hw/intc: Set GIC maintenance interrupt level to only 0 or 1
[qemu.git] / include / exec / memory.h
blobc3d417d317f09211c16ee4809fb53867752107d1
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
60 /* Do Nothing */
62 #endif
64 extern bool global_dirty_log;
66 typedef struct MemoryRegionOps MemoryRegionOps;
68 struct ReservedRegion {
69 hwaddr low;
70 hwaddr high;
71 unsigned type;
74 /**
75 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
77 * @mr: the region, or %NULL if empty
78 * @fv: the flat view of the address space the region is mapped in
79 * @offset_within_region: the beginning of the section, relative to @mr's start
80 * @size: the size of the section; will not exceed @mr's boundaries
81 * @offset_within_address_space: the address of the first byte of the section
82 * relative to the region's address space
83 * @readonly: writes to this section are ignored
84 * @nonvolatile: this section is non-volatile
86 struct MemoryRegionSection {
87 Int128 size;
88 MemoryRegion *mr;
89 FlatView *fv;
90 hwaddr offset_within_region;
91 hwaddr offset_within_address_space;
92 bool readonly;
93 bool nonvolatile;
96 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
98 /* See address_space_translate: bit 0 is read, bit 1 is write. */
99 typedef enum {
100 IOMMU_NONE = 0,
101 IOMMU_RO = 1,
102 IOMMU_WO = 2,
103 IOMMU_RW = 3,
104 } IOMMUAccessFlags;
106 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
108 struct IOMMUTLBEntry {
109 AddressSpace *target_as;
110 hwaddr iova;
111 hwaddr translated_addr;
112 hwaddr addr_mask; /* 0xfff = 4k translation */
113 IOMMUAccessFlags perm;
117 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
118 * register with one or multiple IOMMU Notifier capability bit(s).
120 typedef enum {
121 IOMMU_NOTIFIER_NONE = 0,
122 /* Notify cache invalidations */
123 IOMMU_NOTIFIER_UNMAP = 0x1,
124 /* Notify entry changes (newly created entries) */
125 IOMMU_NOTIFIER_MAP = 0x2,
126 /* Notify changes on device IOTLB entries */
127 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
128 } IOMMUNotifierFlag;
130 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
131 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
132 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
133 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
135 struct IOMMUNotifier;
136 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
137 IOMMUTLBEntry *data);
139 struct IOMMUNotifier {
140 IOMMUNotify notify;
141 IOMMUNotifierFlag notifier_flags;
142 /* Notify for address space range start <= addr <= end */
143 hwaddr start;
144 hwaddr end;
145 int iommu_idx;
146 QLIST_ENTRY(IOMMUNotifier) node;
148 typedef struct IOMMUNotifier IOMMUNotifier;
150 typedef struct IOMMUTLBEvent {
151 IOMMUNotifierFlag type;
152 IOMMUTLBEntry entry;
153 } IOMMUTLBEvent;
155 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
156 #define RAM_PREALLOC (1 << 0)
158 /* RAM is mmap-ed with MAP_SHARED */
159 #define RAM_SHARED (1 << 1)
161 /* Only a portion of RAM (used_length) is actually used, and migrated.
162 * Resizing RAM while migrating can result in the migration being canceled.
164 #define RAM_RESIZEABLE (1 << 2)
166 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
167 * zero the page and wake waiting processes.
168 * (Set during postcopy)
170 #define RAM_UF_ZEROPAGE (1 << 3)
172 /* RAM can be migrated */
173 #define RAM_MIGRATABLE (1 << 4)
175 /* RAM is a persistent kind memory */
176 #define RAM_PMEM (1 << 5)
180 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
181 * support 'write-tracking' migration type.
182 * Implies ram_state->ram_wt_enabled.
184 #define RAM_UF_WRITEPROTECT (1 << 6)
187 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
188 * pages if applicable) is skipped: will bail out if not supported. When not
189 * set, the OS will do the reservation, if supported for the memory type.
191 #define RAM_NORESERVE (1 << 7)
193 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
194 IOMMUNotifierFlag flags,
195 hwaddr start, hwaddr end,
196 int iommu_idx)
198 n->notify = fn;
199 n->notifier_flags = flags;
200 n->start = start;
201 n->end = end;
202 n->iommu_idx = iommu_idx;
206 * Memory region callbacks
208 struct MemoryRegionOps {
209 /* Read from the memory region. @addr is relative to @mr; @size is
210 * in bytes. */
211 uint64_t (*read)(void *opaque,
212 hwaddr addr,
213 unsigned size);
214 /* Write to the memory region. @addr is relative to @mr; @size is
215 * in bytes. */
216 void (*write)(void *opaque,
217 hwaddr addr,
218 uint64_t data,
219 unsigned size);
221 MemTxResult (*read_with_attrs)(void *opaque,
222 hwaddr addr,
223 uint64_t *data,
224 unsigned size,
225 MemTxAttrs attrs);
226 MemTxResult (*write_with_attrs)(void *opaque,
227 hwaddr addr,
228 uint64_t data,
229 unsigned size,
230 MemTxAttrs attrs);
232 enum device_endian endianness;
233 /* Guest-visible constraints: */
234 struct {
235 /* If nonzero, specify bounds on access sizes beyond which a machine
236 * check is thrown.
238 unsigned min_access_size;
239 unsigned max_access_size;
240 /* If true, unaligned accesses are supported. Otherwise unaligned
241 * accesses throw machine checks.
243 bool unaligned;
245 * If present, and returns #false, the transaction is not accepted
246 * by the device (and results in machine dependent behaviour such
247 * as a machine check exception).
249 bool (*accepts)(void *opaque, hwaddr addr,
250 unsigned size, bool is_write,
251 MemTxAttrs attrs);
252 } valid;
253 /* Internal implementation constraints: */
254 struct {
255 /* If nonzero, specifies the minimum size implemented. Smaller sizes
256 * will be rounded upwards and a partial result will be returned.
258 unsigned min_access_size;
259 /* If nonzero, specifies the maximum size implemented. Larger sizes
260 * will be done as a series of accesses with smaller sizes.
262 unsigned max_access_size;
263 /* If true, unaligned accesses are supported. Otherwise all accesses
264 * are converted to (possibly multiple) naturally aligned accesses.
266 bool unaligned;
267 } impl;
270 typedef struct MemoryRegionClass {
271 /* private */
272 ObjectClass parent_class;
273 } MemoryRegionClass;
276 enum IOMMUMemoryRegionAttr {
277 IOMMU_ATTR_SPAPR_TCE_FD
281 * IOMMUMemoryRegionClass:
283 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
284 * and provide an implementation of at least the @translate method here
285 * to handle requests to the memory region. Other methods are optional.
287 * The IOMMU implementation must use the IOMMU notifier infrastructure
288 * to report whenever mappings are changed, by calling
289 * memory_region_notify_iommu() (or, if necessary, by calling
290 * memory_region_notify_iommu_one() for each registered notifier).
292 * Conceptually an IOMMU provides a mapping from input address
293 * to an output TLB entry. If the IOMMU is aware of memory transaction
294 * attributes and the output TLB entry depends on the transaction
295 * attributes, we represent this using IOMMU indexes. Each index
296 * selects a particular translation table that the IOMMU has:
298 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
300 * @translate takes an input address and an IOMMU index
302 * and the mapping returned can only depend on the input address and the
303 * IOMMU index.
305 * Most IOMMUs don't care about the transaction attributes and support
306 * only a single IOMMU index. A more complex IOMMU might have one index
307 * for secure transactions and one for non-secure transactions.
309 struct IOMMUMemoryRegionClass {
310 /* private: */
311 MemoryRegionClass parent_class;
313 /* public: */
315 * @translate:
317 * Return a TLB entry that contains a given address.
319 * The IOMMUAccessFlags indicated via @flag are optional and may
320 * be specified as IOMMU_NONE to indicate that the caller needs
321 * the full translation information for both reads and writes. If
322 * the access flags are specified then the IOMMU implementation
323 * may use this as an optimization, to stop doing a page table
324 * walk as soon as it knows that the requested permissions are not
325 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
326 * full page table walk and report the permissions in the returned
327 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
328 * return different mappings for reads and writes.)
330 * The returned information remains valid while the caller is
331 * holding the big QEMU lock or is inside an RCU critical section;
332 * if the caller wishes to cache the mapping beyond that it must
333 * register an IOMMU notifier so it can invalidate its cached
334 * information when the IOMMU mapping changes.
336 * @iommu: the IOMMUMemoryRegion
338 * @hwaddr: address to be translated within the memory region
340 * @flag: requested access permission
342 * @iommu_idx: IOMMU index for the translation
344 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
345 IOMMUAccessFlags flag, int iommu_idx);
347 * @get_min_page_size:
349 * Returns minimum supported page size in bytes.
351 * If this method is not provided then the minimum is assumed to
352 * be TARGET_PAGE_SIZE.
354 * @iommu: the IOMMUMemoryRegion
356 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
358 * @notify_flag_changed:
360 * Called when IOMMU Notifier flag changes (ie when the set of
361 * events which IOMMU users are requesting notification for changes).
362 * Optional method -- need not be provided if the IOMMU does not
363 * need to know exactly which events must be notified.
365 * @iommu: the IOMMUMemoryRegion
367 * @old_flags: events which previously needed to be notified
369 * @new_flags: events which now need to be notified
371 * Returns 0 on success, or a negative errno; in particular
372 * returns -EINVAL if the new flag bitmap is not supported by the
373 * IOMMU memory region. In case of failure, the error object
374 * must be created
376 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
377 IOMMUNotifierFlag old_flags,
378 IOMMUNotifierFlag new_flags,
379 Error **errp);
381 * @replay:
383 * Called to handle memory_region_iommu_replay().
385 * The default implementation of memory_region_iommu_replay() is to
386 * call the IOMMU translate method for every page in the address space
387 * with flag == IOMMU_NONE and then call the notifier if translate
388 * returns a valid mapping. If this method is implemented then it
389 * overrides the default behaviour, and must provide the full semantics
390 * of memory_region_iommu_replay(), by calling @notifier for every
391 * translation present in the IOMMU.
393 * Optional method -- an IOMMU only needs to provide this method
394 * if the default is inefficient or produces undesirable side effects.
396 * Note: this is not related to record-and-replay functionality.
398 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
401 * @get_attr:
403 * Get IOMMU misc attributes. This is an optional method that
404 * can be used to allow users of the IOMMU to get implementation-specific
405 * information. The IOMMU implements this method to handle calls
406 * by IOMMU users to memory_region_iommu_get_attr() by filling in
407 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
408 * the IOMMU supports. If the method is unimplemented then
409 * memory_region_iommu_get_attr() will always return -EINVAL.
411 * @iommu: the IOMMUMemoryRegion
413 * @attr: attribute being queried
415 * @data: memory to fill in with the attribute data
417 * Returns 0 on success, or a negative errno; in particular
418 * returns -EINVAL for unrecognized or unimplemented attribute types.
420 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
421 void *data);
424 * @attrs_to_index:
426 * Return the IOMMU index to use for a given set of transaction attributes.
428 * Optional method: if an IOMMU only supports a single IOMMU index then
429 * the default implementation of memory_region_iommu_attrs_to_index()
430 * will return 0.
432 * The indexes supported by an IOMMU must be contiguous, starting at 0.
434 * @iommu: the IOMMUMemoryRegion
435 * @attrs: memory transaction attributes
437 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
440 * @num_indexes:
442 * Return the number of IOMMU indexes this IOMMU supports.
444 * Optional method: if this method is not provided, then
445 * memory_region_iommu_num_indexes() will return 1, indicating that
446 * only a single IOMMU index is supported.
448 * @iommu: the IOMMUMemoryRegion
450 int (*num_indexes)(IOMMUMemoryRegion *iommu);
453 * @iommu_set_page_size_mask:
455 * Restrict the page size mask that can be supported with a given IOMMU
456 * memory region. Used for example to propagate host physical IOMMU page
457 * size mask limitations to the virtual IOMMU.
459 * Optional method: if this method is not provided, then the default global
460 * page mask is used.
462 * @iommu: the IOMMUMemoryRegion
464 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
465 * representing the smallest page size, must be set. Additional set bits
466 * represent supported block sizes. For example a host physical IOMMU that
467 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
468 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
469 * block sizes is specified with mask 0xfffffffffffff000.
471 * Returns 0 on success, or a negative error. In case of failure, the error
472 * object must be created.
474 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
475 uint64_t page_size_mask,
476 Error **errp);
479 typedef struct RamDiscardListener RamDiscardListener;
480 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
481 MemoryRegionSection *section);
482 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
483 MemoryRegionSection *section);
485 struct RamDiscardListener {
487 * @notify_populate:
489 * Notification that previously discarded memory is about to get populated.
490 * Listeners are able to object. If any listener objects, already
491 * successfully notified listeners are notified about a discard again.
493 * @rdl: the #RamDiscardListener getting notified
494 * @section: the #MemoryRegionSection to get populated. The section
495 * is aligned within the memory region to the minimum granularity
496 * unless it would exceed the registered section.
498 * Returns 0 on success. If the notification is rejected by the listener,
499 * an error is returned.
501 NotifyRamPopulate notify_populate;
504 * @notify_discard:
506 * Notification that previously populated memory was discarded successfully
507 * and listeners should drop all references to such memory and prevent
508 * new population (e.g., unmap).
510 * @rdl: the #RamDiscardListener getting notified
511 * @section: the #MemoryRegionSection to get populated. The section
512 * is aligned within the memory region to the minimum granularity
513 * unless it would exceed the registered section.
515 NotifyRamDiscard notify_discard;
518 * @double_discard_supported:
520 * The listener suppors getting @notify_discard notifications that span
521 * already discarded parts.
523 bool double_discard_supported;
525 MemoryRegionSection *section;
526 QLIST_ENTRY(RamDiscardListener) next;
529 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
530 NotifyRamPopulate populate_fn,
531 NotifyRamDiscard discard_fn,
532 bool double_discard_supported)
534 rdl->notify_populate = populate_fn;
535 rdl->notify_discard = discard_fn;
536 rdl->double_discard_supported = double_discard_supported;
539 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
542 * RamDiscardManagerClass:
544 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
545 * regions are currently populated to be used/accessed by the VM, notifying
546 * after parts were discarded (freeing up memory) and before parts will be
547 * populated (consuming memory), to be used/acessed by the VM.
549 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
550 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
551 * mapped.
553 * The #RamDiscardManager is intended to be used by technologies that are
554 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
555 * memory inside a #MemoryRegion), and require proper coordination to only
556 * map the currently populated parts, to hinder parts that are expected to
557 * remain discarded from silently getting populated and consuming memory.
558 * Technologies that support discarding of RAM don't have to bother and can
559 * simply map the whole #MemoryRegion.
561 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
562 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
563 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
564 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
565 * properly coordinate with listeners before memory is plugged (populated),
566 * and after memory is unplugged (discarded).
568 * Listeners are called in multiples of the minimum granularity (unless it
569 * would exceed the registered range) and changes are aligned to the minimum
570 * granularity within the #MemoryRegion. Listeners have to prepare for memory
571 * becomming discarded in a different granularity than it was populated and the
572 * other way around.
574 struct RamDiscardManagerClass {
575 /* private */
576 InterfaceClass parent_class;
578 /* public */
581 * @get_min_granularity:
583 * Get the minimum granularity in which listeners will get notified
584 * about changes within the #MemoryRegion via the #RamDiscardManager.
586 * @rdm: the #RamDiscardManager
587 * @mr: the #MemoryRegion
589 * Returns the minimum granularity.
591 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
592 const MemoryRegion *mr);
595 * @is_populated:
597 * Check whether the given #MemoryRegionSection is completely populated
598 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
599 * There are no alignment requirements.
601 * @rdm: the #RamDiscardManager
602 * @section: the #MemoryRegionSection
604 * Returns whether the given range is completely populated.
606 bool (*is_populated)(const RamDiscardManager *rdm,
607 const MemoryRegionSection *section);
610 * @replay_populated:
612 * Call the #ReplayRamPopulate callback for all populated parts within the
613 * #MemoryRegionSection via the #RamDiscardManager.
615 * In case any call fails, no further calls are made.
617 * @rdm: the #RamDiscardManager
618 * @section: the #MemoryRegionSection
619 * @replay_fn: the #ReplayRamPopulate callback
620 * @opaque: pointer to forward to the callback
622 * Returns 0 on success, or a negative error if any notification failed.
624 int (*replay_populated)(const RamDiscardManager *rdm,
625 MemoryRegionSection *section,
626 ReplayRamPopulate replay_fn, void *opaque);
629 * @register_listener:
631 * Register a #RamDiscardListener for the given #MemoryRegionSection and
632 * immediately notify the #RamDiscardListener about all populated parts
633 * within the #MemoryRegionSection via the #RamDiscardManager.
635 * In case any notification fails, no further notifications are triggered
636 * and an error is logged.
638 * @rdm: the #RamDiscardManager
639 * @rdl: the #RamDiscardListener
640 * @section: the #MemoryRegionSection
642 void (*register_listener)(RamDiscardManager *rdm,
643 RamDiscardListener *rdl,
644 MemoryRegionSection *section);
647 * @unregister_listener:
649 * Unregister a previously registered #RamDiscardListener via the
650 * #RamDiscardManager after notifying the #RamDiscardListener about all
651 * populated parts becoming unpopulated within the registered
652 * #MemoryRegionSection.
654 * @rdm: the #RamDiscardManager
655 * @rdl: the #RamDiscardListener
657 void (*unregister_listener)(RamDiscardManager *rdm,
658 RamDiscardListener *rdl);
661 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
662 const MemoryRegion *mr);
664 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
665 const MemoryRegionSection *section);
667 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
668 MemoryRegionSection *section,
669 ReplayRamPopulate replay_fn,
670 void *opaque);
672 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
673 RamDiscardListener *rdl,
674 MemoryRegionSection *section);
676 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
677 RamDiscardListener *rdl);
679 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
680 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
682 /** MemoryRegion:
684 * A struct representing a memory region.
686 struct MemoryRegion {
687 Object parent_obj;
689 /* private: */
691 /* The following fields should fit in a cache line */
692 bool romd_mode;
693 bool ram;
694 bool subpage;
695 bool readonly; /* For RAM regions */
696 bool nonvolatile;
697 bool rom_device;
698 bool flush_coalesced_mmio;
699 uint8_t dirty_log_mask;
700 bool is_iommu;
701 RAMBlock *ram_block;
702 Object *owner;
704 const MemoryRegionOps *ops;
705 void *opaque;
706 MemoryRegion *container;
707 Int128 size;
708 hwaddr addr;
709 void (*destructor)(MemoryRegion *mr);
710 uint64_t align;
711 bool terminates;
712 bool ram_device;
713 bool enabled;
714 bool warning_printed; /* For reservations */
715 uint8_t vga_logging_count;
716 MemoryRegion *alias;
717 hwaddr alias_offset;
718 int32_t priority;
719 QTAILQ_HEAD(, MemoryRegion) subregions;
720 QTAILQ_ENTRY(MemoryRegion) subregions_link;
721 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
722 const char *name;
723 unsigned ioeventfd_nb;
724 MemoryRegionIoeventfd *ioeventfds;
725 RamDiscardManager *rdm; /* Only for RAM */
728 struct IOMMUMemoryRegion {
729 MemoryRegion parent_obj;
731 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
732 IOMMUNotifierFlag iommu_notify_flags;
735 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
736 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
739 * struct MemoryListener: callbacks structure for updates to the physical memory map
741 * Allows a component to adjust to changes in the guest-visible memory map.
742 * Use with memory_listener_register() and memory_listener_unregister().
744 struct MemoryListener {
746 * @begin:
748 * Called at the beginning of an address space update transaction.
749 * Followed by calls to #MemoryListener.region_add(),
750 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
751 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
752 * increasing address order.
754 * @listener: The #MemoryListener.
756 void (*begin)(MemoryListener *listener);
759 * @commit:
761 * Called at the end of an address space update transaction,
762 * after the last call to #MemoryListener.region_add(),
763 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
764 * #MemoryListener.log_start() and #MemoryListener.log_stop().
766 * @listener: The #MemoryListener.
768 void (*commit)(MemoryListener *listener);
771 * @region_add:
773 * Called during an address space update transaction,
774 * for a section of the address space that is new in this address space
775 * space since the last transaction.
777 * @listener: The #MemoryListener.
778 * @section: The new #MemoryRegionSection.
780 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
783 * @region_del:
785 * Called during an address space update transaction,
786 * for a section of the address space that has disappeared in the address
787 * space since the last transaction.
789 * @listener: The #MemoryListener.
790 * @section: The old #MemoryRegionSection.
792 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
795 * @region_nop:
797 * Called during an address space update transaction,
798 * for a section of the address space that is in the same place in the address
799 * space as in the last transaction.
801 * @listener: The #MemoryListener.
802 * @section: The #MemoryRegionSection.
804 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
807 * @log_start:
809 * Called during an address space update transaction, after
810 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
811 * #MemoryListener.region_nop(), if dirty memory logging clients have
812 * become active since the last transaction.
814 * @listener: The #MemoryListener.
815 * @section: The #MemoryRegionSection.
816 * @old: A bitmap of dirty memory logging clients that were active in
817 * the previous transaction.
818 * @new: A bitmap of dirty memory logging clients that are active in
819 * the current transaction.
821 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
822 int old, int new);
825 * @log_stop:
827 * Called during an address space update transaction, after
828 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
829 * #MemoryListener.region_nop() and possibly after
830 * #MemoryListener.log_start(), if dirty memory logging clients have
831 * become inactive since the last transaction.
833 * @listener: The #MemoryListener.
834 * @section: The #MemoryRegionSection.
835 * @old: A bitmap of dirty memory logging clients that were active in
836 * the previous transaction.
837 * @new: A bitmap of dirty memory logging clients that are active in
838 * the current transaction.
840 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
841 int old, int new);
844 * @log_sync:
846 * Called by memory_region_snapshot_and_clear_dirty() and
847 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
848 * copy of the dirty memory bitmap for a #MemoryRegionSection.
850 * @listener: The #MemoryListener.
851 * @section: The #MemoryRegionSection.
853 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
856 * @log_sync_global:
858 * This is the global version of @log_sync when the listener does
859 * not have a way to synchronize the log with finer granularity.
860 * When the listener registers with @log_sync_global defined, then
861 * its @log_sync must be NULL. Vice versa.
863 * @listener: The #MemoryListener.
865 void (*log_sync_global)(MemoryListener *listener);
868 * @log_clear:
870 * Called before reading the dirty memory bitmap for a
871 * #MemoryRegionSection.
873 * @listener: The #MemoryListener.
874 * @section: The #MemoryRegionSection.
876 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
879 * @log_global_start:
881 * Called by memory_global_dirty_log_start(), which
882 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
883 * the address space. #MemoryListener.log_global_start() is also
884 * called when a #MemoryListener is added, if global dirty logging is
885 * active at that time.
887 * @listener: The #MemoryListener.
889 void (*log_global_start)(MemoryListener *listener);
892 * @log_global_stop:
894 * Called by memory_global_dirty_log_stop(), which
895 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
896 * the address space.
898 * @listener: The #MemoryListener.
900 void (*log_global_stop)(MemoryListener *listener);
903 * @log_global_after_sync:
905 * Called after reading the dirty memory bitmap
906 * for any #MemoryRegionSection.
908 * @listener: The #MemoryListener.
910 void (*log_global_after_sync)(MemoryListener *listener);
913 * @eventfd_add:
915 * Called during an address space update transaction,
916 * for a section of the address space that has had a new ioeventfd
917 * registration since the last transaction.
919 * @listener: The #MemoryListener.
920 * @section: The new #MemoryRegionSection.
921 * @match_data: The @match_data parameter for the new ioeventfd.
922 * @data: The @data parameter for the new ioeventfd.
923 * @e: The #EventNotifier parameter for the new ioeventfd.
925 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
926 bool match_data, uint64_t data, EventNotifier *e);
929 * @eventfd_del:
931 * Called during an address space update transaction,
932 * for a section of the address space that has dropped an ioeventfd
933 * registration since the last transaction.
935 * @listener: The #MemoryListener.
936 * @section: The new #MemoryRegionSection.
937 * @match_data: The @match_data parameter for the dropped ioeventfd.
938 * @data: The @data parameter for the dropped ioeventfd.
939 * @e: The #EventNotifier parameter for the dropped ioeventfd.
941 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
942 bool match_data, uint64_t data, EventNotifier *e);
945 * @coalesced_io_add:
947 * Called during an address space update transaction,
948 * for a section of the address space that has had a new coalesced
949 * MMIO range registration since the last transaction.
951 * @listener: The #MemoryListener.
952 * @section: The new #MemoryRegionSection.
953 * @addr: The starting address for the coalesced MMIO range.
954 * @len: The length of the coalesced MMIO range.
956 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
957 hwaddr addr, hwaddr len);
960 * @coalesced_io_del:
962 * Called during an address space update transaction,
963 * for a section of the address space that has dropped a coalesced
964 * MMIO range since the last transaction.
966 * @listener: The #MemoryListener.
967 * @section: The new #MemoryRegionSection.
968 * @addr: The starting address for the coalesced MMIO range.
969 * @len: The length of the coalesced MMIO range.
971 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
972 hwaddr addr, hwaddr len);
974 * @priority:
976 * Govern the order in which memory listeners are invoked. Lower priorities
977 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
978 * or "stop" callbacks.
980 unsigned priority;
982 /* private: */
983 AddressSpace *address_space;
984 QTAILQ_ENTRY(MemoryListener) link;
985 QTAILQ_ENTRY(MemoryListener) link_as;
989 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
991 struct AddressSpace {
992 /* private: */
993 struct rcu_head rcu;
994 char *name;
995 MemoryRegion *root;
997 /* Accessed via RCU. */
998 struct FlatView *current_map;
1000 int ioeventfd_nb;
1001 struct MemoryRegionIoeventfd *ioeventfds;
1002 QTAILQ_HEAD(, MemoryListener) listeners;
1003 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1006 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1007 typedef struct FlatRange FlatRange;
1009 /* Flattened global view of current active memory hierarchy. Kept in sorted
1010 * order.
1012 struct FlatView {
1013 struct rcu_head rcu;
1014 unsigned ref;
1015 FlatRange *ranges;
1016 unsigned nr;
1017 unsigned nr_allocated;
1018 struct AddressSpaceDispatch *dispatch;
1019 MemoryRegion *root;
1022 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1024 return qatomic_rcu_read(&as->current_map);
1028 * typedef flatview_cb: callback for flatview_for_each_range()
1030 * @start: start address of the range within the FlatView
1031 * @len: length of the range in bytes
1032 * @mr: MemoryRegion covering this range
1033 * @offset_in_region: offset of the first byte of the range within @mr
1034 * @opaque: data pointer passed to flatview_for_each_range()
1036 * Returns: true to stop the iteration, false to keep going.
1038 typedef bool (*flatview_cb)(Int128 start,
1039 Int128 len,
1040 const MemoryRegion *mr,
1041 hwaddr offset_in_region,
1042 void *opaque);
1045 * flatview_for_each_range: Iterate through a FlatView
1046 * @fv: the FlatView to iterate through
1047 * @cb: function to call for each range
1048 * @opaque: opaque data pointer to pass to @cb
1050 * A FlatView is made up of a list of non-overlapping ranges, each of
1051 * which is a slice of a MemoryRegion. This function iterates through
1052 * each range in @fv, calling @cb. The callback function can terminate
1053 * iteration early by returning 'true'.
1055 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1057 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1058 MemoryRegionSection *b)
1060 return a->mr == b->mr &&
1061 a->fv == b->fv &&
1062 a->offset_within_region == b->offset_within_region &&
1063 a->offset_within_address_space == b->offset_within_address_space &&
1064 int128_eq(a->size, b->size) &&
1065 a->readonly == b->readonly &&
1066 a->nonvolatile == b->nonvolatile;
1070 * memory_region_section_new_copy: Copy a memory region section
1072 * Allocate memory for a new copy, copy the memory region section, and
1073 * properly take a reference on all relevant members.
1075 * @s: the #MemoryRegionSection to copy
1077 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1080 * memory_region_section_new_copy: Free a copied memory region section
1082 * Free a copy of a memory section created via memory_region_section_new_copy().
1083 * properly dropping references on all relevant members.
1085 * @s: the #MemoryRegionSection to copy
1087 void memory_region_section_free_copy(MemoryRegionSection *s);
1090 * memory_region_init: Initialize a memory region
1092 * The region typically acts as a container for other memory regions. Use
1093 * memory_region_add_subregion() to add subregions.
1095 * @mr: the #MemoryRegion to be initialized
1096 * @owner: the object that tracks the region's reference count
1097 * @name: used for debugging; not visible to the user or ABI
1098 * @size: size of the region; any subregions beyond this size will be clipped
1100 void memory_region_init(MemoryRegion *mr,
1101 Object *owner,
1102 const char *name,
1103 uint64_t size);
1106 * memory_region_ref: Add 1 to a memory region's reference count
1108 * Whenever memory regions are accessed outside the BQL, they need to be
1109 * preserved against hot-unplug. MemoryRegions actually do not have their
1110 * own reference count; they piggyback on a QOM object, their "owner".
1111 * This function adds a reference to the owner.
1113 * All MemoryRegions must have an owner if they can disappear, even if the
1114 * device they belong to operates exclusively under the BQL. This is because
1115 * the region could be returned at any time by memory_region_find, and this
1116 * is usually under guest control.
1118 * @mr: the #MemoryRegion
1120 void memory_region_ref(MemoryRegion *mr);
1123 * memory_region_unref: Remove 1 to a memory region's reference count
1125 * Whenever memory regions are accessed outside the BQL, they need to be
1126 * preserved against hot-unplug. MemoryRegions actually do not have their
1127 * own reference count; they piggyback on a QOM object, their "owner".
1128 * This function removes a reference to the owner and possibly destroys it.
1130 * @mr: the #MemoryRegion
1132 void memory_region_unref(MemoryRegion *mr);
1135 * memory_region_init_io: Initialize an I/O memory region.
1137 * Accesses into the region will cause the callbacks in @ops to be called.
1138 * if @size is nonzero, subregions will be clipped to @size.
1140 * @mr: the #MemoryRegion to be initialized.
1141 * @owner: the object that tracks the region's reference count
1142 * @ops: a structure containing read and write callbacks to be used when
1143 * I/O is performed on the region.
1144 * @opaque: passed to the read and write callbacks of the @ops structure.
1145 * @name: used for debugging; not visible to the user or ABI
1146 * @size: size of the region.
1148 void memory_region_init_io(MemoryRegion *mr,
1149 Object *owner,
1150 const MemoryRegionOps *ops,
1151 void *opaque,
1152 const char *name,
1153 uint64_t size);
1156 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1157 * into the region will modify memory
1158 * directly.
1160 * @mr: the #MemoryRegion to be initialized.
1161 * @owner: the object that tracks the region's reference count
1162 * @name: Region name, becomes part of RAMBlock name used in migration stream
1163 * must be unique within any device
1164 * @size: size of the region.
1165 * @errp: pointer to Error*, to store an error if it happens.
1167 * Note that this function does not do anything to cause the data in the
1168 * RAM memory region to be migrated; that is the responsibility of the caller.
1170 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1171 Object *owner,
1172 const char *name,
1173 uint64_t size,
1174 Error **errp);
1177 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1178 * Accesses into the region will
1179 * modify memory directly.
1181 * @mr: the #MemoryRegion to be initialized.
1182 * @owner: the object that tracks the region's reference count
1183 * @name: Region name, becomes part of RAMBlock name used in migration stream
1184 * must be unique within any device
1185 * @size: size of the region.
1186 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1187 * @errp: pointer to Error*, to store an error if it happens.
1189 * Note that this function does not do anything to cause the data in the
1190 * RAM memory region to be migrated; that is the responsibility of the caller.
1192 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1193 Object *owner,
1194 const char *name,
1195 uint64_t size,
1196 uint32_t ram_flags,
1197 Error **errp);
1200 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
1201 * RAM. Accesses into the region will
1202 * modify memory directly. Only an initial
1203 * portion of this RAM is actually used.
1204 * Changing the size while migrating
1205 * can result in the migration being
1206 * canceled.
1208 * @mr: the #MemoryRegion to be initialized.
1209 * @owner: the object that tracks the region's reference count
1210 * @name: Region name, becomes part of RAMBlock name used in migration stream
1211 * must be unique within any device
1212 * @size: used size of the region.
1213 * @max_size: max size of the region.
1214 * @resized: callback to notify owner about used size change.
1215 * @errp: pointer to Error*, to store an error if it happens.
1217 * Note that this function does not do anything to cause the data in the
1218 * RAM memory region to be migrated; that is the responsibility of the caller.
1220 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1221 Object *owner,
1222 const char *name,
1223 uint64_t size,
1224 uint64_t max_size,
1225 void (*resized)(const char*,
1226 uint64_t length,
1227 void *host),
1228 Error **errp);
1229 #ifdef CONFIG_POSIX
1232 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1233 * mmap-ed backend.
1235 * @mr: the #MemoryRegion to be initialized.
1236 * @owner: the object that tracks the region's reference count
1237 * @name: Region name, becomes part of RAMBlock name used in migration stream
1238 * must be unique within any device
1239 * @size: size of the region.
1240 * @align: alignment of the region base address; if 0, the default alignment
1241 * (getpagesize()) will be used.
1242 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1243 * RAM_NORESERVE,
1244 * @path: the path in which to allocate the RAM.
1245 * @readonly: true to open @path for reading, false for read/write.
1246 * @errp: pointer to Error*, to store an error if it happens.
1248 * Note that this function does not do anything to cause the data in the
1249 * RAM memory region to be migrated; that is the responsibility of the caller.
1251 void memory_region_init_ram_from_file(MemoryRegion *mr,
1252 Object *owner,
1253 const char *name,
1254 uint64_t size,
1255 uint64_t align,
1256 uint32_t ram_flags,
1257 const char *path,
1258 bool readonly,
1259 Error **errp);
1262 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1263 * mmap-ed backend.
1265 * @mr: the #MemoryRegion to be initialized.
1266 * @owner: the object that tracks the region's reference count
1267 * @name: the name of the region.
1268 * @size: size of the region.
1269 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1270 * RAM_NORESERVE.
1271 * @fd: the fd to mmap.
1272 * @offset: offset within the file referenced by fd
1273 * @errp: pointer to Error*, to store an error if it happens.
1275 * Note that this function does not do anything to cause the data in the
1276 * RAM memory region to be migrated; that is the responsibility of the caller.
1278 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1279 Object *owner,
1280 const char *name,
1281 uint64_t size,
1282 uint32_t ram_flags,
1283 int fd,
1284 ram_addr_t offset,
1285 Error **errp);
1286 #endif
1289 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1290 * user-provided pointer. Accesses into the
1291 * region will modify memory directly.
1293 * @mr: the #MemoryRegion to be initialized.
1294 * @owner: the object that tracks the region's reference count
1295 * @name: Region name, becomes part of RAMBlock name used in migration stream
1296 * must be unique within any device
1297 * @size: size of the region.
1298 * @ptr: memory to be mapped; must contain at least @size bytes.
1300 * Note that this function does not do anything to cause the data in the
1301 * RAM memory region to be migrated; that is the responsibility of the caller.
1303 void memory_region_init_ram_ptr(MemoryRegion *mr,
1304 Object *owner,
1305 const char *name,
1306 uint64_t size,
1307 void *ptr);
1310 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1311 * a user-provided pointer.
1313 * A RAM device represents a mapping to a physical device, such as to a PCI
1314 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1315 * into the VM address space and access to the region will modify memory
1316 * directly. However, the memory region should not be included in a memory
1317 * dump (device may not be enabled/mapped at the time of the dump), and
1318 * operations incompatible with manipulating MMIO should be avoided. Replaces
1319 * skip_dump flag.
1321 * @mr: the #MemoryRegion to be initialized.
1322 * @owner: the object that tracks the region's reference count
1323 * @name: the name of the region.
1324 * @size: size of the region.
1325 * @ptr: memory to be mapped; must contain at least @size bytes.
1327 * Note that this function does not do anything to cause the data in the
1328 * RAM memory region to be migrated; that is the responsibility of the caller.
1329 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1331 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1332 Object *owner,
1333 const char *name,
1334 uint64_t size,
1335 void *ptr);
1338 * memory_region_init_alias: Initialize a memory region that aliases all or a
1339 * part of another memory region.
1341 * @mr: the #MemoryRegion to be initialized.
1342 * @owner: the object that tracks the region's reference count
1343 * @name: used for debugging; not visible to the user or ABI
1344 * @orig: the region to be referenced; @mr will be equivalent to
1345 * @orig between @offset and @offset + @size - 1.
1346 * @offset: start of the section in @orig to be referenced.
1347 * @size: size of the region.
1349 void memory_region_init_alias(MemoryRegion *mr,
1350 Object *owner,
1351 const char *name,
1352 MemoryRegion *orig,
1353 hwaddr offset,
1354 uint64_t size);
1357 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1359 * This has the same effect as calling memory_region_init_ram_nomigrate()
1360 * and then marking the resulting region read-only with
1361 * memory_region_set_readonly().
1363 * Note that this function does not do anything to cause the data in the
1364 * RAM side of the memory region to be migrated; that is the responsibility
1365 * of the caller.
1367 * @mr: the #MemoryRegion to be initialized.
1368 * @owner: the object that tracks the region's reference count
1369 * @name: Region name, becomes part of RAMBlock name used in migration stream
1370 * must be unique within any device
1371 * @size: size of the region.
1372 * @errp: pointer to Error*, to store an error if it happens.
1374 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1375 Object *owner,
1376 const char *name,
1377 uint64_t size,
1378 Error **errp);
1381 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1382 * Writes are handled via callbacks.
1384 * Note that this function does not do anything to cause the data in the
1385 * RAM side of the memory region to be migrated; that is the responsibility
1386 * of the caller.
1388 * @mr: the #MemoryRegion to be initialized.
1389 * @owner: the object that tracks the region's reference count
1390 * @ops: callbacks for write access handling (must not be NULL).
1391 * @opaque: passed to the read and write callbacks of the @ops structure.
1392 * @name: Region name, becomes part of RAMBlock name used in migration stream
1393 * must be unique within any device
1394 * @size: size of the region.
1395 * @errp: pointer to Error*, to store an error if it happens.
1397 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1398 Object *owner,
1399 const MemoryRegionOps *ops,
1400 void *opaque,
1401 const char *name,
1402 uint64_t size,
1403 Error **errp);
1406 * memory_region_init_iommu: Initialize a memory region of a custom type
1407 * that translates addresses
1409 * An IOMMU region translates addresses and forwards accesses to a target
1410 * memory region.
1412 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1413 * @_iommu_mr should be a pointer to enough memory for an instance of
1414 * that subclass, @instance_size is the size of that subclass, and
1415 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1416 * instance of the subclass, and its methods will then be called to handle
1417 * accesses to the memory region. See the documentation of
1418 * #IOMMUMemoryRegionClass for further details.
1420 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1421 * @instance_size: the IOMMUMemoryRegion subclass instance size
1422 * @mrtypename: the type name of the #IOMMUMemoryRegion
1423 * @owner: the object that tracks the region's reference count
1424 * @name: used for debugging; not visible to the user or ABI
1425 * @size: size of the region.
1427 void memory_region_init_iommu(void *_iommu_mr,
1428 size_t instance_size,
1429 const char *mrtypename,
1430 Object *owner,
1431 const char *name,
1432 uint64_t size);
1435 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1436 * region will modify memory directly.
1438 * @mr: the #MemoryRegion to be initialized
1439 * @owner: the object that tracks the region's reference count (must be
1440 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1441 * @name: name of the memory region
1442 * @size: size of the region in bytes
1443 * @errp: pointer to Error*, to store an error if it happens.
1445 * This function allocates RAM for a board model or device, and
1446 * arranges for it to be migrated (by calling vmstate_register_ram()
1447 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1448 * @owner is NULL).
1450 * TODO: Currently we restrict @owner to being either NULL (for
1451 * global RAM regions with no owner) or devices, so that we can
1452 * give the RAM block a unique name for migration purposes.
1453 * We should lift this restriction and allow arbitrary Objects.
1454 * If you pass a non-NULL non-device @owner then we will assert.
1456 void memory_region_init_ram(MemoryRegion *mr,
1457 Object *owner,
1458 const char *name,
1459 uint64_t size,
1460 Error **errp);
1463 * memory_region_init_rom: Initialize a ROM memory region.
1465 * This has the same effect as calling memory_region_init_ram()
1466 * and then marking the resulting region read-only with
1467 * memory_region_set_readonly(). This includes arranging for the
1468 * contents to be migrated.
1470 * TODO: Currently we restrict @owner to being either NULL (for
1471 * global RAM regions with no owner) or devices, so that we can
1472 * give the RAM block a unique name for migration purposes.
1473 * We should lift this restriction and allow arbitrary Objects.
1474 * If you pass a non-NULL non-device @owner then we will assert.
1476 * @mr: the #MemoryRegion to be initialized.
1477 * @owner: the object that tracks the region's reference count
1478 * @name: Region name, becomes part of RAMBlock name used in migration stream
1479 * must be unique within any device
1480 * @size: size of the region.
1481 * @errp: pointer to Error*, to store an error if it happens.
1483 void memory_region_init_rom(MemoryRegion *mr,
1484 Object *owner,
1485 const char *name,
1486 uint64_t size,
1487 Error **errp);
1490 * memory_region_init_rom_device: Initialize a ROM memory region.
1491 * Writes are handled via callbacks.
1493 * This function initializes a memory region backed by RAM for reads
1494 * and callbacks for writes, and arranges for the RAM backing to
1495 * be migrated (by calling vmstate_register_ram()
1496 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1497 * @owner is NULL).
1499 * TODO: Currently we restrict @owner to being either NULL (for
1500 * global RAM regions with no owner) or devices, so that we can
1501 * give the RAM block a unique name for migration purposes.
1502 * We should lift this restriction and allow arbitrary Objects.
1503 * If you pass a non-NULL non-device @owner then we will assert.
1505 * @mr: the #MemoryRegion to be initialized.
1506 * @owner: the object that tracks the region's reference count
1507 * @ops: callbacks for write access handling (must not be NULL).
1508 * @opaque: passed to the read and write callbacks of the @ops structure.
1509 * @name: Region name, becomes part of RAMBlock name used in migration stream
1510 * must be unique within any device
1511 * @size: size of the region.
1512 * @errp: pointer to Error*, to store an error if it happens.
1514 void memory_region_init_rom_device(MemoryRegion *mr,
1515 Object *owner,
1516 const MemoryRegionOps *ops,
1517 void *opaque,
1518 const char *name,
1519 uint64_t size,
1520 Error **errp);
1524 * memory_region_owner: get a memory region's owner.
1526 * @mr: the memory region being queried.
1528 Object *memory_region_owner(MemoryRegion *mr);
1531 * memory_region_size: get a memory region's size.
1533 * @mr: the memory region being queried.
1535 uint64_t memory_region_size(MemoryRegion *mr);
1538 * memory_region_is_ram: check whether a memory region is random access
1540 * Returns %true if a memory region is random access.
1542 * @mr: the memory region being queried
1544 static inline bool memory_region_is_ram(MemoryRegion *mr)
1546 return mr->ram;
1550 * memory_region_is_ram_device: check whether a memory region is a ram device
1552 * Returns %true if a memory region is a device backed ram region
1554 * @mr: the memory region being queried
1556 bool memory_region_is_ram_device(MemoryRegion *mr);
1559 * memory_region_is_romd: check whether a memory region is in ROMD mode
1561 * Returns %true if a memory region is a ROM device and currently set to allow
1562 * direct reads.
1564 * @mr: the memory region being queried
1566 static inline bool memory_region_is_romd(MemoryRegion *mr)
1568 return mr->rom_device && mr->romd_mode;
1572 * memory_region_get_iommu: check whether a memory region is an iommu
1574 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1575 * otherwise NULL.
1577 * @mr: the memory region being queried
1579 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1581 if (mr->alias) {
1582 return memory_region_get_iommu(mr->alias);
1584 if (mr->is_iommu) {
1585 return (IOMMUMemoryRegion *) mr;
1587 return NULL;
1591 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1592 * if an iommu or NULL if not
1594 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1595 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1597 * @iommu_mr: the memory region being queried
1599 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1600 IOMMUMemoryRegion *iommu_mr)
1602 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1605 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1608 * memory_region_iommu_get_min_page_size: get minimum supported page size
1609 * for an iommu
1611 * Returns minimum supported page size for an iommu.
1613 * @iommu_mr: the memory region being queried
1615 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1618 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1620 * Note: for any IOMMU implementation, an in-place mapping change
1621 * should be notified with an UNMAP followed by a MAP.
1623 * @iommu_mr: the memory region that was changed
1624 * @iommu_idx: the IOMMU index for the translation table which has changed
1625 * @event: TLB event with the new entry in the IOMMU translation table.
1626 * The entry replaces all old entries for the same virtual I/O address
1627 * range.
1629 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1630 int iommu_idx,
1631 IOMMUTLBEvent event);
1634 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1635 * entry to a single notifier
1637 * This works just like memory_region_notify_iommu(), but it only
1638 * notifies a specific notifier, not all of them.
1640 * @notifier: the notifier to be notified
1641 * @event: TLB event with the new entry in the IOMMU translation table.
1642 * The entry replaces all old entries for the same virtual I/O address
1643 * range.
1645 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1646 IOMMUTLBEvent *event);
1649 * memory_region_register_iommu_notifier: register a notifier for changes to
1650 * IOMMU translation entries.
1652 * Returns 0 on success, or a negative errno otherwise. In particular,
1653 * -EINVAL indicates that at least one of the attributes of the notifier
1654 * is not supported (flag/range) by the IOMMU memory region. In case of error
1655 * the error object must be created.
1657 * @mr: the memory region to observe
1658 * @n: the IOMMUNotifier to be added; the notify callback receives a
1659 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1660 * ceases to be valid on exit from the notifier.
1661 * @errp: pointer to Error*, to store an error if it happens.
1663 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1664 IOMMUNotifier *n, Error **errp);
1667 * memory_region_iommu_replay: replay existing IOMMU translations to
1668 * a notifier with the minimum page granularity returned by
1669 * mr->iommu_ops->get_page_size().
1671 * Note: this is not related to record-and-replay functionality.
1673 * @iommu_mr: the memory region to observe
1674 * @n: the notifier to which to replay iommu mappings
1676 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1679 * memory_region_unregister_iommu_notifier: unregister a notifier for
1680 * changes to IOMMU translation entries.
1682 * @mr: the memory region which was observed and for which notity_stopped()
1683 * needs to be called
1684 * @n: the notifier to be removed.
1686 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1687 IOMMUNotifier *n);
1690 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1691 * defined on the IOMMU.
1693 * Returns 0 on success, or a negative errno otherwise. In particular,
1694 * -EINVAL indicates that the IOMMU does not support the requested
1695 * attribute.
1697 * @iommu_mr: the memory region
1698 * @attr: the requested attribute
1699 * @data: a pointer to the requested attribute data
1701 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1702 enum IOMMUMemoryRegionAttr attr,
1703 void *data);
1706 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1707 * use for translations with the given memory transaction attributes.
1709 * @iommu_mr: the memory region
1710 * @attrs: the memory transaction attributes
1712 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1713 MemTxAttrs attrs);
1716 * memory_region_iommu_num_indexes: return the total number of IOMMU
1717 * indexes that this IOMMU supports.
1719 * @iommu_mr: the memory region
1721 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1724 * memory_region_iommu_set_page_size_mask: set the supported page
1725 * sizes for a given IOMMU memory region
1727 * @iommu_mr: IOMMU memory region
1728 * @page_size_mask: supported page size mask
1729 * @errp: pointer to Error*, to store an error if it happens.
1731 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1732 uint64_t page_size_mask,
1733 Error **errp);
1736 * memory_region_name: get a memory region's name
1738 * Returns the string that was used to initialize the memory region.
1740 * @mr: the memory region being queried
1742 const char *memory_region_name(const MemoryRegion *mr);
1745 * memory_region_is_logging: return whether a memory region is logging writes
1747 * Returns %true if the memory region is logging writes for the given client
1749 * @mr: the memory region being queried
1750 * @client: the client being queried
1752 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1755 * memory_region_get_dirty_log_mask: return the clients for which a
1756 * memory region is logging writes.
1758 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1759 * are the bit indices.
1761 * @mr: the memory region being queried
1763 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1766 * memory_region_is_rom: check whether a memory region is ROM
1768 * Returns %true if a memory region is read-only memory.
1770 * @mr: the memory region being queried
1772 static inline bool memory_region_is_rom(MemoryRegion *mr)
1774 return mr->ram && mr->readonly;
1778 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1780 * Returns %true is a memory region is non-volatile memory.
1782 * @mr: the memory region being queried
1784 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1786 return mr->nonvolatile;
1790 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1792 * Returns a file descriptor backing a file-based RAM memory region,
1793 * or -1 if the region is not a file-based RAM memory region.
1795 * @mr: the RAM or alias memory region being queried.
1797 int memory_region_get_fd(MemoryRegion *mr);
1800 * memory_region_from_host: Convert a pointer into a RAM memory region
1801 * and an offset within it.
1803 * Given a host pointer inside a RAM memory region (created with
1804 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1805 * the MemoryRegion and the offset within it.
1807 * Use with care; by the time this function returns, the returned pointer is
1808 * not protected by RCU anymore. If the caller is not within an RCU critical
1809 * section and does not hold the iothread lock, it must have other means of
1810 * protecting the pointer, such as a reference to the region that includes
1811 * the incoming ram_addr_t.
1813 * @ptr: the host pointer to be converted
1814 * @offset: the offset within memory region
1816 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1819 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1821 * Returns a host pointer to a RAM memory region (created with
1822 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1824 * Use with care; by the time this function returns, the returned pointer is
1825 * not protected by RCU anymore. If the caller is not within an RCU critical
1826 * section and does not hold the iothread lock, it must have other means of
1827 * protecting the pointer, such as a reference to the region that includes
1828 * the incoming ram_addr_t.
1830 * @mr: the memory region being queried.
1832 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1834 /* memory_region_ram_resize: Resize a RAM region.
1836 * Resizing RAM while migrating can result in the migration being canceled.
1837 * Care has to be taken if the guest might have already detected the memory.
1839 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1840 * @newsize: the new size the region
1841 * @errp: pointer to Error*, to store an error if it happens.
1843 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1844 Error **errp);
1847 * memory_region_msync: Synchronize selected address range of
1848 * a memory mapped region
1850 * @mr: the memory region to be msync
1851 * @addr: the initial address of the range to be sync
1852 * @size: the size of the range to be sync
1854 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1857 * memory_region_writeback: Trigger cache writeback for
1858 * selected address range
1860 * @mr: the memory region to be updated
1861 * @addr: the initial address of the range to be written back
1862 * @size: the size of the range to be written back
1864 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1867 * memory_region_set_log: Turn dirty logging on or off for a region.
1869 * Turns dirty logging on or off for a specified client (display, migration).
1870 * Only meaningful for RAM regions.
1872 * @mr: the memory region being updated.
1873 * @log: whether dirty logging is to be enabled or disabled.
1874 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1876 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1879 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1881 * Marks a range of bytes as dirty, after it has been dirtied outside
1882 * guest code.
1884 * @mr: the memory region being dirtied.
1885 * @addr: the address (relative to the start of the region) being dirtied.
1886 * @size: size of the range being dirtied.
1888 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1889 hwaddr size);
1892 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1894 * This function is called when the caller wants to clear the remote
1895 * dirty bitmap of a memory range within the memory region. This can
1896 * be used by e.g. KVM to manually clear dirty log when
1897 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1898 * kernel.
1900 * @mr: the memory region to clear the dirty log upon
1901 * @start: start address offset within the memory region
1902 * @len: length of the memory region to clear dirty bitmap
1904 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1905 hwaddr len);
1908 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1909 * bitmap and clear it.
1911 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1912 * returns the snapshot. The snapshot can then be used to query dirty
1913 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1914 * querying the same page multiple times, which is especially useful for
1915 * display updates where the scanlines often are not page aligned.
1917 * The dirty bitmap region which gets copyed into the snapshot (and
1918 * cleared afterwards) can be larger than requested. The boundaries
1919 * are rounded up/down so complete bitmap longs (covering 64 pages on
1920 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1921 * isn't a problem for display updates as the extra pages are outside
1922 * the visible area, and in case the visible area changes a full
1923 * display redraw is due anyway. Should other use cases for this
1924 * function emerge we might have to revisit this implementation
1925 * detail.
1927 * Use g_free to release DirtyBitmapSnapshot.
1929 * @mr: the memory region being queried.
1930 * @addr: the address (relative to the start of the region) being queried.
1931 * @size: the size of the range being queried.
1932 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1934 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1935 hwaddr addr,
1936 hwaddr size,
1937 unsigned client);
1940 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1941 * in the specified dirty bitmap snapshot.
1943 * @mr: the memory region being queried.
1944 * @snap: the dirty bitmap snapshot
1945 * @addr: the address (relative to the start of the region) being queried.
1946 * @size: the size of the range being queried.
1948 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1949 DirtyBitmapSnapshot *snap,
1950 hwaddr addr, hwaddr size);
1953 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1954 * client.
1956 * Marks a range of pages as no longer dirty.
1958 * @mr: the region being updated.
1959 * @addr: the start of the subrange being cleaned.
1960 * @size: the size of the subrange being cleaned.
1961 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1962 * %DIRTY_MEMORY_VGA.
1964 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1965 hwaddr size, unsigned client);
1968 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1969 * TBs (for self-modifying code).
1971 * The MemoryRegionOps->write() callback of a ROM device must use this function
1972 * to mark byte ranges that have been modified internally, such as by directly
1973 * accessing the memory returned by memory_region_get_ram_ptr().
1975 * This function marks the range dirty and invalidates TBs so that TCG can
1976 * detect self-modifying code.
1978 * @mr: the region being flushed.
1979 * @addr: the start, relative to the start of the region, of the range being
1980 * flushed.
1981 * @size: the size, in bytes, of the range being flushed.
1983 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1986 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1988 * Allows a memory region to be marked as read-only (turning it into a ROM).
1989 * only useful on RAM regions.
1991 * @mr: the region being updated.
1992 * @readonly: whether rhe region is to be ROM or RAM.
1994 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1997 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1999 * Allows a memory region to be marked as non-volatile.
2000 * only useful on RAM regions.
2002 * @mr: the region being updated.
2003 * @nonvolatile: whether rhe region is to be non-volatile.
2005 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2008 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2010 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2011 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2012 * device is mapped to guest memory and satisfies read access directly.
2013 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2014 * Writes are always handled by the #MemoryRegion.write function.
2016 * @mr: the memory region to be updated
2017 * @romd_mode: %true to put the region into ROMD mode
2019 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2022 * memory_region_set_coalescing: Enable memory coalescing for the region.
2024 * Enabled writes to a region to be queued for later processing. MMIO ->write
2025 * callbacks may be delayed until a non-coalesced MMIO is issued.
2026 * Only useful for IO regions. Roughly similar to write-combining hardware.
2028 * @mr: the memory region to be write coalesced
2030 void memory_region_set_coalescing(MemoryRegion *mr);
2033 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2034 * a region.
2036 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2037 * Multiple calls can be issued coalesced disjoint ranges.
2039 * @mr: the memory region to be updated.
2040 * @offset: the start of the range within the region to be coalesced.
2041 * @size: the size of the subrange to be coalesced.
2043 void memory_region_add_coalescing(MemoryRegion *mr,
2044 hwaddr offset,
2045 uint64_t size);
2048 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2050 * Disables any coalescing caused by memory_region_set_coalescing() or
2051 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2052 * hardware.
2054 * @mr: the memory region to be updated.
2056 void memory_region_clear_coalescing(MemoryRegion *mr);
2059 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2060 * accesses.
2062 * Ensure that pending coalesced MMIO request are flushed before the memory
2063 * region is accessed. This property is automatically enabled for all regions
2064 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2066 * @mr: the memory region to be updated.
2068 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2071 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2072 * accesses.
2074 * Clear the automatic coalesced MMIO flushing enabled via
2075 * memory_region_set_flush_coalesced. Note that this service has no effect on
2076 * memory regions that have MMIO coalescing enabled for themselves. For them,
2077 * automatic flushing will stop once coalescing is disabled.
2079 * @mr: the memory region to be updated.
2081 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2084 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2085 * is written to a location.
2087 * Marks a word in an IO region (initialized with memory_region_init_io())
2088 * as a trigger for an eventfd event. The I/O callback will not be called.
2089 * The caller must be prepared to handle failure (that is, take the required
2090 * action if the callback _is_ called).
2092 * @mr: the memory region being updated.
2093 * @addr: the address within @mr that is to be monitored
2094 * @size: the size of the access to trigger the eventfd
2095 * @match_data: whether to match against @data, instead of just @addr
2096 * @data: the data to match against the guest write
2097 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2099 void memory_region_add_eventfd(MemoryRegion *mr,
2100 hwaddr addr,
2101 unsigned size,
2102 bool match_data,
2103 uint64_t data,
2104 EventNotifier *e);
2107 * memory_region_del_eventfd: Cancel an eventfd.
2109 * Cancels an eventfd trigger requested by a previous
2110 * memory_region_add_eventfd() call.
2112 * @mr: the memory region being updated.
2113 * @addr: the address within @mr that is to be monitored
2114 * @size: the size of the access to trigger the eventfd
2115 * @match_data: whether to match against @data, instead of just @addr
2116 * @data: the data to match against the guest write
2117 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2119 void memory_region_del_eventfd(MemoryRegion *mr,
2120 hwaddr addr,
2121 unsigned size,
2122 bool match_data,
2123 uint64_t data,
2124 EventNotifier *e);
2127 * memory_region_add_subregion: Add a subregion to a container.
2129 * Adds a subregion at @offset. The subregion may not overlap with other
2130 * subregions (except for those explicitly marked as overlapping). A region
2131 * may only be added once as a subregion (unless removed with
2132 * memory_region_del_subregion()); use memory_region_init_alias() if you
2133 * want a region to be a subregion in multiple locations.
2135 * @mr: the region to contain the new subregion; must be a container
2136 * initialized with memory_region_init().
2137 * @offset: the offset relative to @mr where @subregion is added.
2138 * @subregion: the subregion to be added.
2140 void memory_region_add_subregion(MemoryRegion *mr,
2141 hwaddr offset,
2142 MemoryRegion *subregion);
2144 * memory_region_add_subregion_overlap: Add a subregion to a container
2145 * with overlap.
2147 * Adds a subregion at @offset. The subregion may overlap with other
2148 * subregions. Conflicts are resolved by having a higher @priority hide a
2149 * lower @priority. Subregions without priority are taken as @priority 0.
2150 * A region may only be added once as a subregion (unless removed with
2151 * memory_region_del_subregion()); use memory_region_init_alias() if you
2152 * want a region to be a subregion in multiple locations.
2154 * @mr: the region to contain the new subregion; must be a container
2155 * initialized with memory_region_init().
2156 * @offset: the offset relative to @mr where @subregion is added.
2157 * @subregion: the subregion to be added.
2158 * @priority: used for resolving overlaps; highest priority wins.
2160 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2161 hwaddr offset,
2162 MemoryRegion *subregion,
2163 int priority);
2166 * memory_region_get_ram_addr: Get the ram address associated with a memory
2167 * region
2169 * @mr: the region to be queried
2171 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2173 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2175 * memory_region_del_subregion: Remove a subregion.
2177 * Removes a subregion from its container.
2179 * @mr: the container to be updated.
2180 * @subregion: the region being removed; must be a current subregion of @mr.
2182 void memory_region_del_subregion(MemoryRegion *mr,
2183 MemoryRegion *subregion);
2186 * memory_region_set_enabled: dynamically enable or disable a region
2188 * Enables or disables a memory region. A disabled memory region
2189 * ignores all accesses to itself and its subregions. It does not
2190 * obscure sibling subregions with lower priority - it simply behaves as
2191 * if it was removed from the hierarchy.
2193 * Regions default to being enabled.
2195 * @mr: the region to be updated
2196 * @enabled: whether to enable or disable the region
2198 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2201 * memory_region_set_address: dynamically update the address of a region
2203 * Dynamically updates the address of a region, relative to its container.
2204 * May be used on regions are currently part of a memory hierarchy.
2206 * @mr: the region to be updated
2207 * @addr: new address, relative to container region
2209 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2212 * memory_region_set_size: dynamically update the size of a region.
2214 * Dynamically updates the size of a region.
2216 * @mr: the region to be updated
2217 * @size: used size of the region.
2219 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2222 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2224 * Dynamically updates the offset into the target region that an alias points
2225 * to, as if the fourth argument to memory_region_init_alias() has changed.
2227 * @mr: the #MemoryRegion to be updated; should be an alias.
2228 * @offset: the new offset into the target memory region
2230 void memory_region_set_alias_offset(MemoryRegion *mr,
2231 hwaddr offset);
2234 * memory_region_present: checks if an address relative to a @container
2235 * translates into #MemoryRegion within @container
2237 * Answer whether a #MemoryRegion within @container covers the address
2238 * @addr.
2240 * @container: a #MemoryRegion within which @addr is a relative address
2241 * @addr: the area within @container to be searched
2243 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2246 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2247 * into any address space.
2249 * @mr: a #MemoryRegion which should be checked if it's mapped
2251 bool memory_region_is_mapped(MemoryRegion *mr);
2254 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2255 * #MemoryRegion
2257 * The #RamDiscardManager cannot change while a memory region is mapped.
2259 * @mr: the #MemoryRegion
2261 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2264 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2265 * #RamDiscardManager assigned
2267 * @mr: the #MemoryRegion
2269 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2271 return !!memory_region_get_ram_discard_manager(mr);
2275 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2276 * #MemoryRegion
2278 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2279 * that does not cover RAM, or a #MemoryRegion that already has a
2280 * #RamDiscardManager assigned.
2282 * @mr: the #MemoryRegion
2283 * @rdm: #RamDiscardManager to set
2285 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2286 RamDiscardManager *rdm);
2289 * memory_region_find: translate an address/size relative to a
2290 * MemoryRegion into a #MemoryRegionSection.
2292 * Locates the first #MemoryRegion within @mr that overlaps the range
2293 * given by @addr and @size.
2295 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2296 * It will have the following characteristics:
2297 * - @size = 0 iff no overlap was found
2298 * - @mr is non-%NULL iff an overlap was found
2300 * Remember that in the return value the @offset_within_region is
2301 * relative to the returned region (in the .@mr field), not to the
2302 * @mr argument.
2304 * Similarly, the .@offset_within_address_space is relative to the
2305 * address space that contains both regions, the passed and the
2306 * returned one. However, in the special case where the @mr argument
2307 * has no container (and thus is the root of the address space), the
2308 * following will hold:
2309 * - @offset_within_address_space >= @addr
2310 * - @offset_within_address_space + .@size <= @addr + @size
2312 * @mr: a MemoryRegion within which @addr is a relative address
2313 * @addr: start of the area within @as to be searched
2314 * @size: size of the area to be searched
2316 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2317 hwaddr addr, uint64_t size);
2320 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2322 * Synchronizes the dirty page log for all address spaces.
2324 void memory_global_dirty_log_sync(void);
2327 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2329 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2330 * This function must be called after the dirty log bitmap is cleared, and
2331 * before dirty guest memory pages are read. If you are using
2332 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2333 * care of doing this.
2335 void memory_global_after_dirty_log_sync(void);
2338 * memory_region_transaction_begin: Start a transaction.
2340 * During a transaction, changes will be accumulated and made visible
2341 * only when the transaction ends (is committed).
2343 void memory_region_transaction_begin(void);
2346 * memory_region_transaction_commit: Commit a transaction and make changes
2347 * visible to the guest.
2349 void memory_region_transaction_commit(void);
2352 * memory_listener_register: register callbacks to be called when memory
2353 * sections are mapped or unmapped into an address
2354 * space
2356 * @listener: an object containing the callbacks to be called
2357 * @filter: if non-%NULL, only regions in this address space will be observed
2359 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2362 * memory_listener_unregister: undo the effect of memory_listener_register()
2364 * @listener: an object containing the callbacks to be removed
2366 void memory_listener_unregister(MemoryListener *listener);
2369 * memory_global_dirty_log_start: begin dirty logging for all regions
2371 void memory_global_dirty_log_start(void);
2374 * memory_global_dirty_log_stop: end dirty logging for all regions
2376 void memory_global_dirty_log_stop(void);
2378 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2381 * memory_region_dispatch_read: perform a read directly to the specified
2382 * MemoryRegion.
2384 * @mr: #MemoryRegion to access
2385 * @addr: address within that region
2386 * @pval: pointer to uint64_t which the data is written to
2387 * @op: size, sign, and endianness of the memory operation
2388 * @attrs: memory transaction attributes to use for the access
2390 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2391 hwaddr addr,
2392 uint64_t *pval,
2393 MemOp op,
2394 MemTxAttrs attrs);
2396 * memory_region_dispatch_write: perform a write directly to the specified
2397 * MemoryRegion.
2399 * @mr: #MemoryRegion to access
2400 * @addr: address within that region
2401 * @data: data to write
2402 * @op: size, sign, and endianness of the memory operation
2403 * @attrs: memory transaction attributes to use for the access
2405 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2406 hwaddr addr,
2407 uint64_t data,
2408 MemOp op,
2409 MemTxAttrs attrs);
2412 * address_space_init: initializes an address space
2414 * @as: an uninitialized #AddressSpace
2415 * @root: a #MemoryRegion that routes addresses for the address space
2416 * @name: an address space name. The name is only used for debugging
2417 * output.
2419 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2422 * address_space_destroy: destroy an address space
2424 * Releases all resources associated with an address space. After an address space
2425 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2426 * as well.
2428 * @as: address space to be destroyed
2430 void address_space_destroy(AddressSpace *as);
2433 * address_space_remove_listeners: unregister all listeners of an address space
2435 * Removes all callbacks previously registered with memory_listener_register()
2436 * for @as.
2438 * @as: an initialized #AddressSpace
2440 void address_space_remove_listeners(AddressSpace *as);
2443 * address_space_rw: read from or write to an address space.
2445 * Return a MemTxResult indicating whether the operation succeeded
2446 * or failed (eg unassigned memory, device rejected the transaction,
2447 * IOMMU fault).
2449 * @as: #AddressSpace to be accessed
2450 * @addr: address within that address space
2451 * @attrs: memory transaction attributes
2452 * @buf: buffer with the data transferred
2453 * @len: the number of bytes to read or write
2454 * @is_write: indicates the transfer direction
2456 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2457 MemTxAttrs attrs, void *buf,
2458 hwaddr len, bool is_write);
2461 * address_space_write: write to address space.
2463 * Return a MemTxResult indicating whether the operation succeeded
2464 * or failed (eg unassigned memory, device rejected the transaction,
2465 * IOMMU fault).
2467 * @as: #AddressSpace to be accessed
2468 * @addr: address within that address space
2469 * @attrs: memory transaction attributes
2470 * @buf: buffer with the data transferred
2471 * @len: the number of bytes to write
2473 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2474 MemTxAttrs attrs,
2475 const void *buf, hwaddr len);
2478 * address_space_write_rom: write to address space, including ROM.
2480 * This function writes to the specified address space, but will
2481 * write data to both ROM and RAM. This is used for non-guest
2482 * writes like writes from the gdb debug stub or initial loading
2483 * of ROM contents.
2485 * Note that portions of the write which attempt to write data to
2486 * a device will be silently ignored -- only real RAM and ROM will
2487 * be written to.
2489 * Return a MemTxResult indicating whether the operation succeeded
2490 * or failed (eg unassigned memory, device rejected the transaction,
2491 * IOMMU fault).
2493 * @as: #AddressSpace to be accessed
2494 * @addr: address within that address space
2495 * @attrs: memory transaction attributes
2496 * @buf: buffer with the data transferred
2497 * @len: the number of bytes to write
2499 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2500 MemTxAttrs attrs,
2501 const void *buf, hwaddr len);
2503 /* address_space_ld*: load from an address space
2504 * address_space_st*: store to an address space
2506 * These functions perform a load or store of the byte, word,
2507 * longword or quad to the specified address within the AddressSpace.
2508 * The _le suffixed functions treat the data as little endian;
2509 * _be indicates big endian; no suffix indicates "same endianness
2510 * as guest CPU".
2512 * The "guest CPU endianness" accessors are deprecated for use outside
2513 * target-* code; devices should be CPU-agnostic and use either the LE
2514 * or the BE accessors.
2516 * @as #AddressSpace to be accessed
2517 * @addr: address within that address space
2518 * @val: data value, for stores
2519 * @attrs: memory transaction attributes
2520 * @result: location to write the success/failure of the transaction;
2521 * if NULL, this information is discarded
2524 #define SUFFIX
2525 #define ARG1 as
2526 #define ARG1_DECL AddressSpace *as
2527 #include "exec/memory_ldst.h.inc"
2529 #define SUFFIX
2530 #define ARG1 as
2531 #define ARG1_DECL AddressSpace *as
2532 #include "exec/memory_ldst_phys.h.inc"
2534 struct MemoryRegionCache {
2535 void *ptr;
2536 hwaddr xlat;
2537 hwaddr len;
2538 FlatView *fv;
2539 MemoryRegionSection mrs;
2540 bool is_write;
2543 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2546 /* address_space_ld*_cached: load from a cached #MemoryRegion
2547 * address_space_st*_cached: store into a cached #MemoryRegion
2549 * These functions perform a load or store of the byte, word,
2550 * longword or quad to the specified address. The address is
2551 * a physical address in the AddressSpace, but it must lie within
2552 * a #MemoryRegion that was mapped with address_space_cache_init.
2554 * The _le suffixed functions treat the data as little endian;
2555 * _be indicates big endian; no suffix indicates "same endianness
2556 * as guest CPU".
2558 * The "guest CPU endianness" accessors are deprecated for use outside
2559 * target-* code; devices should be CPU-agnostic and use either the LE
2560 * or the BE accessors.
2562 * @cache: previously initialized #MemoryRegionCache to be accessed
2563 * @addr: address within the address space
2564 * @val: data value, for stores
2565 * @attrs: memory transaction attributes
2566 * @result: location to write the success/failure of the transaction;
2567 * if NULL, this information is discarded
2570 #define SUFFIX _cached_slow
2571 #define ARG1 cache
2572 #define ARG1_DECL MemoryRegionCache *cache
2573 #include "exec/memory_ldst.h.inc"
2575 /* Inline fast path for direct RAM access. */
2576 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2577 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2579 assert(addr < cache->len);
2580 if (likely(cache->ptr)) {
2581 return ldub_p(cache->ptr + addr);
2582 } else {
2583 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2587 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2588 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2590 assert(addr < cache->len);
2591 if (likely(cache->ptr)) {
2592 stb_p(cache->ptr + addr, val);
2593 } else {
2594 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2598 #define ENDIANNESS _le
2599 #include "exec/memory_ldst_cached.h.inc"
2601 #define ENDIANNESS _be
2602 #include "exec/memory_ldst_cached.h.inc"
2604 #define SUFFIX _cached
2605 #define ARG1 cache
2606 #define ARG1_DECL MemoryRegionCache *cache
2607 #include "exec/memory_ldst_phys.h.inc"
2609 /* address_space_cache_init: prepare for repeated access to a physical
2610 * memory region
2612 * @cache: #MemoryRegionCache to be filled
2613 * @as: #AddressSpace to be accessed
2614 * @addr: address within that address space
2615 * @len: length of buffer
2616 * @is_write: indicates the transfer direction
2618 * Will only work with RAM, and may map a subset of the requested range by
2619 * returning a value that is less than @len. On failure, return a negative
2620 * errno value.
2622 * Because it only works with RAM, this function can be used for
2623 * read-modify-write operations. In this case, is_write should be %true.
2625 * Note that addresses passed to the address_space_*_cached functions
2626 * are relative to @addr.
2628 int64_t address_space_cache_init(MemoryRegionCache *cache,
2629 AddressSpace *as,
2630 hwaddr addr,
2631 hwaddr len,
2632 bool is_write);
2635 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2637 * @cache: The #MemoryRegionCache to operate on.
2638 * @addr: The first physical address that was written, relative to the
2639 * address that was passed to @address_space_cache_init.
2640 * @access_len: The number of bytes that were written starting at @addr.
2642 void address_space_cache_invalidate(MemoryRegionCache *cache,
2643 hwaddr addr,
2644 hwaddr access_len);
2647 * address_space_cache_destroy: free a #MemoryRegionCache
2649 * @cache: The #MemoryRegionCache whose memory should be released.
2651 void address_space_cache_destroy(MemoryRegionCache *cache);
2653 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2654 * entry. Should be called from an RCU critical section.
2656 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2657 bool is_write, MemTxAttrs attrs);
2659 /* address_space_translate: translate an address range into an address space
2660 * into a MemoryRegion and an address range into that section. Should be
2661 * called from an RCU critical section, to avoid that the last reference
2662 * to the returned region disappears after address_space_translate returns.
2664 * @fv: #FlatView to be accessed
2665 * @addr: address within that address space
2666 * @xlat: pointer to address within the returned memory region section's
2667 * #MemoryRegion.
2668 * @len: pointer to length
2669 * @is_write: indicates the transfer direction
2670 * @attrs: memory attributes
2672 MemoryRegion *flatview_translate(FlatView *fv,
2673 hwaddr addr, hwaddr *xlat,
2674 hwaddr *len, bool is_write,
2675 MemTxAttrs attrs);
2677 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2678 hwaddr addr, hwaddr *xlat,
2679 hwaddr *len, bool is_write,
2680 MemTxAttrs attrs)
2682 return flatview_translate(address_space_to_flatview(as),
2683 addr, xlat, len, is_write, attrs);
2686 /* address_space_access_valid: check for validity of accessing an address
2687 * space range
2689 * Check whether memory is assigned to the given address space range, and
2690 * access is permitted by any IOMMU regions that are active for the address
2691 * space.
2693 * For now, addr and len should be aligned to a page size. This limitation
2694 * will be lifted in the future.
2696 * @as: #AddressSpace to be accessed
2697 * @addr: address within that address space
2698 * @len: length of the area to be checked
2699 * @is_write: indicates the transfer direction
2700 * @attrs: memory attributes
2702 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2703 bool is_write, MemTxAttrs attrs);
2705 /* address_space_map: map a physical memory region into a host virtual address
2707 * May map a subset of the requested range, given by and returned in @plen.
2708 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2709 * the mapping are exhausted.
2710 * Use only for reads OR writes - not for read-modify-write operations.
2711 * Use cpu_register_map_client() to know when retrying the map operation is
2712 * likely to succeed.
2714 * @as: #AddressSpace to be accessed
2715 * @addr: address within that address space
2716 * @plen: pointer to length of buffer; updated on return
2717 * @is_write: indicates the transfer direction
2718 * @attrs: memory attributes
2720 void *address_space_map(AddressSpace *as, hwaddr addr,
2721 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2723 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2725 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2726 * the amount of memory that was actually read or written by the caller.
2728 * @as: #AddressSpace used
2729 * @buffer: host pointer as returned by address_space_map()
2730 * @len: buffer length as returned by address_space_map()
2731 * @access_len: amount of data actually transferred
2732 * @is_write: indicates the transfer direction
2734 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2735 bool is_write, hwaddr access_len);
2738 /* Internal functions, part of the implementation of address_space_read. */
2739 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2740 MemTxAttrs attrs, void *buf, hwaddr len);
2741 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2742 MemTxAttrs attrs, void *buf,
2743 hwaddr len, hwaddr addr1, hwaddr l,
2744 MemoryRegion *mr);
2745 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2747 /* Internal functions, part of the implementation of address_space_read_cached
2748 * and address_space_write_cached. */
2749 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2750 hwaddr addr, void *buf, hwaddr len);
2751 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2752 hwaddr addr, const void *buf,
2753 hwaddr len);
2755 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2757 if (is_write) {
2758 return memory_region_is_ram(mr) && !mr->readonly &&
2759 !mr->rom_device && !memory_region_is_ram_device(mr);
2760 } else {
2761 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2762 memory_region_is_romd(mr);
2767 * address_space_read: read from an address space.
2769 * Return a MemTxResult indicating whether the operation succeeded
2770 * or failed (eg unassigned memory, device rejected the transaction,
2771 * IOMMU fault). Called within RCU critical section.
2773 * @as: #AddressSpace to be accessed
2774 * @addr: address within that address space
2775 * @attrs: memory transaction attributes
2776 * @buf: buffer with the data transferred
2777 * @len: length of the data transferred
2779 static inline __attribute__((__always_inline__))
2780 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2781 MemTxAttrs attrs, void *buf,
2782 hwaddr len)
2784 MemTxResult result = MEMTX_OK;
2785 hwaddr l, addr1;
2786 void *ptr;
2787 MemoryRegion *mr;
2788 FlatView *fv;
2790 if (__builtin_constant_p(len)) {
2791 if (len) {
2792 RCU_READ_LOCK_GUARD();
2793 fv = address_space_to_flatview(as);
2794 l = len;
2795 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2796 if (len == l && memory_access_is_direct(mr, false)) {
2797 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2798 memcpy(buf, ptr, len);
2799 } else {
2800 result = flatview_read_continue(fv, addr, attrs, buf, len,
2801 addr1, l, mr);
2804 } else {
2805 result = address_space_read_full(as, addr, attrs, buf, len);
2807 return result;
2811 * address_space_read_cached: read from a cached RAM region
2813 * @cache: Cached region to be addressed
2814 * @addr: address relative to the base of the RAM region
2815 * @buf: buffer with the data transferred
2816 * @len: length of the data transferred
2818 static inline MemTxResult
2819 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2820 void *buf, hwaddr len)
2822 assert(addr < cache->len && len <= cache->len - addr);
2823 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2824 if (likely(cache->ptr)) {
2825 memcpy(buf, cache->ptr + addr, len);
2826 return MEMTX_OK;
2827 } else {
2828 return address_space_read_cached_slow(cache, addr, buf, len);
2833 * address_space_write_cached: write to a cached RAM region
2835 * @cache: Cached region to be addressed
2836 * @addr: address relative to the base of the RAM region
2837 * @buf: buffer with the data transferred
2838 * @len: length of the data transferred
2840 static inline MemTxResult
2841 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2842 const void *buf, hwaddr len)
2844 assert(addr < cache->len && len <= cache->len - addr);
2845 if (likely(cache->ptr)) {
2846 memcpy(cache->ptr + addr, buf, len);
2847 return MEMTX_OK;
2848 } else {
2849 return address_space_write_cached_slow(cache, addr, buf, len);
2853 #ifdef NEED_CPU_H
2854 /* enum device_endian to MemOp. */
2855 static inline MemOp devend_memop(enum device_endian end)
2857 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2858 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2860 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2861 /* Swap if non-host endianness or native (target) endianness */
2862 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2863 #else
2864 const int non_host_endianness =
2865 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2867 /* In this case, native (target) endianness needs no swap. */
2868 return (end == non_host_endianness) ? MO_BSWAP : 0;
2869 #endif
2871 #endif
2874 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2875 * to manage the actual amount of memory consumed by the VM (then, the memory
2876 * provided by RAM blocks might be bigger than the desired memory consumption).
2877 * This *must* be set if:
2878 * - Discarding parts of a RAM blocks does not result in the change being
2879 * reflected in the VM and the pages getting freed.
2880 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2881 * discards blindly.
2882 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2883 * encrypted VMs).
2884 * Technologies that only temporarily pin the current working set of a
2885 * driver are fine, because we don't expect such pages to be discarded
2886 * (esp. based on guest action like balloon inflation).
2888 * This is *not* to be used to protect from concurrent discards (esp.,
2889 * postcopy).
2891 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2892 * discards to work reliably is active.
2894 int ram_block_discard_disable(bool state);
2897 * See ram_block_discard_disable(): only disable uncoordinated discards,
2898 * keeping coordinated discards (via the RamDiscardManager) enabled.
2900 int ram_block_uncoordinated_discard_disable(bool state);
2903 * Inhibit technologies that disable discarding of pages in RAM blocks.
2905 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2906 * broken.
2908 int ram_block_discard_require(bool state);
2911 * See ram_block_discard_require(): only inhibit technologies that disable
2912 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2913 * technologies that only inhibit uncoordinated discards (via the
2914 * RamDiscardManager).
2916 int ram_block_coordinated_discard_require(bool state);
2919 * Test if any discarding of memory in ram blocks is disabled.
2921 bool ram_block_discard_is_disabled(void);
2924 * Test if any discarding of memory in ram blocks is required to work reliably.
2926 bool ram_block_discard_is_required(void);
2928 #endif
2930 #endif