2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
22 #ifndef CONFIG_USER_ONLY
24 #include "sysemu/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 #include "exec/ramblock.h"
30 * clear_bmap_size: calculate clear bitmap size
32 * @pages: number of guest pages
33 * @shift: guest page number shift
35 * Returns: number of bits for the clear bitmap
37 static inline long clear_bmap_size(uint64_t pages
, uint8_t shift
)
39 return DIV_ROUND_UP(pages
, 1UL << shift
);
43 * clear_bmap_set: set clear bitmap for the page range
45 * @rb: the ramblock to operate on
46 * @start: the start page number
47 * @size: number of pages to set in the bitmap
51 static inline void clear_bmap_set(RAMBlock
*rb
, uint64_t start
,
54 uint8_t shift
= rb
->clear_bmap_shift
;
56 bitmap_set_atomic(rb
->clear_bmap
, start
>> shift
,
57 clear_bmap_size(npages
, shift
));
61 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
63 * @rb: the ramblock to operate on
64 * @page: the page number to check
66 * Returns: true if the bit was set, false otherwise
68 static inline bool clear_bmap_test_and_clear(RAMBlock
*rb
, uint64_t page
)
70 uint8_t shift
= rb
->clear_bmap_shift
;
72 return bitmap_test_and_clear_atomic(rb
->clear_bmap
, page
>> shift
, 1);
75 static inline bool offset_in_ramblock(RAMBlock
*b
, ram_addr_t offset
)
77 return (b
&& b
->host
&& offset
< b
->used_length
) ? true : false;
80 static inline void *ramblock_ptr(RAMBlock
*block
, ram_addr_t offset
)
82 assert(offset_in_ramblock(block
, offset
));
83 return (char *)block
->host
+ offset
;
86 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr
,
89 uint64_t host_addr_offset
=
90 (uint64_t)(uintptr_t)(host_addr
- (void *)rb
->host
);
91 return host_addr_offset
>> TARGET_PAGE_BITS
;
94 bool ramblock_is_pmem(RAMBlock
*rb
);
96 long qemu_minrampagesize(void);
97 long qemu_maxrampagesize(void);
100 * qemu_ram_alloc_from_file,
101 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
105 * @size: the size in bytes of the ram block
106 * @mr: the memory region where the ram block is
107 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
109 * @mem_path or @fd: specify the backing file or device
110 * @readonly: true to open @path for reading, false for read/write.
111 * @errp: pointer to Error*, to store an error if it happens
114 * On success, return a pointer to the ram block.
115 * On failure, return NULL.
117 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
118 uint32_t ram_flags
, const char *mem_path
,
119 bool readonly
, Error
**errp
);
120 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
121 uint32_t ram_flags
, int fd
, off_t offset
,
122 bool readonly
, Error
**errp
);
124 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
125 MemoryRegion
*mr
, Error
**errp
);
126 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, uint32_t ram_flags
, MemoryRegion
*mr
,
128 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t max_size
,
129 void (*resized
)(const char*,
132 MemoryRegion
*mr
, Error
**errp
);
133 void qemu_ram_free(RAMBlock
*block
);
135 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
);
137 void qemu_ram_msync(RAMBlock
*block
, ram_addr_t start
, ram_addr_t length
);
139 /* Clear whole block of mem */
140 static inline void qemu_ram_block_writeback(RAMBlock
*block
)
142 qemu_ram_msync(block
, 0, block
->used_length
);
145 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
146 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
148 void tb_invalidate_phys_range(ram_addr_t start
, ram_addr_t end
);
150 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start
,
154 DirtyMemoryBlocks
*blocks
;
155 unsigned long end
, page
;
156 unsigned long idx
, offset
, base
;
159 assert(client
< DIRTY_MEMORY_NUM
);
161 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
162 page
= start
>> TARGET_PAGE_BITS
;
164 WITH_RCU_READ_LOCK_GUARD() {
165 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
167 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
168 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
169 base
= page
- offset
;
171 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
172 unsigned long num
= next
- base
;
173 unsigned long found
= find_next_bit(blocks
->blocks
[idx
],
183 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
190 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start
,
194 DirtyMemoryBlocks
*blocks
;
195 unsigned long end
, page
;
196 unsigned long idx
, offset
, base
;
199 assert(client
< DIRTY_MEMORY_NUM
);
201 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
202 page
= start
>> TARGET_PAGE_BITS
;
204 RCU_READ_LOCK_GUARD();
206 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
208 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
209 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
210 base
= page
- offset
;
212 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
213 unsigned long num
= next
- base
;
214 unsigned long found
= find_next_zero_bit(blocks
->blocks
[idx
], num
, offset
);
223 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
229 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr
,
232 return cpu_physical_memory_get_dirty(addr
, 1, client
);
235 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr
)
237 bool vga
= cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_VGA
);
238 bool code
= cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_CODE
);
240 cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_MIGRATION
);
241 return !(vga
&& code
&& migration
);
244 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start
,
250 if (mask
& (1 << DIRTY_MEMORY_VGA
) &&
251 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_VGA
)) {
252 ret
|= (1 << DIRTY_MEMORY_VGA
);
254 if (mask
& (1 << DIRTY_MEMORY_CODE
) &&
255 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_CODE
)) {
256 ret
|= (1 << DIRTY_MEMORY_CODE
);
258 if (mask
& (1 << DIRTY_MEMORY_MIGRATION
) &&
259 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_MIGRATION
)) {
260 ret
|= (1 << DIRTY_MEMORY_MIGRATION
);
265 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr
,
268 unsigned long page
, idx
, offset
;
269 DirtyMemoryBlocks
*blocks
;
271 assert(client
< DIRTY_MEMORY_NUM
);
273 page
= addr
>> TARGET_PAGE_BITS
;
274 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
275 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
277 RCU_READ_LOCK_GUARD();
279 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
281 set_bit_atomic(offset
, blocks
->blocks
[idx
]);
284 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start
,
288 DirtyMemoryBlocks
*blocks
[DIRTY_MEMORY_NUM
];
289 unsigned long end
, page
;
290 unsigned long idx
, offset
, base
;
293 if (!mask
&& !xen_enabled()) {
297 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
298 page
= start
>> TARGET_PAGE_BITS
;
300 WITH_RCU_READ_LOCK_GUARD() {
301 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
302 blocks
[i
] = qatomic_rcu_read(&ram_list
.dirty_memory
[i
]);
305 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
306 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
307 base
= page
- offset
;
309 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
311 if (likely(mask
& (1 << DIRTY_MEMORY_MIGRATION
))) {
312 bitmap_set_atomic(blocks
[DIRTY_MEMORY_MIGRATION
]->blocks
[idx
],
313 offset
, next
- page
);
315 if (unlikely(mask
& (1 << DIRTY_MEMORY_VGA
))) {
316 bitmap_set_atomic(blocks
[DIRTY_MEMORY_VGA
]->blocks
[idx
],
317 offset
, next
- page
);
319 if (unlikely(mask
& (1 << DIRTY_MEMORY_CODE
))) {
320 bitmap_set_atomic(blocks
[DIRTY_MEMORY_CODE
]->blocks
[idx
],
321 offset
, next
- page
);
327 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
331 xen_hvm_modified_memory(start
, length
);
335 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap
,
340 unsigned long page_number
, c
;
343 unsigned long len
= (pages
+ HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
344 unsigned long hpratio
= qemu_real_host_page_size
/ TARGET_PAGE_SIZE
;
345 unsigned long page
= BIT_WORD(start
>> TARGET_PAGE_BITS
);
347 /* start address is aligned at the start of a word? */
348 if ((((page
* BITS_PER_LONG
) << TARGET_PAGE_BITS
) == start
) &&
350 unsigned long **blocks
[DIRTY_MEMORY_NUM
];
352 unsigned long offset
;
354 long nr
= BITS_TO_LONGS(pages
);
356 idx
= (start
>> TARGET_PAGE_BITS
) / DIRTY_MEMORY_BLOCK_SIZE
;
357 offset
= BIT_WORD((start
>> TARGET_PAGE_BITS
) %
358 DIRTY_MEMORY_BLOCK_SIZE
);
360 WITH_RCU_READ_LOCK_GUARD() {
361 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
363 qatomic_rcu_read(&ram_list
.dirty_memory
[i
])->blocks
;
366 for (k
= 0; k
< nr
; k
++) {
368 unsigned long temp
= leul_to_cpu(bitmap
[k
]);
370 qatomic_or(&blocks
[DIRTY_MEMORY_VGA
][idx
][offset
], temp
);
372 if (global_dirty_log
) {
374 &blocks
[DIRTY_MEMORY_MIGRATION
][idx
][offset
],
379 qatomic_or(&blocks
[DIRTY_MEMORY_CODE
][idx
][offset
],
384 if (++offset
>= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE
)) {
391 xen_hvm_modified_memory(start
, pages
<< TARGET_PAGE_BITS
);
393 uint8_t clients
= tcg_enabled() ? DIRTY_CLIENTS_ALL
: DIRTY_CLIENTS_NOCODE
;
395 if (!global_dirty_log
) {
396 clients
&= ~(1 << DIRTY_MEMORY_MIGRATION
);
400 * bitmap-traveling is faster than memory-traveling (for addr...)
401 * especially when most of the memory is not dirty.
403 for (i
= 0; i
< len
; i
++) {
404 if (bitmap
[i
] != 0) {
405 c
= leul_to_cpu(bitmap
[i
]);
409 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
410 addr
= page_number
* TARGET_PAGE_SIZE
;
411 ram_addr
= start
+ addr
;
412 cpu_physical_memory_set_dirty_range(ram_addr
,
413 TARGET_PAGE_SIZE
* hpratio
, clients
);
419 #endif /* not _WIN32 */
421 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
425 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
426 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
);
428 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
432 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start
,
435 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_MIGRATION
);
436 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_VGA
);
437 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_CODE
);
441 /* Called with RCU critical section */
443 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock
*rb
,
448 unsigned long word
= BIT_WORD((start
+ rb
->offset
) >> TARGET_PAGE_BITS
);
449 uint64_t num_dirty
= 0;
450 unsigned long *dest
= rb
->bmap
;
452 /* start address and length is aligned at the start of a word? */
453 if (((word
* BITS_PER_LONG
) << TARGET_PAGE_BITS
) ==
454 (start
+ rb
->offset
) &&
455 !(length
& ((BITS_PER_LONG
<< TARGET_PAGE_BITS
) - 1))) {
457 int nr
= BITS_TO_LONGS(length
>> TARGET_PAGE_BITS
);
458 unsigned long * const *src
;
459 unsigned long idx
= (word
* BITS_PER_LONG
) / DIRTY_MEMORY_BLOCK_SIZE
;
460 unsigned long offset
= BIT_WORD((word
* BITS_PER_LONG
) %
461 DIRTY_MEMORY_BLOCK_SIZE
);
462 unsigned long page
= BIT_WORD(start
>> TARGET_PAGE_BITS
);
464 src
= qatomic_rcu_read(
465 &ram_list
.dirty_memory
[DIRTY_MEMORY_MIGRATION
])->blocks
;
467 for (k
= page
; k
< page
+ nr
; k
++) {
468 if (src
[idx
][offset
]) {
469 unsigned long bits
= qatomic_xchg(&src
[idx
][offset
], 0);
470 unsigned long new_dirty
;
471 new_dirty
= ~dest
[k
];
474 num_dirty
+= ctpopl(new_dirty
);
477 if (++offset
>= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE
)) {
483 if (rb
->clear_bmap
) {
485 * Postpone the dirty bitmap clear to the point before we
486 * really send the pages, also we will split the clear
487 * dirty procedure into smaller chunks.
489 clear_bmap_set(rb
, start
>> TARGET_PAGE_BITS
,
490 length
>> TARGET_PAGE_BITS
);
492 /* Slow path - still do that in a huge chunk */
493 memory_region_clear_dirty_bitmap(rb
->mr
, start
, length
);
496 ram_addr_t offset
= rb
->offset
;
498 for (addr
= 0; addr
< length
; addr
+= TARGET_PAGE_SIZE
) {
499 if (cpu_physical_memory_test_and_clear_dirty(
500 start
+ addr
+ offset
,
502 DIRTY_MEMORY_MIGRATION
)) {
503 long k
= (start
+ addr
) >> TARGET_PAGE_BITS
;
504 if (!test_and_set_bit(k
, dest
)) {