1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
38 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO
= 0x0100000,
42 ADDR_COMPAT_LAYOUT
= 0x0200000,
43 READ_IMPLIES_EXEC
= 0x0400000,
44 ADDR_LIMIT_32BIT
= 0x0800000,
45 SHORT_INODE
= 0x1000000,
46 WHOLE_SECONDS
= 0x2000000,
47 STICKY_TIMEOUTS
= 0x4000000,
48 ADDR_LIMIT_3GB
= 0x8000000,
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
59 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
60 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
61 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
62 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
63 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
64 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
65 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
66 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
68 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
69 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
71 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
72 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
73 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
74 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
76 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
77 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
78 PER_OSF4
= 0x000f, /* OSF/1 v4 */
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 /* this flag is uneffective under linux too, should be deleted */
90 #define MAP_DENYWRITE 0
93 /* should probably go in elf.h */
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
101 #define ELF_DATA ELFDATA2LSB
104 typedef target_ulong target_elf_greg_t
;
106 typedef target_ushort target_uid_t
;
107 typedef target_ushort target_gid_t
;
109 typedef target_uint target_uid_t
;
110 typedef target_uint target_gid_t
;
112 typedef target_int target_pid_t
;
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform
[] = "i386";
121 int family
= (thread_env
->cpuid_version
>> 8) & 0xff;
125 elf_platform
[1] = '0' + family
;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 return thread_env
->cpuid_features
;
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
143 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
146 regs
->rsp
= infop
->start_stack
;
147 regs
->rip
= infop
->entry
;
151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
158 * See linux kernel: arch/x86/include/asm/elf.h
160 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
162 (*regs
)[0] = env
->regs
[15];
163 (*regs
)[1] = env
->regs
[14];
164 (*regs
)[2] = env
->regs
[13];
165 (*regs
)[3] = env
->regs
[12];
166 (*regs
)[4] = env
->regs
[R_EBP
];
167 (*regs
)[5] = env
->regs
[R_EBX
];
168 (*regs
)[6] = env
->regs
[11];
169 (*regs
)[7] = env
->regs
[10];
170 (*regs
)[8] = env
->regs
[9];
171 (*regs
)[9] = env
->regs
[8];
172 (*regs
)[10] = env
->regs
[R_EAX
];
173 (*regs
)[11] = env
->regs
[R_ECX
];
174 (*regs
)[12] = env
->regs
[R_EDX
];
175 (*regs
)[13] = env
->regs
[R_ESI
];
176 (*regs
)[14] = env
->regs
[R_EDI
];
177 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
178 (*regs
)[16] = env
->eip
;
179 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
180 (*regs
)[18] = env
->eflags
;
181 (*regs
)[19] = env
->regs
[R_ESP
];
182 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
183 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
184 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
185 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
186 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
187 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
188 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
193 #define ELF_START_MMAP 0x80000000
196 * This is used to ensure we don't load something for the wrong architecture.
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 * These are used to set parameters in the core dumps.
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
206 static inline void init_thread(struct target_pt_regs
*regs
,
207 struct image_info
*infop
)
209 regs
->esp
= infop
->start_stack
;
210 regs
->eip
= infop
->entry
;
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
218 A value of 0 tells we have no such handler. */
223 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
230 * See linux kernel: arch/x86/include/asm/elf.h
232 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
234 (*regs
)[0] = env
->regs
[R_EBX
];
235 (*regs
)[1] = env
->regs
[R_ECX
];
236 (*regs
)[2] = env
->regs
[R_EDX
];
237 (*regs
)[3] = env
->regs
[R_ESI
];
238 (*regs
)[4] = env
->regs
[R_EDI
];
239 (*regs
)[5] = env
->regs
[R_EBP
];
240 (*regs
)[6] = env
->regs
[R_EAX
];
241 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
242 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
243 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
244 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
245 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
246 (*regs
)[12] = env
->eip
;
247 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
248 (*regs
)[14] = env
->eflags
;
249 (*regs
)[15] = env
->regs
[R_ESP
];
250 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
261 #define ELF_START_MMAP 0x80000000
263 #define elf_check_arch(x) ( (x) == EM_ARM )
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
268 static inline void init_thread(struct target_pt_regs
*regs
,
269 struct image_info
*infop
)
271 abi_long stack
= infop
->start_stack
;
272 memset(regs
, 0, sizeof(*regs
));
273 regs
->ARM_cpsr
= 0x10;
274 if (infop
->entry
& 1)
275 regs
->ARM_cpsr
|= CPSR_T
;
276 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
277 regs
->ARM_sp
= infop
->start_stack
;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
280 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs
->ARM_r10
= infop
->start_data
;
289 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
291 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
293 (*regs
)[0] = tswapl(env
->regs
[0]);
294 (*regs
)[1] = tswapl(env
->regs
[1]);
295 (*regs
)[2] = tswapl(env
->regs
[2]);
296 (*regs
)[3] = tswapl(env
->regs
[3]);
297 (*regs
)[4] = tswapl(env
->regs
[4]);
298 (*regs
)[5] = tswapl(env
->regs
[5]);
299 (*regs
)[6] = tswapl(env
->regs
[6]);
300 (*regs
)[7] = tswapl(env
->regs
[7]);
301 (*regs
)[8] = tswapl(env
->regs
[8]);
302 (*regs
)[9] = tswapl(env
->regs
[9]);
303 (*regs
)[10] = tswapl(env
->regs
[10]);
304 (*regs
)[11] = tswapl(env
->regs
[11]);
305 (*regs
)[12] = tswapl(env
->regs
[12]);
306 (*regs
)[13] = tswapl(env
->regs
[13]);
307 (*regs
)[14] = tswapl(env
->regs
[14]);
308 (*regs
)[15] = tswapl(env
->regs
[15]);
310 (*regs
)[16] = tswapl(cpsr_read((CPUState
*)env
));
311 (*regs
)[17] = tswapl(env
->regs
[0]); /* XXX */
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
319 ARM_HWCAP_ARM_SWP
= 1 << 0,
320 ARM_HWCAP_ARM_HALF
= 1 << 1,
321 ARM_HWCAP_ARM_THUMB
= 1 << 2,
322 ARM_HWCAP_ARM_26BIT
= 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
324 ARM_HWCAP_ARM_FPA
= 1 << 5,
325 ARM_HWCAP_ARM_VFP
= 1 << 6,
326 ARM_HWCAP_ARM_EDSP
= 1 << 7,
327 ARM_HWCAP_ARM_JAVA
= 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE
= 1 << 10,
330 ARM_HWCAP_ARM_NEON
= 1 << 11,
331 ARM_HWCAP_ARM_VFPv3
= 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16
= 1 << 13,
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
342 #ifdef TARGET_UNICORE32
344 #define ELF_START_MMAP 0x80000000
346 #define elf_check_arch(x) ((x) == EM_UNICORE32)
348 #define ELF_CLASS ELFCLASS32
349 #define ELF_DATA ELFDATA2LSB
350 #define ELF_ARCH EM_UNICORE32
352 static inline void init_thread(struct target_pt_regs
*regs
,
353 struct image_info
*infop
)
355 abi_long stack
= infop
->start_stack
;
356 memset(regs
, 0, sizeof(*regs
));
357 regs
->UC32_REG_asr
= 0x10;
358 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
359 regs
->UC32_REG_sp
= infop
->start_stack
;
360 /* FIXME - what to for failure of get_user()? */
361 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
362 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
363 /* XXX: it seems that r0 is zeroed after ! */
364 regs
->UC32_REG_00
= 0;
368 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
370 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
372 (*regs
)[0] = env
->regs
[0];
373 (*regs
)[1] = env
->regs
[1];
374 (*regs
)[2] = env
->regs
[2];
375 (*regs
)[3] = env
->regs
[3];
376 (*regs
)[4] = env
->regs
[4];
377 (*regs
)[5] = env
->regs
[5];
378 (*regs
)[6] = env
->regs
[6];
379 (*regs
)[7] = env
->regs
[7];
380 (*regs
)[8] = env
->regs
[8];
381 (*regs
)[9] = env
->regs
[9];
382 (*regs
)[10] = env
->regs
[10];
383 (*regs
)[11] = env
->regs
[11];
384 (*regs
)[12] = env
->regs
[12];
385 (*regs
)[13] = env
->regs
[13];
386 (*regs
)[14] = env
->regs
[14];
387 (*regs
)[15] = env
->regs
[15];
388 (*regs
)[16] = env
->regs
[16];
389 (*regs
)[17] = env
->regs
[17];
390 (*regs
)[18] = env
->regs
[18];
391 (*regs
)[19] = env
->regs
[19];
392 (*regs
)[20] = env
->regs
[20];
393 (*regs
)[21] = env
->regs
[21];
394 (*regs
)[22] = env
->regs
[22];
395 (*regs
)[23] = env
->regs
[23];
396 (*regs
)[24] = env
->regs
[24];
397 (*regs
)[25] = env
->regs
[25];
398 (*regs
)[26] = env
->regs
[26];
399 (*regs
)[27] = env
->regs
[27];
400 (*regs
)[28] = env
->regs
[28];
401 (*regs
)[29] = env
->regs
[29];
402 (*regs
)[30] = env
->regs
[30];
403 (*regs
)[31] = env
->regs
[31];
405 (*regs
)[32] = cpu_asr_read((CPUState
*)env
);
406 (*regs
)[33] = env
->regs
[0]; /* XXX */
409 #define USE_ELF_CORE_DUMP
410 #define ELF_EXEC_PAGESIZE 4096
412 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
417 #ifdef TARGET_SPARC64
419 #define ELF_START_MMAP 0x80000000
422 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
424 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
427 #define ELF_CLASS ELFCLASS64
428 #define ELF_ARCH EM_SPARCV9
430 #define STACK_BIAS 2047
432 static inline void init_thread(struct target_pt_regs
*regs
,
433 struct image_info
*infop
)
438 regs
->pc
= infop
->entry
;
439 regs
->npc
= regs
->pc
+ 4;
442 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
444 if (personality(infop
->personality
) == PER_LINUX32
)
445 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
447 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
452 #define ELF_START_MMAP 0x80000000
454 #define elf_check_arch(x) ( (x) == EM_SPARC )
456 #define ELF_CLASS ELFCLASS32
457 #define ELF_ARCH EM_SPARC
459 static inline void init_thread(struct target_pt_regs
*regs
,
460 struct image_info
*infop
)
463 regs
->pc
= infop
->entry
;
464 regs
->npc
= regs
->pc
+ 4;
466 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
474 #define ELF_START_MMAP 0x80000000
476 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
478 #define elf_check_arch(x) ( (x) == EM_PPC64 )
480 #define ELF_CLASS ELFCLASS64
484 #define elf_check_arch(x) ( (x) == EM_PPC )
486 #define ELF_CLASS ELFCLASS32
490 #define ELF_ARCH EM_PPC
492 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
493 See arch/powerpc/include/asm/cputable.h. */
495 QEMU_PPC_FEATURE_32
= 0x80000000,
496 QEMU_PPC_FEATURE_64
= 0x40000000,
497 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
498 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
499 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
500 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
501 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
502 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
503 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
504 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
505 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
506 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
507 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
508 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
509 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
510 QEMU_PPC_FEATURE_CELL
= 0x00010000,
511 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
512 QEMU_PPC_FEATURE_SMT
= 0x00004000,
513 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
514 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
515 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
516 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
517 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
518 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
519 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
520 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
522 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
523 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
526 #define ELF_HWCAP get_elf_hwcap()
528 static uint32_t get_elf_hwcap(void)
530 CPUState
*e
= thread_env
;
531 uint32_t features
= 0;
533 /* We don't have to be terribly complete here; the high points are
534 Altivec/FP/SPE support. Anything else is just a bonus. */
535 #define GET_FEATURE(flag, feature) \
536 do {if (e->insns_flags & flag) features |= feature; } while(0)
537 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
538 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
539 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
540 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
541 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
542 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
543 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
544 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
551 * The requirements here are:
552 * - keep the final alignment of sp (sp & 0xf)
553 * - make sure the 32-bit value at the first 16 byte aligned position of
554 * AUXV is greater than 16 for glibc compatibility.
555 * AT_IGNOREPPC is used for that.
556 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
557 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
559 #define DLINFO_ARCH_ITEMS 5
560 #define ARCH_DLINFO \
562 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
563 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
564 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
566 * Now handle glibc compatibility. \
568 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
569 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
572 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
574 _regs
->gpr
[1] = infop
->start_stack
;
575 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
576 _regs
->gpr
[2] = ldq_raw(infop
->entry
+ 8) + infop
->load_addr
;
577 infop
->entry
= ldq_raw(infop
->entry
) + infop
->load_addr
;
579 _regs
->nip
= infop
->entry
;
582 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
584 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
586 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
589 target_ulong ccr
= 0;
591 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
592 (*regs
)[i
] = tswapl(env
->gpr
[i
]);
595 (*regs
)[32] = tswapl(env
->nip
);
596 (*regs
)[33] = tswapl(env
->msr
);
597 (*regs
)[35] = tswapl(env
->ctr
);
598 (*regs
)[36] = tswapl(env
->lr
);
599 (*regs
)[37] = tswapl(env
->xer
);
601 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
602 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
604 (*regs
)[38] = tswapl(ccr
);
607 #define USE_ELF_CORE_DUMP
608 #define ELF_EXEC_PAGESIZE 4096
614 #define ELF_START_MMAP 0x80000000
616 #define elf_check_arch(x) ( (x) == EM_MIPS )
619 #define ELF_CLASS ELFCLASS64
621 #define ELF_CLASS ELFCLASS32
623 #define ELF_ARCH EM_MIPS
625 static inline void init_thread(struct target_pt_regs
*regs
,
626 struct image_info
*infop
)
628 regs
->cp0_status
= 2 << CP0St_KSU
;
629 regs
->cp0_epc
= infop
->entry
;
630 regs
->regs
[29] = infop
->start_stack
;
633 /* See linux kernel: arch/mips/include/asm/elf.h. */
635 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
637 /* See linux kernel: arch/mips/include/asm/reg.h. */
644 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
645 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
646 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
647 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
648 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
649 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
650 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
651 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
654 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
655 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
659 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
662 (*regs
)[TARGET_EF_R0
] = 0;
664 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
665 (*regs
)[TARGET_EF_R0
+ i
] = tswapl(env
->active_tc
.gpr
[i
]);
668 (*regs
)[TARGET_EF_R26
] = 0;
669 (*regs
)[TARGET_EF_R27
] = 0;
670 (*regs
)[TARGET_EF_LO
] = tswapl(env
->active_tc
.LO
[0]);
671 (*regs
)[TARGET_EF_HI
] = tswapl(env
->active_tc
.HI
[0]);
672 (*regs
)[TARGET_EF_CP0_EPC
] = tswapl(env
->active_tc
.PC
);
673 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapl(env
->CP0_BadVAddr
);
674 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapl(env
->CP0_Status
);
675 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapl(env
->CP0_Cause
);
678 #define USE_ELF_CORE_DUMP
679 #define ELF_EXEC_PAGESIZE 4096
681 #endif /* TARGET_MIPS */
683 #ifdef TARGET_MICROBLAZE
685 #define ELF_START_MMAP 0x80000000
687 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
689 #define ELF_CLASS ELFCLASS32
690 #define ELF_ARCH EM_MICROBLAZE
692 static inline void init_thread(struct target_pt_regs
*regs
,
693 struct image_info
*infop
)
695 regs
->pc
= infop
->entry
;
696 regs
->r1
= infop
->start_stack
;
700 #define ELF_EXEC_PAGESIZE 4096
702 #define USE_ELF_CORE_DUMP
704 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
706 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
707 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
711 for (i
= 0; i
< 32; i
++) {
712 (*regs
)[pos
++] = tswapl(env
->regs
[i
]);
715 for (i
= 0; i
< 6; i
++) {
716 (*regs
)[pos
++] = tswapl(env
->sregs
[i
]);
720 #endif /* TARGET_MICROBLAZE */
724 #define ELF_START_MMAP 0x80000000
726 #define elf_check_arch(x) ( (x) == EM_SH )
728 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_SH
731 static inline void init_thread(struct target_pt_regs
*regs
,
732 struct image_info
*infop
)
734 /* Check other registers XXXXX */
735 regs
->pc
= infop
->entry
;
736 regs
->regs
[15] = infop
->start_stack
;
739 /* See linux kernel: arch/sh/include/asm/elf.h. */
741 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
743 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
749 TARGET_REG_MACH
= 20,
750 TARGET_REG_MACL
= 21,
751 TARGET_REG_SYSCALL
= 22
754 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
759 for (i
= 0; i
< 16; i
++) {
760 (*regs
[i
]) = tswapl(env
->gregs
[i
]);
763 (*regs
)[TARGET_REG_PC
] = tswapl(env
->pc
);
764 (*regs
)[TARGET_REG_PR
] = tswapl(env
->pr
);
765 (*regs
)[TARGET_REG_SR
] = tswapl(env
->sr
);
766 (*regs
)[TARGET_REG_GBR
] = tswapl(env
->gbr
);
767 (*regs
)[TARGET_REG_MACH
] = tswapl(env
->mach
);
768 (*regs
)[TARGET_REG_MACL
] = tswapl(env
->macl
);
769 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
772 #define USE_ELF_CORE_DUMP
773 #define ELF_EXEC_PAGESIZE 4096
779 #define ELF_START_MMAP 0x80000000
781 #define elf_check_arch(x) ( (x) == EM_CRIS )
783 #define ELF_CLASS ELFCLASS32
784 #define ELF_ARCH EM_CRIS
786 static inline void init_thread(struct target_pt_regs
*regs
,
787 struct image_info
*infop
)
789 regs
->erp
= infop
->entry
;
792 #define ELF_EXEC_PAGESIZE 8192
798 #define ELF_START_MMAP 0x80000000
800 #define elf_check_arch(x) ( (x) == EM_68K )
802 #define ELF_CLASS ELFCLASS32
803 #define ELF_ARCH EM_68K
805 /* ??? Does this need to do anything?
806 #define ELF_PLAT_INIT(_r) */
808 static inline void init_thread(struct target_pt_regs
*regs
,
809 struct image_info
*infop
)
811 regs
->usp
= infop
->start_stack
;
813 regs
->pc
= infop
->entry
;
816 /* See linux kernel: arch/m68k/include/asm/elf.h. */
818 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
820 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUState
*env
)
822 (*regs
)[0] = tswapl(env
->dregs
[1]);
823 (*regs
)[1] = tswapl(env
->dregs
[2]);
824 (*regs
)[2] = tswapl(env
->dregs
[3]);
825 (*regs
)[3] = tswapl(env
->dregs
[4]);
826 (*regs
)[4] = tswapl(env
->dregs
[5]);
827 (*regs
)[5] = tswapl(env
->dregs
[6]);
828 (*regs
)[6] = tswapl(env
->dregs
[7]);
829 (*regs
)[7] = tswapl(env
->aregs
[0]);
830 (*regs
)[8] = tswapl(env
->aregs
[1]);
831 (*regs
)[9] = tswapl(env
->aregs
[2]);
832 (*regs
)[10] = tswapl(env
->aregs
[3]);
833 (*regs
)[11] = tswapl(env
->aregs
[4]);
834 (*regs
)[12] = tswapl(env
->aregs
[5]);
835 (*regs
)[13] = tswapl(env
->aregs
[6]);
836 (*regs
)[14] = tswapl(env
->dregs
[0]);
837 (*regs
)[15] = tswapl(env
->aregs
[7]);
838 (*regs
)[16] = tswapl(env
->dregs
[0]); /* FIXME: orig_d0 */
839 (*regs
)[17] = tswapl(env
->sr
);
840 (*regs
)[18] = tswapl(env
->pc
);
841 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
844 #define USE_ELF_CORE_DUMP
845 #define ELF_EXEC_PAGESIZE 8192
851 #define ELF_START_MMAP (0x30000000000ULL)
853 #define elf_check_arch(x) ( (x) == ELF_ARCH )
855 #define ELF_CLASS ELFCLASS64
856 #define ELF_ARCH EM_ALPHA
858 static inline void init_thread(struct target_pt_regs
*regs
,
859 struct image_info
*infop
)
861 regs
->pc
= infop
->entry
;
863 regs
->usp
= infop
->start_stack
;
866 #define ELF_EXEC_PAGESIZE 8192
868 #endif /* TARGET_ALPHA */
871 #define ELF_PLATFORM (NULL)
880 #define ELF_CLASS ELFCLASS32
882 #define bswaptls(ptr) bswap32s(ptr)
889 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
890 unsigned int a_text
; /* length of text, in bytes */
891 unsigned int a_data
; /* length of data, in bytes */
892 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
893 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
894 unsigned int a_entry
; /* start address */
895 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
896 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
900 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
906 /* Necessary parameters */
907 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
908 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
909 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
911 #define DLINFO_ITEMS 12
913 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
919 static void bswap_ehdr(struct elfhdr
*ehdr
)
921 bswap16s(&ehdr
->e_type
); /* Object file type */
922 bswap16s(&ehdr
->e_machine
); /* Architecture */
923 bswap32s(&ehdr
->e_version
); /* Object file version */
924 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
925 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
926 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
927 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
928 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
929 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
930 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
931 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
932 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
933 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
936 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
939 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
940 bswap32s(&phdr
->p_type
); /* Segment type */
941 bswap32s(&phdr
->p_flags
); /* Segment flags */
942 bswaptls(&phdr
->p_offset
); /* Segment file offset */
943 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
944 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
945 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
946 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
947 bswaptls(&phdr
->p_align
); /* Segment alignment */
951 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
954 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
955 bswap32s(&shdr
->sh_name
);
956 bswap32s(&shdr
->sh_type
);
957 bswaptls(&shdr
->sh_flags
);
958 bswaptls(&shdr
->sh_addr
);
959 bswaptls(&shdr
->sh_offset
);
960 bswaptls(&shdr
->sh_size
);
961 bswap32s(&shdr
->sh_link
);
962 bswap32s(&shdr
->sh_info
);
963 bswaptls(&shdr
->sh_addralign
);
964 bswaptls(&shdr
->sh_entsize
);
968 static void bswap_sym(struct elf_sym
*sym
)
970 bswap32s(&sym
->st_name
);
971 bswaptls(&sym
->st_value
);
972 bswaptls(&sym
->st_size
);
973 bswap16s(&sym
->st_shndx
);
976 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
977 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
978 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
979 static inline void bswap_sym(struct elf_sym
*sym
) { }
982 #ifdef USE_ELF_CORE_DUMP
983 static int elf_core_dump(int, const CPUState
*);
984 #endif /* USE_ELF_CORE_DUMP */
985 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
987 /* Verify the portions of EHDR within E_IDENT for the target.
988 This can be performed before bswapping the entire header. */
989 static bool elf_check_ident(struct elfhdr
*ehdr
)
991 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
992 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
993 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
994 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
995 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
996 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
997 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1000 /* Verify the portions of EHDR outside of E_IDENT for the target.
1001 This has to wait until after bswapping the header. */
1002 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1004 return (elf_check_arch(ehdr
->e_machine
)
1005 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1006 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1007 && ehdr
->e_shentsize
== sizeof(struct elf_shdr
)
1008 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1012 * 'copy_elf_strings()' copies argument/envelope strings from user
1013 * memory to free pages in kernel mem. These are in a format ready
1014 * to be put directly into the top of new user memory.
1017 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
1020 char *tmp
, *tmp1
, *pag
= NULL
;
1021 int len
, offset
= 0;
1024 return 0; /* bullet-proofing */
1026 while (argc
-- > 0) {
1029 fprintf(stderr
, "VFS: argc is wrong");
1035 if (p
< len
) { /* this shouldn't happen - 128kB */
1041 offset
= p
% TARGET_PAGE_SIZE
;
1042 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
1044 pag
= (char *)malloc(TARGET_PAGE_SIZE
);
1045 memset(pag
, 0, TARGET_PAGE_SIZE
);
1046 page
[p
/TARGET_PAGE_SIZE
] = pag
;
1051 if (len
== 0 || offset
== 0) {
1052 *(pag
+ offset
) = *tmp
;
1055 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1056 tmp
-= bytes_to_copy
;
1058 offset
-= bytes_to_copy
;
1059 len
-= bytes_to_copy
;
1060 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
1067 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
1068 struct image_info
*info
)
1070 abi_ulong stack_base
, size
, error
, guard
;
1073 /* Create enough stack to hold everything. If we don't use
1074 it for args, we'll use it for something else. */
1075 size
= guest_stack_size
;
1076 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1077 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1079 guard
= TARGET_PAGE_SIZE
;
1080 if (guard
< qemu_real_host_page_size
) {
1081 guard
= qemu_real_host_page_size
;
1084 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1085 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1087 perror("mmap stack");
1091 /* We reserve one extra page at the top of the stack as guard. */
1092 target_mprotect(error
, guard
, PROT_NONE
);
1094 info
->stack_limit
= error
+ guard
;
1095 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1098 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1099 if (bprm
->page
[i
]) {
1101 /* FIXME - check return value of memcpy_to_target() for failure */
1102 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1103 free(bprm
->page
[i
]);
1105 stack_base
+= TARGET_PAGE_SIZE
;
1110 /* Map and zero the bss. We need to explicitly zero any fractional pages
1111 after the data section (i.e. bss). */
1112 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1114 uintptr_t host_start
, host_map_start
, host_end
;
1116 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1118 /* ??? There is confusion between qemu_real_host_page_size and
1119 qemu_host_page_size here and elsewhere in target_mmap, which
1120 may lead to the end of the data section mapping from the file
1121 not being mapped. At least there was an explicit test and
1122 comment for that here, suggesting that "the file size must
1123 be known". The comment probably pre-dates the introduction
1124 of the fstat system call in target_mmap which does in fact
1125 find out the size. What isn't clear is if the workaround
1126 here is still actually needed. For now, continue with it,
1127 but merge it with the "normal" mmap that would allocate the bss. */
1129 host_start
= (uintptr_t) g2h(elf_bss
);
1130 host_end
= (uintptr_t) g2h(last_bss
);
1131 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1132 host_map_start
&= -qemu_real_host_page_size
;
1134 if (host_map_start
< host_end
) {
1135 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1136 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1137 if (p
== MAP_FAILED
) {
1138 perror("cannot mmap brk");
1142 /* Since we didn't use target_mmap, make sure to record
1143 the validity of the pages with qemu. */
1144 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
|PAGE_VALID
);
1147 if (host_start
< host_map_start
) {
1148 memset((void *)host_start
, 0, host_map_start
- host_start
);
1152 #ifdef CONFIG_USE_FDPIC
1153 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1156 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1158 /* elf32_fdpic_loadseg */
1162 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1163 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1164 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1167 /* elf32_fdpic_loadmap */
1169 put_user_u16(0, sp
+0); /* version */
1170 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1172 info
->personality
= PER_LINUX_FDPIC
;
1173 info
->loadmap_addr
= sp
;
1179 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1180 struct elfhdr
*exec
,
1181 struct image_info
*info
,
1182 struct image_info
*interp_info
)
1186 abi_ulong u_platform
;
1187 const char *k_platform
;
1188 const int n
= sizeof(elf_addr_t
);
1192 #ifdef CONFIG_USE_FDPIC
1193 /* Needs to be before we load the env/argc/... */
1194 if (elf_is_fdpic(exec
)) {
1195 /* Need 4 byte alignment for these structs */
1197 sp
= loader_build_fdpic_loadmap(info
, sp
);
1198 info
->other_info
= interp_info
;
1200 interp_info
->other_info
= info
;
1201 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1207 k_platform
= ELF_PLATFORM
;
1209 size_t len
= strlen(k_platform
) + 1;
1210 sp
-= (len
+ n
- 1) & ~(n
- 1);
1212 /* FIXME - check return value of memcpy_to_target() for failure */
1213 memcpy_to_target(sp
, k_platform
, len
);
1216 * Force 16 byte _final_ alignment here for generality.
1218 sp
= sp
&~ (abi_ulong
)15;
1219 size
= (DLINFO_ITEMS
+ 1) * 2;
1222 #ifdef DLINFO_ARCH_ITEMS
1223 size
+= DLINFO_ARCH_ITEMS
* 2;
1225 size
+= envc
+ argc
+ 2;
1226 size
+= 1; /* argc itself */
1229 sp
-= 16 - (size
& 15);
1231 /* This is correct because Linux defines
1232 * elf_addr_t as Elf32_Off / Elf64_Off
1234 #define NEW_AUX_ENT(id, val) do { \
1235 sp -= n; put_user_ual(val, sp); \
1236 sp -= n; put_user_ual(id, sp); \
1239 NEW_AUX_ENT (AT_NULL
, 0);
1241 /* There must be exactly DLINFO_ITEMS entries here. */
1242 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1243 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1244 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1245 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1246 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1247 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1248 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1249 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1250 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1251 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1252 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1253 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1254 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1256 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1259 * ARCH_DLINFO must come last so platform specific code can enforce
1260 * special alignment requirements on the AUXV if necessary (eg. PPC).
1266 info
->saved_auxv
= sp
;
1268 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1272 /* Load an ELF image into the address space.
1274 IMAGE_NAME is the filename of the image, to use in error messages.
1275 IMAGE_FD is the open file descriptor for the image.
1277 BPRM_BUF is a copy of the beginning of the file; this of course
1278 contains the elf file header at offset 0. It is assumed that this
1279 buffer is sufficiently aligned to present no problems to the host
1280 in accessing data at aligned offsets within the buffer.
1282 On return: INFO values will be filled in, as necessary or available. */
1284 static void load_elf_image(const char *image_name
, int image_fd
,
1285 struct image_info
*info
, char **pinterp_name
,
1286 char bprm_buf
[BPRM_BUF_SIZE
])
1288 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1289 struct elf_phdr
*phdr
;
1290 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1294 /* First of all, some simple consistency checks */
1295 errmsg
= "Invalid ELF image for this architecture";
1296 if (!elf_check_ident(ehdr
)) {
1300 if (!elf_check_ehdr(ehdr
)) {
1304 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1305 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1306 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1308 phdr
= (struct elf_phdr
*) alloca(i
);
1309 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1314 bswap_phdr(phdr
, ehdr
->e_phnum
);
1316 #ifdef CONFIG_USE_FDPIC
1318 info
->pt_dynamic_addr
= 0;
1321 /* Find the maximum size of the image and allocate an appropriate
1322 amount of memory to handle that. */
1323 loaddr
= -1, hiaddr
= 0;
1324 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1325 if (phdr
[i
].p_type
== PT_LOAD
) {
1326 abi_ulong a
= phdr
[i
].p_vaddr
;
1330 a
+= phdr
[i
].p_memsz
;
1334 #ifdef CONFIG_USE_FDPIC
1341 if (ehdr
->e_type
== ET_DYN
) {
1342 /* The image indicates that it can be loaded anywhere. Find a
1343 location that can hold the memory space required. If the
1344 image is pre-linked, LOADDR will be non-zero. Since we do
1345 not supply MAP_FIXED here we'll use that address if and
1346 only if it remains available. */
1347 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1348 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1350 if (load_addr
== -1) {
1353 } else if (pinterp_name
!= NULL
) {
1354 /* This is the main executable. Make sure that the low
1355 address does not conflict with MMAP_MIN_ADDR or the
1356 QEMU application itself. */
1357 #if defined(CONFIG_USE_GUEST_BASE)
1359 * In case where user has not explicitly set the guest_base, we
1360 * probe here that should we set it automatically.
1362 if (!have_guest_base
&& !reserved_va
) {
1363 unsigned long host_start
, real_start
, host_size
;
1365 /* Round addresses to page boundaries. */
1366 loaddr
&= qemu_host_page_mask
;
1367 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1369 if (loaddr
< mmap_min_addr
) {
1370 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1372 host_start
= loaddr
;
1373 if (host_start
!= loaddr
) {
1374 errmsg
= "Address overflow loading ELF binary";
1378 host_size
= hiaddr
- loaddr
;
1380 /* Do not use mmap_find_vma here because that is limited to the
1381 guest address space. We are going to make the
1382 guest address space fit whatever we're given. */
1383 real_start
= (unsigned long)
1384 mmap((void *)host_start
, host_size
, PROT_NONE
,
1385 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
, -1, 0);
1386 if (real_start
== (unsigned long)-1) {
1389 if (real_start
== host_start
) {
1392 /* That address didn't work. Unmap and try a different one.
1393 The address the host picked because is typically right at
1394 the top of the host address space and leaves the guest with
1395 no usable address space. Resort to a linear search. We
1396 already compensated for mmap_min_addr, so this should not
1397 happen often. Probably means we got unlucky and host
1398 address space randomization put a shared library somewhere
1400 munmap((void *)real_start
, host_size
);
1401 host_start
+= qemu_host_page_size
;
1402 if (host_start
== loaddr
) {
1403 /* Theoretically possible if host doesn't have any suitably
1404 aligned areas. Normally the first mmap will fail. */
1405 errmsg
= "Unable to find space for application";
1409 qemu_log("Relocating guest address space from 0x"
1410 TARGET_ABI_FMT_lx
" to 0x%lx\n", loaddr
, real_start
);
1411 guest_base
= real_start
- loaddr
;
1415 load_bias
= load_addr
- loaddr
;
1417 #ifdef CONFIG_USE_FDPIC
1419 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1420 qemu_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1422 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1423 switch (phdr
[i
].p_type
) {
1425 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1428 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1429 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1430 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1438 info
->load_bias
= load_bias
;
1439 info
->load_addr
= load_addr
;
1440 info
->entry
= ehdr
->e_entry
+ load_bias
;
1441 info
->start_code
= -1;
1443 info
->start_data
= -1;
1447 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1448 struct elf_phdr
*eppnt
= phdr
+ i
;
1449 if (eppnt
->p_type
== PT_LOAD
) {
1450 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1453 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1454 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1455 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1457 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1458 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1459 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1461 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1462 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1463 image_fd
, eppnt
->p_offset
- vaddr_po
);
1468 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1469 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1471 /* If the load segment requests extra zeros (e.g. bss), map it. */
1472 if (vaddr_ef
< vaddr_em
) {
1473 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1476 /* Find the full program boundaries. */
1477 if (elf_prot
& PROT_EXEC
) {
1478 if (vaddr
< info
->start_code
) {
1479 info
->start_code
= vaddr
;
1481 if (vaddr_ef
> info
->end_code
) {
1482 info
->end_code
= vaddr_ef
;
1485 if (elf_prot
& PROT_WRITE
) {
1486 if (vaddr
< info
->start_data
) {
1487 info
->start_data
= vaddr
;
1489 if (vaddr_ef
> info
->end_data
) {
1490 info
->end_data
= vaddr_ef
;
1492 if (vaddr_em
> info
->brk
) {
1493 info
->brk
= vaddr_em
;
1496 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1499 if (*pinterp_name
) {
1500 errmsg
= "Multiple PT_INTERP entries";
1503 interp_name
= malloc(eppnt
->p_filesz
);
1508 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1509 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1512 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1514 if (retval
!= eppnt
->p_filesz
) {
1518 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1519 errmsg
= "Invalid PT_INTERP entry";
1522 *pinterp_name
= interp_name
;
1526 if (info
->end_data
== 0) {
1527 info
->start_data
= info
->end_code
;
1528 info
->end_data
= info
->end_code
;
1529 info
->brk
= info
->end_code
;
1532 if (qemu_log_enabled()) {
1533 load_symbols(ehdr
, image_fd
, load_bias
);
1541 errmsg
= "Incomplete read of file header";
1545 errmsg
= strerror(errno
);
1547 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1551 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1552 char bprm_buf
[BPRM_BUF_SIZE
])
1556 fd
= open(path(filename
), O_RDONLY
);
1561 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
1565 if (retval
< BPRM_BUF_SIZE
) {
1566 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
1569 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
1573 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
1577 static int symfind(const void *s0
, const void *s1
)
1579 struct elf_sym
*key
= (struct elf_sym
*)s0
;
1580 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
1582 if (key
->st_value
< sym
->st_value
) {
1584 } else if (key
->st_value
>= sym
->st_value
+ sym
->st_size
) {
1590 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
1592 #if ELF_CLASS == ELFCLASS32
1593 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
1595 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
1600 struct elf_sym
*sym
;
1602 key
.st_value
= orig_addr
;
1604 sym
= bsearch(&key
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
1606 return s
->disas_strtab
+ sym
->st_name
;
1612 /* FIXME: This should use elf_ops.h */
1613 static int symcmp(const void *s0
, const void *s1
)
1615 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
1616 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
1617 return (sym0
->st_value
< sym1
->st_value
)
1619 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
1622 /* Best attempt to load symbols from this ELF object. */
1623 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
1625 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
1626 struct elf_shdr
*shdr
;
1629 struct elf_sym
*syms
, *new_syms
;
1631 shnum
= hdr
->e_shnum
;
1632 i
= shnum
* sizeof(struct elf_shdr
);
1633 shdr
= (struct elf_shdr
*)alloca(i
);
1634 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
1638 bswap_shdr(shdr
, shnum
);
1639 for (i
= 0; i
< shnum
; ++i
) {
1640 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
1642 str_idx
= shdr
[i
].sh_link
;
1647 /* There will be no symbol table if the file was stripped. */
1651 /* Now know where the strtab and symtab are. Snarf them. */
1652 s
= malloc(sizeof(*s
));
1657 i
= shdr
[str_idx
].sh_size
;
1658 s
->disas_strtab
= strings
= malloc(i
);
1659 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
1665 i
= shdr
[sym_idx
].sh_size
;
1667 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
1674 nsyms
= i
/ sizeof(struct elf_sym
);
1675 for (i
= 0; i
< nsyms
; ) {
1676 bswap_sym(syms
+ i
);
1677 /* Throw away entries which we do not need. */
1678 if (syms
[i
].st_shndx
== SHN_UNDEF
1679 || syms
[i
].st_shndx
>= SHN_LORESERVE
1680 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
1682 syms
[i
] = syms
[nsyms
];
1685 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1686 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1687 syms
[i
].st_value
&= ~(target_ulong
)1;
1689 syms
[i
].st_value
+= load_bias
;
1694 /* Attempt to free the storage associated with the local symbols
1695 that we threw away. Whether or not this has any effect on the
1696 memory allocation depends on the malloc implementation and how
1697 many symbols we managed to discard. */
1698 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
1699 if (new_syms
== NULL
) {
1707 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
1709 s
->disas_num_syms
= nsyms
;
1710 #if ELF_CLASS == ELFCLASS32
1711 s
->disas_symtab
.elf32
= syms
;
1713 s
->disas_symtab
.elf64
= syms
;
1715 s
->lookup_symbol
= lookup_symbolxx
;
1720 int load_elf_binary(struct linux_binprm
* bprm
, struct target_pt_regs
* regs
,
1721 struct image_info
* info
)
1723 struct image_info interp_info
;
1724 struct elfhdr elf_ex
;
1725 char *elf_interpreter
= NULL
;
1727 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
1731 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
1732 &elf_interpreter
, bprm
->buf
);
1734 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1735 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1736 when we load the interpreter. */
1737 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
1739 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
1740 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
1741 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
1743 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
1747 /* Do this so that we can load the interpreter, if need be. We will
1748 change some of these later */
1749 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
1751 if (elf_interpreter
) {
1752 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
1754 /* If the program interpreter is one of these two, then assume
1755 an iBCS2 image. Otherwise assume a native linux image. */
1757 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
1758 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
1759 info
->personality
= PER_SVR4
;
1761 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1762 and some applications "depend" upon this behavior. Since
1763 we do not have the power to recompile these, we emulate
1764 the SVr4 behavior. Sigh. */
1765 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
1766 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
1770 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
1771 info
, (elf_interpreter
? &interp_info
: NULL
));
1772 info
->start_stack
= bprm
->p
;
1774 /* If we have an interpreter, set that as the program's entry point.
1775 Copy the load_addr as well, to help PPC64 interpret the entry
1776 point as a function descriptor. Do this after creating elf tables
1777 so that we copy the original program entry point into the AUXV. */
1778 if (elf_interpreter
) {
1779 info
->load_addr
= interp_info
.load_addr
;
1780 info
->entry
= interp_info
.entry
;
1781 free(elf_interpreter
);
1784 #ifdef USE_ELF_CORE_DUMP
1785 bprm
->core_dump
= &elf_core_dump
;
1791 #ifdef USE_ELF_CORE_DUMP
1793 * Definitions to generate Intel SVR4-like core files.
1794 * These mostly have the same names as the SVR4 types with "target_elf_"
1795 * tacked on the front to prevent clashes with linux definitions,
1796 * and the typedef forms have been avoided. This is mostly like
1797 * the SVR4 structure, but more Linuxy, with things that Linux does
1798 * not support and which gdb doesn't really use excluded.
1800 * Fields we don't dump (their contents is zero) in linux-user qemu
1801 * are marked with XXX.
1803 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1805 * Porting ELF coredump for target is (quite) simple process. First you
1806 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1807 * the target resides):
1809 * #define USE_ELF_CORE_DUMP
1811 * Next you define type of register set used for dumping. ELF specification
1812 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1814 * typedef <target_regtype> target_elf_greg_t;
1815 * #define ELF_NREG <number of registers>
1816 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1818 * Last step is to implement target specific function that copies registers
1819 * from given cpu into just specified register set. Prototype is:
1821 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1822 * const CPUState *env);
1825 * regs - copy register values into here (allocated and zeroed by caller)
1826 * env - copy registers from here
1828 * Example for ARM target is provided in this file.
1831 /* An ELF note in memory */
1835 size_t namesz_rounded
;
1838 size_t datasz_rounded
;
1843 struct target_elf_siginfo
{
1844 target_int si_signo
; /* signal number */
1845 target_int si_code
; /* extra code */
1846 target_int si_errno
; /* errno */
1849 struct target_elf_prstatus
{
1850 struct target_elf_siginfo pr_info
; /* Info associated with signal */
1851 target_short pr_cursig
; /* Current signal */
1852 target_ulong pr_sigpend
; /* XXX */
1853 target_ulong pr_sighold
; /* XXX */
1854 target_pid_t pr_pid
;
1855 target_pid_t pr_ppid
;
1856 target_pid_t pr_pgrp
;
1857 target_pid_t pr_sid
;
1858 struct target_timeval pr_utime
; /* XXX User time */
1859 struct target_timeval pr_stime
; /* XXX System time */
1860 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
1861 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
1862 target_elf_gregset_t pr_reg
; /* GP registers */
1863 target_int pr_fpvalid
; /* XXX */
1866 #define ELF_PRARGSZ (80) /* Number of chars for args */
1868 struct target_elf_prpsinfo
{
1869 char pr_state
; /* numeric process state */
1870 char pr_sname
; /* char for pr_state */
1871 char pr_zomb
; /* zombie */
1872 char pr_nice
; /* nice val */
1873 target_ulong pr_flag
; /* flags */
1874 target_uid_t pr_uid
;
1875 target_gid_t pr_gid
;
1876 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
1878 char pr_fname
[16]; /* filename of executable */
1879 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
1882 /* Here is the structure in which status of each thread is captured. */
1883 struct elf_thread_status
{
1884 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
1885 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
1887 elf_fpregset_t fpu
; /* NT_PRFPREG */
1888 struct task_struct
*thread
;
1889 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1891 struct memelfnote notes
[1];
1895 struct elf_note_info
{
1896 struct memelfnote
*notes
;
1897 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1898 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1900 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
1903 * Current version of ELF coredump doesn't support
1904 * dumping fp regs etc.
1906 elf_fpregset_t
*fpu
;
1907 elf_fpxregset_t
*xfpu
;
1908 int thread_status_size
;
1914 struct vm_area_struct
{
1915 abi_ulong vma_start
; /* start vaddr of memory region */
1916 abi_ulong vma_end
; /* end vaddr of memory region */
1917 abi_ulong vma_flags
; /* protection etc. flags for the region */
1918 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
1922 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
1923 int mm_count
; /* number of mappings */
1926 static struct mm_struct
*vma_init(void);
1927 static void vma_delete(struct mm_struct
*);
1928 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
1929 abi_ulong
, abi_ulong
);
1930 static int vma_get_mapping_count(const struct mm_struct
*);
1931 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
1932 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
1933 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
1934 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
1935 unsigned long flags
);
1937 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
1938 static void fill_note(struct memelfnote
*, const char *, int,
1939 unsigned int, void *);
1940 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
1941 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
1942 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
1943 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
1944 static size_t note_size(const struct memelfnote
*);
1945 static void free_note_info(struct elf_note_info
*);
1946 static int fill_note_info(struct elf_note_info
*, long, const CPUState
*);
1947 static void fill_thread_info(struct elf_note_info
*, const CPUState
*);
1948 static int core_dump_filename(const TaskState
*, char *, size_t);
1950 static int dump_write(int, const void *, size_t);
1951 static int write_note(struct memelfnote
*, int);
1952 static int write_note_info(struct elf_note_info
*, int);
1955 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
1957 prstatus
->pr_info
.si_signo
= tswapl(prstatus
->pr_info
.si_signo
);
1958 prstatus
->pr_info
.si_code
= tswapl(prstatus
->pr_info
.si_code
);
1959 prstatus
->pr_info
.si_errno
= tswapl(prstatus
->pr_info
.si_errno
);
1960 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
1961 prstatus
->pr_sigpend
= tswapl(prstatus
->pr_sigpend
);
1962 prstatus
->pr_sighold
= tswapl(prstatus
->pr_sighold
);
1963 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
1964 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
1965 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
1966 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
1967 /* cpu times are not filled, so we skip them */
1968 /* regs should be in correct format already */
1969 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
1972 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
1974 psinfo
->pr_flag
= tswapl(psinfo
->pr_flag
);
1975 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
1976 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
1977 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
1978 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
1979 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
1980 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
1983 static void bswap_note(struct elf_note
*en
)
1985 bswap32s(&en
->n_namesz
);
1986 bswap32s(&en
->n_descsz
);
1987 bswap32s(&en
->n_type
);
1990 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
1991 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
1992 static inline void bswap_note(struct elf_note
*en
) { }
1993 #endif /* BSWAP_NEEDED */
1996 * Minimal support for linux memory regions. These are needed
1997 * when we are finding out what memory exactly belongs to
1998 * emulated process. No locks needed here, as long as
1999 * thread that received the signal is stopped.
2002 static struct mm_struct
*vma_init(void)
2004 struct mm_struct
*mm
;
2006 if ((mm
= qemu_malloc(sizeof (*mm
))) == NULL
)
2010 QTAILQ_INIT(&mm
->mm_mmap
);
2015 static void vma_delete(struct mm_struct
*mm
)
2017 struct vm_area_struct
*vma
;
2019 while ((vma
= vma_first(mm
)) != NULL
) {
2020 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2026 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
2027 abi_ulong end
, abi_ulong flags
)
2029 struct vm_area_struct
*vma
;
2031 if ((vma
= qemu_mallocz(sizeof (*vma
))) == NULL
)
2034 vma
->vma_start
= start
;
2036 vma
->vma_flags
= flags
;
2038 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2044 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2046 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2049 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2051 return (QTAILQ_NEXT(vma
, vma_link
));
2054 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2056 return (mm
->mm_count
);
2060 * Calculate file (dump) size of given memory region.
2062 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2064 /* if we cannot even read the first page, skip it */
2065 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2069 * Usually we don't dump executable pages as they contain
2070 * non-writable code that debugger can read directly from
2071 * target library etc. However, thread stacks are marked
2072 * also executable so we read in first page of given region
2073 * and check whether it contains elf header. If there is
2074 * no elf header, we dump it.
2076 if (vma
->vma_flags
& PROT_EXEC
) {
2077 char page
[TARGET_PAGE_SIZE
];
2079 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2080 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2081 (page
[EI_MAG1
] == ELFMAG1
) &&
2082 (page
[EI_MAG2
] == ELFMAG2
) &&
2083 (page
[EI_MAG3
] == ELFMAG3
)) {
2085 * Mappings are possibly from ELF binary. Don't dump
2092 return (vma
->vma_end
- vma
->vma_start
);
2095 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2096 unsigned long flags
)
2098 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2100 vma_add_mapping(mm
, start
, end
, flags
);
2104 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2105 unsigned int sz
, void *data
)
2107 unsigned int namesz
;
2109 namesz
= strlen(name
) + 1;
2111 note
->namesz
= namesz
;
2112 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2115 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2120 * We calculate rounded up note size here as specified by
2123 note
->notesz
= sizeof (struct elf_note
) +
2124 note
->namesz_rounded
+ note
->datasz_rounded
;
2127 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2130 (void) memset(elf
, 0, sizeof(*elf
));
2132 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2133 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2134 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2135 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2136 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2138 elf
->e_type
= ET_CORE
;
2139 elf
->e_machine
= machine
;
2140 elf
->e_version
= EV_CURRENT
;
2141 elf
->e_phoff
= sizeof(struct elfhdr
);
2142 elf
->e_flags
= flags
;
2143 elf
->e_ehsize
= sizeof(struct elfhdr
);
2144 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2145 elf
->e_phnum
= segs
;
2150 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2152 phdr
->p_type
= PT_NOTE
;
2153 phdr
->p_offset
= offset
;
2156 phdr
->p_filesz
= sz
;
2161 bswap_phdr(phdr
, 1);
2164 static size_t note_size(const struct memelfnote
*note
)
2166 return (note
->notesz
);
2169 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2170 const TaskState
*ts
, int signr
)
2172 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2173 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2174 prstatus
->pr_pid
= ts
->ts_tid
;
2175 prstatus
->pr_ppid
= getppid();
2176 prstatus
->pr_pgrp
= getpgrp();
2177 prstatus
->pr_sid
= getsid(0);
2179 bswap_prstatus(prstatus
);
2182 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2184 char *filename
, *base_filename
;
2185 unsigned int i
, len
;
2187 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2189 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2190 if (len
>= ELF_PRARGSZ
)
2191 len
= ELF_PRARGSZ
- 1;
2192 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2194 for (i
= 0; i
< len
; i
++)
2195 if (psinfo
->pr_psargs
[i
] == 0)
2196 psinfo
->pr_psargs
[i
] = ' ';
2197 psinfo
->pr_psargs
[len
] = 0;
2199 psinfo
->pr_pid
= getpid();
2200 psinfo
->pr_ppid
= getppid();
2201 psinfo
->pr_pgrp
= getpgrp();
2202 psinfo
->pr_sid
= getsid(0);
2203 psinfo
->pr_uid
= getuid();
2204 psinfo
->pr_gid
= getgid();
2206 filename
= strdup(ts
->bprm
->filename
);
2207 base_filename
= strdup(basename(filename
));
2208 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2209 sizeof(psinfo
->pr_fname
));
2210 free(base_filename
);
2213 bswap_psinfo(psinfo
);
2217 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2219 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2220 elf_addr_t orig_auxv
= auxv
;
2226 * Auxiliary vector is stored in target process stack. It contains
2227 * {type, value} pairs that we need to dump into note. This is not
2228 * strictly necessary but we do it here for sake of completeness.
2231 /* find out lenght of the vector, AT_NULL is terminator */
2234 get_user_ual(val
, auxv
);
2236 auxv
+= 2 * sizeof (elf_addr_t
);
2237 } while (val
!= AT_NULL
);
2238 len
= i
* sizeof (elf_addr_t
);
2240 /* read in whole auxv vector and copy it to memelfnote */
2241 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2243 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2244 unlock_user(ptr
, auxv
, len
);
2249 * Constructs name of coredump file. We have following convention
2251 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2253 * Returns 0 in case of success, -1 otherwise (errno is set).
2255 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2259 char *filename
= NULL
;
2260 char *base_filename
= NULL
;
2264 assert(bufsize
>= PATH_MAX
);
2266 if (gettimeofday(&tv
, NULL
) < 0) {
2267 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2272 filename
= strdup(ts
->bprm
->filename
);
2273 base_filename
= strdup(basename(filename
));
2274 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2275 localtime_r(&tv
.tv_sec
, &tm
));
2276 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2277 base_filename
, timestamp
, (int)getpid());
2278 free(base_filename
);
2284 static int dump_write(int fd
, const void *ptr
, size_t size
)
2286 const char *bufp
= (const char *)ptr
;
2287 ssize_t bytes_written
, bytes_left
;
2288 struct rlimit dumpsize
;
2292 getrlimit(RLIMIT_CORE
, &dumpsize
);
2293 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2294 if (errno
== ESPIPE
) { /* not a seekable stream */
2300 if (dumpsize
.rlim_cur
<= pos
) {
2302 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2305 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2306 bytes_left
= limit_left
>= size
? size
: limit_left
;
2311 * In normal conditions, single write(2) should do but
2312 * in case of socket etc. this mechanism is more portable.
2315 bytes_written
= write(fd
, bufp
, bytes_left
);
2316 if (bytes_written
< 0) {
2320 } else if (bytes_written
== 0) { /* eof */
2323 bufp
+= bytes_written
;
2324 bytes_left
-= bytes_written
;
2325 } while (bytes_left
> 0);
2330 static int write_note(struct memelfnote
*men
, int fd
)
2334 en
.n_namesz
= men
->namesz
;
2335 en
.n_type
= men
->type
;
2336 en
.n_descsz
= men
->datasz
;
2340 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2342 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2344 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2350 static void fill_thread_info(struct elf_note_info
*info
, const CPUState
*env
)
2352 TaskState
*ts
= (TaskState
*)env
->opaque
;
2353 struct elf_thread_status
*ets
;
2355 ets
= qemu_mallocz(sizeof (*ets
));
2356 ets
->num_notes
= 1; /* only prstatus is dumped */
2357 fill_prstatus(&ets
->prstatus
, ts
, 0);
2358 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2359 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2362 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2364 info
->notes_size
+= note_size(&ets
->notes
[0]);
2367 static int fill_note_info(struct elf_note_info
*info
,
2368 long signr
, const CPUState
*env
)
2371 CPUState
*cpu
= NULL
;
2372 TaskState
*ts
= (TaskState
*)env
->opaque
;
2375 (void) memset(info
, 0, sizeof (*info
));
2377 QTAILQ_INIT(&info
->thread_list
);
2379 info
->notes
= qemu_mallocz(NUMNOTES
* sizeof (struct memelfnote
));
2380 if (info
->notes
== NULL
)
2382 info
->prstatus
= qemu_mallocz(sizeof (*info
->prstatus
));
2383 if (info
->prstatus
== NULL
)
2385 info
->psinfo
= qemu_mallocz(sizeof (*info
->psinfo
));
2386 if (info
->prstatus
== NULL
)
2390 * First fill in status (and registers) of current thread
2391 * including process info & aux vector.
2393 fill_prstatus(info
->prstatus
, ts
, signr
);
2394 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2395 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2396 sizeof (*info
->prstatus
), info
->prstatus
);
2397 fill_psinfo(info
->psinfo
, ts
);
2398 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2399 sizeof (*info
->psinfo
), info
->psinfo
);
2400 fill_auxv_note(&info
->notes
[2], ts
);
2403 info
->notes_size
= 0;
2404 for (i
= 0; i
< info
->numnote
; i
++)
2405 info
->notes_size
+= note_size(&info
->notes
[i
]);
2407 /* read and fill status of all threads */
2409 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2410 if (cpu
== thread_env
)
2412 fill_thread_info(info
, cpu
);
2419 static void free_note_info(struct elf_note_info
*info
)
2421 struct elf_thread_status
*ets
;
2423 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2424 ets
= QTAILQ_FIRST(&info
->thread_list
);
2425 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2429 qemu_free(info
->prstatus
);
2430 qemu_free(info
->psinfo
);
2431 qemu_free(info
->notes
);
2434 static int write_note_info(struct elf_note_info
*info
, int fd
)
2436 struct elf_thread_status
*ets
;
2439 /* write prstatus, psinfo and auxv for current thread */
2440 for (i
= 0; i
< info
->numnote
; i
++)
2441 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2444 /* write prstatus for each thread */
2445 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2446 ets
= ets
->ets_link
.tqe_next
) {
2447 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2455 * Write out ELF coredump.
2457 * See documentation of ELF object file format in:
2458 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2460 * Coredump format in linux is following:
2462 * 0 +----------------------+ \
2463 * | ELF header | ET_CORE |
2464 * +----------------------+ |
2465 * | ELF program headers | |--- headers
2466 * | - NOTE section | |
2467 * | - PT_LOAD sections | |
2468 * +----------------------+ /
2473 * +----------------------+ <-- aligned to target page
2474 * | Process memory dump |
2479 * +----------------------+
2481 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2482 * NT_PRSINFO -> struct elf_prpsinfo
2483 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2485 * Format follows System V format as close as possible. Current
2486 * version limitations are as follows:
2487 * - no floating point registers are dumped
2489 * Function returns 0 in case of success, negative errno otherwise.
2491 * TODO: make this work also during runtime: it should be
2492 * possible to force coredump from running process and then
2493 * continue processing. For example qemu could set up SIGUSR2
2494 * handler (provided that target process haven't registered
2495 * handler for that) that does the dump when signal is received.
2497 static int elf_core_dump(int signr
, const CPUState
*env
)
2499 const TaskState
*ts
= (const TaskState
*)env
->opaque
;
2500 struct vm_area_struct
*vma
= NULL
;
2501 char corefile
[PATH_MAX
];
2502 struct elf_note_info info
;
2504 struct elf_phdr phdr
;
2505 struct rlimit dumpsize
;
2506 struct mm_struct
*mm
= NULL
;
2507 off_t offset
= 0, data_offset
= 0;
2512 getrlimit(RLIMIT_CORE
, &dumpsize
);
2513 if (dumpsize
.rlim_cur
== 0)
2516 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2519 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2520 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2524 * Walk through target process memory mappings and
2525 * set up structure containing this information. After
2526 * this point vma_xxx functions can be used.
2528 if ((mm
= vma_init()) == NULL
)
2531 walk_memory_regions(mm
, vma_walker
);
2532 segs
= vma_get_mapping_count(mm
);
2535 * Construct valid coredump ELF header. We also
2536 * add one more segment for notes.
2538 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2539 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2542 /* fill in in-memory version of notes */
2543 if (fill_note_info(&info
, signr
, env
) < 0)
2546 offset
+= sizeof (elf
); /* elf header */
2547 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2549 /* write out notes program header */
2550 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2552 offset
+= info
.notes_size
;
2553 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
2557 * ELF specification wants data to start at page boundary so
2560 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2563 * Write program headers for memory regions mapped in
2564 * the target process.
2566 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2567 (void) memset(&phdr
, 0, sizeof (phdr
));
2569 phdr
.p_type
= PT_LOAD
;
2570 phdr
.p_offset
= offset
;
2571 phdr
.p_vaddr
= vma
->vma_start
;
2573 phdr
.p_filesz
= vma_dump_size(vma
);
2574 offset
+= phdr
.p_filesz
;
2575 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
2576 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
2577 if (vma
->vma_flags
& PROT_WRITE
)
2578 phdr
.p_flags
|= PF_W
;
2579 if (vma
->vma_flags
& PROT_EXEC
)
2580 phdr
.p_flags
|= PF_X
;
2581 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2583 bswap_phdr(&phdr
, 1);
2584 dump_write(fd
, &phdr
, sizeof (phdr
));
2588 * Next we write notes just after program headers. No
2589 * alignment needed here.
2591 if (write_note_info(&info
, fd
) < 0)
2594 /* align data to page boundary */
2595 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
2599 * Finally we can dump process memory into corefile as well.
2601 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
2605 end
= vma
->vma_start
+ vma_dump_size(vma
);
2607 for (addr
= vma
->vma_start
; addr
< end
;
2608 addr
+= TARGET_PAGE_SIZE
) {
2609 char page
[TARGET_PAGE_SIZE
];
2613 * Read in page from target process memory and
2614 * write it to coredump file.
2616 error
= copy_from_user(page
, addr
, sizeof (page
));
2618 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
2623 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
2629 free_note_info(&info
);
2638 #endif /* USE_ELF_CORE_DUMP */
2640 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
2642 init_thread(regs
, infop
);