Merge remote-tracking branch 'kevin/tags/for-upstream' into block
[qemu.git] / accel / tcg / softmmu_template.h
blobf060a693d41fa24559d72fe7e889dfa44ebc4045
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #if DATA_SIZE == 8
25 #define SUFFIX q
26 #define LSUFFIX q
27 #define SDATA_TYPE int64_t
28 #define DATA_TYPE uint64_t
29 #elif DATA_SIZE == 4
30 #define SUFFIX l
31 #define LSUFFIX l
32 #define SDATA_TYPE int32_t
33 #define DATA_TYPE uint32_t
34 #elif DATA_SIZE == 2
35 #define SUFFIX w
36 #define LSUFFIX uw
37 #define SDATA_TYPE int16_t
38 #define DATA_TYPE uint16_t
39 #elif DATA_SIZE == 1
40 #define SUFFIX b
41 #define LSUFFIX ub
42 #define SDATA_TYPE int8_t
43 #define DATA_TYPE uint8_t
44 #else
45 #error unsupported data size
46 #endif
49 /* For the benefit of TCG generated code, we want to avoid the complication
50 of ABI-specific return type promotion and always return a value extended
51 to the register size of the host. This is tcg_target_long, except in the
52 case of a 32-bit host and 64-bit data, and for that we always have
53 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
54 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
55 # define WORD_TYPE DATA_TYPE
56 # define USUFFIX SUFFIX
57 #else
58 # define WORD_TYPE tcg_target_ulong
59 # define USUFFIX glue(u, SUFFIX)
60 # define SSUFFIX glue(s, SUFFIX)
61 #endif
63 #ifdef SOFTMMU_CODE_ACCESS
64 #define READ_ACCESS_TYPE MMU_INST_FETCH
65 #define ADDR_READ addr_code
66 #else
67 #define READ_ACCESS_TYPE MMU_DATA_LOAD
68 #define ADDR_READ addr_read
69 #endif
71 #if DATA_SIZE == 8
72 # define BSWAP(X) bswap64(X)
73 #elif DATA_SIZE == 4
74 # define BSWAP(X) bswap32(X)
75 #elif DATA_SIZE == 2
76 # define BSWAP(X) bswap16(X)
77 #else
78 # define BSWAP(X) (X)
79 #endif
81 #if DATA_SIZE == 1
82 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
83 # define helper_be_ld_name helper_le_ld_name
84 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
85 # define helper_be_lds_name helper_le_lds_name
86 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
87 # define helper_be_st_name helper_le_st_name
88 #else
89 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
90 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
91 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
92 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
93 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
94 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
95 #endif
97 #ifndef SOFTMMU_CODE_ACCESS
98 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
99 size_t mmu_idx, size_t index,
100 target_ulong addr,
101 uintptr_t retaddr,
102 bool recheck,
103 MMUAccessType access_type)
105 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
106 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
107 access_type, DATA_SIZE);
109 #endif
111 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
112 TCGMemOpIdx oi, uintptr_t retaddr)
114 unsigned mmu_idx = get_mmuidx(oi);
115 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
116 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
117 unsigned a_bits = get_alignment_bits(get_memop(oi));
118 uintptr_t haddr;
119 DATA_TYPE res;
121 if (addr & ((1 << a_bits) - 1)) {
122 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
123 mmu_idx, retaddr);
126 /* If the TLB entry is for a different page, reload and try again. */
127 if (!tlb_hit(tlb_addr, addr)) {
128 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
129 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
130 mmu_idx, retaddr);
132 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
135 /* Handle an IO access. */
136 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
137 if ((addr & (DATA_SIZE - 1)) != 0) {
138 goto do_unaligned_access;
141 /* ??? Note that the io helpers always read data in the target
142 byte ordering. We should push the LE/BE request down into io. */
143 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
144 tlb_addr & TLB_RECHECK,
145 READ_ACCESS_TYPE);
146 res = TGT_LE(res);
147 return res;
150 /* Handle slow unaligned access (it spans two pages or IO). */
151 if (DATA_SIZE > 1
152 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
153 >= TARGET_PAGE_SIZE)) {
154 target_ulong addr1, addr2;
155 DATA_TYPE res1, res2;
156 unsigned shift;
157 do_unaligned_access:
158 addr1 = addr & ~(DATA_SIZE - 1);
159 addr2 = addr1 + DATA_SIZE;
160 res1 = helper_le_ld_name(env, addr1, oi, retaddr);
161 res2 = helper_le_ld_name(env, addr2, oi, retaddr);
162 shift = (addr & (DATA_SIZE - 1)) * 8;
164 /* Little-endian combine. */
165 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
166 return res;
169 haddr = addr + env->tlb_table[mmu_idx][index].addend;
170 #if DATA_SIZE == 1
171 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
172 #else
173 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
174 #endif
175 return res;
178 #if DATA_SIZE > 1
179 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
180 TCGMemOpIdx oi, uintptr_t retaddr)
182 unsigned mmu_idx = get_mmuidx(oi);
183 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
184 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
185 unsigned a_bits = get_alignment_bits(get_memop(oi));
186 uintptr_t haddr;
187 DATA_TYPE res;
189 if (addr & ((1 << a_bits) - 1)) {
190 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
191 mmu_idx, retaddr);
194 /* If the TLB entry is for a different page, reload and try again. */
195 if (!tlb_hit(tlb_addr, addr)) {
196 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
197 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
198 mmu_idx, retaddr);
200 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
203 /* Handle an IO access. */
204 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
205 if ((addr & (DATA_SIZE - 1)) != 0) {
206 goto do_unaligned_access;
209 /* ??? Note that the io helpers always read data in the target
210 byte ordering. We should push the LE/BE request down into io. */
211 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
212 tlb_addr & TLB_RECHECK,
213 READ_ACCESS_TYPE);
214 res = TGT_BE(res);
215 return res;
218 /* Handle slow unaligned access (it spans two pages or IO). */
219 if (DATA_SIZE > 1
220 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
221 >= TARGET_PAGE_SIZE)) {
222 target_ulong addr1, addr2;
223 DATA_TYPE res1, res2;
224 unsigned shift;
225 do_unaligned_access:
226 addr1 = addr & ~(DATA_SIZE - 1);
227 addr2 = addr1 + DATA_SIZE;
228 res1 = helper_be_ld_name(env, addr1, oi, retaddr);
229 res2 = helper_be_ld_name(env, addr2, oi, retaddr);
230 shift = (addr & (DATA_SIZE - 1)) * 8;
232 /* Big-endian combine. */
233 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
234 return res;
237 haddr = addr + env->tlb_table[mmu_idx][index].addend;
238 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
239 return res;
241 #endif /* DATA_SIZE > 1 */
243 #ifndef SOFTMMU_CODE_ACCESS
245 /* Provide signed versions of the load routines as well. We can of course
246 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
247 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
248 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
249 TCGMemOpIdx oi, uintptr_t retaddr)
251 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
254 # if DATA_SIZE > 1
255 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
256 TCGMemOpIdx oi, uintptr_t retaddr)
258 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
260 # endif
261 #endif
263 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
264 size_t mmu_idx, size_t index,
265 DATA_TYPE val,
266 target_ulong addr,
267 uintptr_t retaddr,
268 bool recheck)
270 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
271 return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
272 recheck, DATA_SIZE);
275 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
276 TCGMemOpIdx oi, uintptr_t retaddr)
278 unsigned mmu_idx = get_mmuidx(oi);
279 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
280 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
281 unsigned a_bits = get_alignment_bits(get_memop(oi));
282 uintptr_t haddr;
284 if (addr & ((1 << a_bits) - 1)) {
285 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
286 mmu_idx, retaddr);
289 /* If the TLB entry is for a different page, reload and try again. */
290 if (!tlb_hit(tlb_addr, addr)) {
291 if (!VICTIM_TLB_HIT(addr_write, addr)) {
292 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
293 mmu_idx, retaddr);
295 tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
298 /* Handle an IO access. */
299 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
300 if ((addr & (DATA_SIZE - 1)) != 0) {
301 goto do_unaligned_access;
304 /* ??? Note that the io helpers always read data in the target
305 byte ordering. We should push the LE/BE request down into io. */
306 val = TGT_LE(val);
307 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr,
308 retaddr, tlb_addr & TLB_RECHECK);
309 return;
312 /* Handle slow unaligned access (it spans two pages or IO). */
313 if (DATA_SIZE > 1
314 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
315 >= TARGET_PAGE_SIZE)) {
316 int i, index2;
317 target_ulong page2, tlb_addr2;
318 do_unaligned_access:
319 /* Ensure the second page is in the TLB. Note that the first page
320 is already guaranteed to be filled, and that the second page
321 cannot evict the first. */
322 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
323 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
324 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
325 if (!tlb_hit_page(tlb_addr2, page2)
326 && !VICTIM_TLB_HIT(addr_write, page2)) {
327 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
328 mmu_idx, retaddr);
331 /* XXX: not efficient, but simple. */
332 /* This loop must go in the forward direction to avoid issues
333 with self-modifying code in Windows 64-bit. */
334 for (i = 0; i < DATA_SIZE; ++i) {
335 /* Little-endian extract. */
336 uint8_t val8 = val >> (i * 8);
337 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
338 oi, retaddr);
340 return;
343 haddr = addr + env->tlb_table[mmu_idx][index].addend;
344 #if DATA_SIZE == 1
345 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
346 #else
347 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
348 #endif
351 #if DATA_SIZE > 1
352 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
353 TCGMemOpIdx oi, uintptr_t retaddr)
355 unsigned mmu_idx = get_mmuidx(oi);
356 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
357 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
358 unsigned a_bits = get_alignment_bits(get_memop(oi));
359 uintptr_t haddr;
361 if (addr & ((1 << a_bits) - 1)) {
362 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
363 mmu_idx, retaddr);
366 /* If the TLB entry is for a different page, reload and try again. */
367 if (!tlb_hit(tlb_addr, addr)) {
368 if (!VICTIM_TLB_HIT(addr_write, addr)) {
369 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
370 mmu_idx, retaddr);
372 tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
375 /* Handle an IO access. */
376 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
377 if ((addr & (DATA_SIZE - 1)) != 0) {
378 goto do_unaligned_access;
381 /* ??? Note that the io helpers always read data in the target
382 byte ordering. We should push the LE/BE request down into io. */
383 val = TGT_BE(val);
384 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr,
385 tlb_addr & TLB_RECHECK);
386 return;
389 /* Handle slow unaligned access (it spans two pages or IO). */
390 if (DATA_SIZE > 1
391 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
392 >= TARGET_PAGE_SIZE)) {
393 int i, index2;
394 target_ulong page2, tlb_addr2;
395 do_unaligned_access:
396 /* Ensure the second page is in the TLB. Note that the first page
397 is already guaranteed to be filled, and that the second page
398 cannot evict the first. */
399 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
400 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
401 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
402 if (!tlb_hit_page(tlb_addr2, page2)
403 && !VICTIM_TLB_HIT(addr_write, page2)) {
404 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
405 mmu_idx, retaddr);
408 /* XXX: not efficient, but simple */
409 /* This loop must go in the forward direction to avoid issues
410 with self-modifying code. */
411 for (i = 0; i < DATA_SIZE; ++i) {
412 /* Big-endian extract. */
413 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
414 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
415 oi, retaddr);
417 return;
420 haddr = addr + env->tlb_table[mmu_idx][index].addend;
421 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
423 #endif /* DATA_SIZE > 1 */
424 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
426 #undef READ_ACCESS_TYPE
427 #undef DATA_TYPE
428 #undef SUFFIX
429 #undef LSUFFIX
430 #undef DATA_SIZE
431 #undef ADDR_READ
432 #undef WORD_TYPE
433 #undef SDATA_TYPE
434 #undef USUFFIX
435 #undef SSUFFIX
436 #undef BSWAP
437 #undef helper_le_ld_name
438 #undef helper_be_ld_name
439 #undef helper_le_lds_name
440 #undef helper_be_lds_name
441 #undef helper_le_st_name
442 #undef helper_be_st_name