hw/intc: Set GIC maintenance interrupt level to only 0 or 1
[qemu.git] / include / exec / ram_addr.h
blob551876bed041392224976e894c0cb52944dd430a
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "sysemu/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 #include "exec/ramblock.h"
29 /**
30 * clear_bmap_size: calculate clear bitmap size
32 * @pages: number of guest pages
33 * @shift: guest page number shift
35 * Returns: number of bits for the clear bitmap
37 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
39 return DIV_ROUND_UP(pages, 1UL << shift);
42 /**
43 * clear_bmap_set: set clear bitmap for the page range
45 * @rb: the ramblock to operate on
46 * @start: the start page number
47 * @size: number of pages to set in the bitmap
49 * Returns: None
51 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
52 uint64_t npages)
54 uint8_t shift = rb->clear_bmap_shift;
56 bitmap_set_atomic(rb->clear_bmap, start >> shift,
57 clear_bmap_size(npages, shift));
60 /**
61 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
63 * @rb: the ramblock to operate on
64 * @page: the page number to check
66 * Returns: true if the bit was set, false otherwise
68 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
70 uint8_t shift = rb->clear_bmap_shift;
72 return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
75 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
77 return (b && b->host && offset < b->used_length) ? true : false;
80 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
82 assert(offset_in_ramblock(block, offset));
83 return (char *)block->host + offset;
86 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
87 RAMBlock *rb)
89 uint64_t host_addr_offset =
90 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
91 return host_addr_offset >> TARGET_PAGE_BITS;
94 bool ramblock_is_pmem(RAMBlock *rb);
96 long qemu_minrampagesize(void);
97 long qemu_maxrampagesize(void);
99 /**
100 * qemu_ram_alloc_from_file,
101 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
102 * file or device
104 * Parameters:
105 * @size: the size in bytes of the ram block
106 * @mr: the memory region where the ram block is
107 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
108 * RAM_NORESERVE.
109 * @mem_path or @fd: specify the backing file or device
110 * @readonly: true to open @path for reading, false for read/write.
111 * @errp: pointer to Error*, to store an error if it happens
113 * Return:
114 * On success, return a pointer to the ram block.
115 * On failure, return NULL.
117 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
118 uint32_t ram_flags, const char *mem_path,
119 bool readonly, Error **errp);
120 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
121 uint32_t ram_flags, int fd, off_t offset,
122 bool readonly, Error **errp);
124 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
125 MemoryRegion *mr, Error **errp);
126 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
127 Error **errp);
128 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
129 void (*resized)(const char*,
130 uint64_t length,
131 void *host),
132 MemoryRegion *mr, Error **errp);
133 void qemu_ram_free(RAMBlock *block);
135 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
137 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
139 /* Clear whole block of mem */
140 static inline void qemu_ram_block_writeback(RAMBlock *block)
142 qemu_ram_msync(block, 0, block->used_length);
145 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
146 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
148 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
150 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
151 ram_addr_t length,
152 unsigned client)
154 DirtyMemoryBlocks *blocks;
155 unsigned long end, page;
156 unsigned long idx, offset, base;
157 bool dirty = false;
159 assert(client < DIRTY_MEMORY_NUM);
161 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
162 page = start >> TARGET_PAGE_BITS;
164 WITH_RCU_READ_LOCK_GUARD() {
165 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
167 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
168 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
169 base = page - offset;
170 while (page < end) {
171 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
172 unsigned long num = next - base;
173 unsigned long found = find_next_bit(blocks->blocks[idx],
174 num, offset);
175 if (found < num) {
176 dirty = true;
177 break;
180 page = next;
181 idx++;
182 offset = 0;
183 base += DIRTY_MEMORY_BLOCK_SIZE;
187 return dirty;
190 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
191 ram_addr_t length,
192 unsigned client)
194 DirtyMemoryBlocks *blocks;
195 unsigned long end, page;
196 unsigned long idx, offset, base;
197 bool dirty = true;
199 assert(client < DIRTY_MEMORY_NUM);
201 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
202 page = start >> TARGET_PAGE_BITS;
204 RCU_READ_LOCK_GUARD();
206 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
208 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
209 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
210 base = page - offset;
211 while (page < end) {
212 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
213 unsigned long num = next - base;
214 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
215 if (found < num) {
216 dirty = false;
217 break;
220 page = next;
221 idx++;
222 offset = 0;
223 base += DIRTY_MEMORY_BLOCK_SIZE;
226 return dirty;
229 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
230 unsigned client)
232 return cpu_physical_memory_get_dirty(addr, 1, client);
235 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
237 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
238 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
239 bool migration =
240 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
241 return !(vga && code && migration);
244 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
245 ram_addr_t length,
246 uint8_t mask)
248 uint8_t ret = 0;
250 if (mask & (1 << DIRTY_MEMORY_VGA) &&
251 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
252 ret |= (1 << DIRTY_MEMORY_VGA);
254 if (mask & (1 << DIRTY_MEMORY_CODE) &&
255 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
256 ret |= (1 << DIRTY_MEMORY_CODE);
258 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
259 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
260 ret |= (1 << DIRTY_MEMORY_MIGRATION);
262 return ret;
265 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
266 unsigned client)
268 unsigned long page, idx, offset;
269 DirtyMemoryBlocks *blocks;
271 assert(client < DIRTY_MEMORY_NUM);
273 page = addr >> TARGET_PAGE_BITS;
274 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
275 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
277 RCU_READ_LOCK_GUARD();
279 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
281 set_bit_atomic(offset, blocks->blocks[idx]);
284 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
285 ram_addr_t length,
286 uint8_t mask)
288 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
289 unsigned long end, page;
290 unsigned long idx, offset, base;
291 int i;
293 if (!mask && !xen_enabled()) {
294 return;
297 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
298 page = start >> TARGET_PAGE_BITS;
300 WITH_RCU_READ_LOCK_GUARD() {
301 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
302 blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
305 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
306 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
307 base = page - offset;
308 while (page < end) {
309 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
311 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
312 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
313 offset, next - page);
315 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
316 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
317 offset, next - page);
319 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
320 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
321 offset, next - page);
324 page = next;
325 idx++;
326 offset = 0;
327 base += DIRTY_MEMORY_BLOCK_SIZE;
331 xen_hvm_modified_memory(start, length);
334 #if !defined(_WIN32)
335 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
336 ram_addr_t start,
337 ram_addr_t pages)
339 unsigned long i, j;
340 unsigned long page_number, c;
341 hwaddr addr;
342 ram_addr_t ram_addr;
343 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
344 unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
345 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
347 /* start address is aligned at the start of a word? */
348 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
349 (hpratio == 1)) {
350 unsigned long **blocks[DIRTY_MEMORY_NUM];
351 unsigned long idx;
352 unsigned long offset;
353 long k;
354 long nr = BITS_TO_LONGS(pages);
356 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
357 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
358 DIRTY_MEMORY_BLOCK_SIZE);
360 WITH_RCU_READ_LOCK_GUARD() {
361 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
362 blocks[i] =
363 qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
366 for (k = 0; k < nr; k++) {
367 if (bitmap[k]) {
368 unsigned long temp = leul_to_cpu(bitmap[k]);
370 qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
372 if (global_dirty_log) {
373 qatomic_or(
374 &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
375 temp);
378 if (tcg_enabled()) {
379 qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
380 temp);
384 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
385 offset = 0;
386 idx++;
391 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
392 } else {
393 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
395 if (!global_dirty_log) {
396 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
400 * bitmap-traveling is faster than memory-traveling (for addr...)
401 * especially when most of the memory is not dirty.
403 for (i = 0; i < len; i++) {
404 if (bitmap[i] != 0) {
405 c = leul_to_cpu(bitmap[i]);
406 do {
407 j = ctzl(c);
408 c &= ~(1ul << j);
409 page_number = (i * HOST_LONG_BITS + j) * hpratio;
410 addr = page_number * TARGET_PAGE_SIZE;
411 ram_addr = start + addr;
412 cpu_physical_memory_set_dirty_range(ram_addr,
413 TARGET_PAGE_SIZE * hpratio, clients);
414 } while (c != 0);
419 #endif /* not _WIN32 */
421 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
422 ram_addr_t length,
423 unsigned client);
425 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
426 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
428 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
429 ram_addr_t start,
430 ram_addr_t length);
432 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
433 ram_addr_t length)
435 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
436 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
437 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
441 /* Called with RCU critical section */
442 static inline
443 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
444 ram_addr_t start,
445 ram_addr_t length)
447 ram_addr_t addr;
448 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
449 uint64_t num_dirty = 0;
450 unsigned long *dest = rb->bmap;
452 /* start address and length is aligned at the start of a word? */
453 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
454 (start + rb->offset) &&
455 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
456 int k;
457 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
458 unsigned long * const *src;
459 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
460 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
461 DIRTY_MEMORY_BLOCK_SIZE);
462 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
464 src = qatomic_rcu_read(
465 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
467 for (k = page; k < page + nr; k++) {
468 if (src[idx][offset]) {
469 unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
470 unsigned long new_dirty;
471 new_dirty = ~dest[k];
472 dest[k] |= bits;
473 new_dirty &= bits;
474 num_dirty += ctpopl(new_dirty);
477 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
478 offset = 0;
479 idx++;
483 if (rb->clear_bmap) {
485 * Postpone the dirty bitmap clear to the point before we
486 * really send the pages, also we will split the clear
487 * dirty procedure into smaller chunks.
489 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
490 length >> TARGET_PAGE_BITS);
491 } else {
492 /* Slow path - still do that in a huge chunk */
493 memory_region_clear_dirty_bitmap(rb->mr, start, length);
495 } else {
496 ram_addr_t offset = rb->offset;
498 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
499 if (cpu_physical_memory_test_and_clear_dirty(
500 start + addr + offset,
501 TARGET_PAGE_SIZE,
502 DIRTY_MEMORY_MIGRATION)) {
503 long k = (start + addr) >> TARGET_PAGE_BITS;
504 if (!test_and_set_bit(k, dest)) {
505 num_dirty++;
511 return num_dirty;
513 #endif
514 #endif