV_FLAG_PAL_MODE | ENV_FLAG_PS_USER | ENV_FLAG_FEN)
423 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
425 int ret = env->flags & ENV_FLAG_PS_USER ? MMU_USER_IDX : MMU_KERNEL_IDX;
426 if (env->flags & ENV_FLAG_PAL_MODE) {
427 ret = MMU_KERNEL_IDX;
429 return ret;
432 enum {
433 IR_V0 = 0,
434 IR_T0 = 1,
435 IR_T1 = 2,
436 IR_T2 = 3,
437 IR_T3 = 4,
438 IR_T4 = 5,
439 IR_T5 = 6,
440 IR_T6 = 7,
441 IR_T7 = 8,
442 IR_S0 = 9,
443 IR_S1 = 10,
444 IR_S2 = 11,
445 IR_S3 = 12,
446 IR_S4 = 13,
447 IR_S5 = 14,
448 IR_S6 = 15,
449 IR_FP = IR_S6,
450 IR_A0 = 16,
451 IR_A1 = 17,
452 IR_A2 = 18,
453 IR_A3 = 19,
454 IR_A4 = 20,
455 IR_A5 = 21,
456 IR_T8 = 22,
457 IR_T9 = 23,
458 IR_T10 = 24,
459 IR_T11 = 25,
460 IR_RA = 26,
461 IR_T12 = 27,
462 IR_PV = IR_T12,
463 IR_AT = 28,
464 IR_GP = 29,
465 IR_SP = 30,
466 IR_ZERO = 31,
469 void alpha_translate_init(void);
471 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ALPHA_CPU, cpu_model)
473 void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
474 /* you can call this signal handler from your SIGBUS and SIGSEGV
475 signal handlers to inform the virtual CPU of exceptions. non zero
476 is returned if the signal was handled by the virtual CPU. */
477 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
478 void *puc);
479 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
480 int mmu_idx);
481 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
482 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
484 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
485 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
486 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
487 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
488 #ifndef CONFIG_USER_ONLY
489 void alpha_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
490 vaddr addr, unsigned size,
491 MMUAccessType access_type,
492 int mmu_idx, MemTxAttrs attrs,
493 MemTxResult response, uintptr_t retaddr);
494 #endif
496 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
497 target_ulong *cs_base, uint32_t *pflags)
499 *pc = env->pc;
500 *cs_base = 0;
501 *pflags = env->flags & ENV_FLAG_TB_MASK;
504 #endif /* ALPHA_CPU_H */