2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
30 #include "mc146818rtc.h"
33 //#define DEBUG_COALESCED
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 # define DPRINTF_C(format, ...) do { } while (0)
47 #define RTC_REINJECT_ON_ACK_COUNT 20
50 #define RTC_SECONDS_ALARM 1
52 #define RTC_MINUTES_ALARM 3
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
67 #define REG_A_UIP 0x80
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
75 #define REG_B_24H 0x02
78 #define REG_C_IRQF 0x80
82 typedef struct RTCState
{
84 uint8_t cmos_data
[128];
92 QEMUTimer
*periodic_timer
;
93 int64_t next_periodic_time
;
95 int64_t next_second_time
;
96 uint16_t irq_reinject_on_ack_count
;
97 uint32_t irq_coalesced
;
99 QEMUTimer
*coalesced_timer
;
100 QEMUTimer
*second_timer
;
101 QEMUTimer
*second_timer2
;
102 Notifier clock_reset_notifier
;
105 static void rtc_set_time(RTCState
*s
);
106 static void rtc_copy_date(RTCState
*s
);
109 static void rtc_coalesced_timer_update(RTCState
*s
)
111 if (s
->irq_coalesced
== 0) {
112 qemu_del_timer(s
->coalesced_timer
);
114 /* divide each RTC interval to 2 - 8 smaller intervals */
115 int c
= MIN(s
->irq_coalesced
, 7) + 1;
116 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
117 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
118 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
122 static void rtc_coalesced_timer(void *opaque
)
124 RTCState
*s
= opaque
;
126 if (s
->irq_coalesced
!= 0) {
127 apic_reset_irq_delivered();
128 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
129 DPRINTF_C("cmos: injecting from timer\n");
130 qemu_irq_raise(s
->irq
);
131 if (apic_get_irq_delivered()) {
133 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
138 rtc_coalesced_timer_update(s
);
142 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
144 int period_code
, period
;
145 int64_t cur_clock
, next_irq_clock
;
147 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
149 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
150 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
151 if (period_code
<= 2)
153 /* period in 32 Khz cycles */
154 period
= 1 << (period_code
- 1);
156 if (period
!= s
->period
) {
157 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
158 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
162 /* compute 32 khz clock */
163 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
164 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
165 s
->next_periodic_time
=
166 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
167 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
170 s
->irq_coalesced
= 0;
172 qemu_del_timer(s
->periodic_timer
);
176 static void rtc_periodic_timer(void *opaque
)
178 RTCState
*s
= opaque
;
180 rtc_timer_update(s
, s
->next_periodic_time
);
181 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
182 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
185 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
186 s
->irq_reinject_on_ack_count
= 0;
187 apic_reset_irq_delivered();
188 qemu_irq_raise(s
->irq
);
189 if (!apic_get_irq_delivered()) {
191 rtc_coalesced_timer_update(s
);
192 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
197 qemu_irq_raise(s
->irq
);
199 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
200 /* Not square wave at all but we don't want 2048Hz interrupts!
201 Must be seen as a pulse. */
202 qemu_irq_raise(s
->sqw_irq
);
206 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
208 RTCState
*s
= opaque
;
210 if ((addr
& 1) == 0) {
211 s
->cmos_index
= data
& 0x7f;
213 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
214 s
->cmos_index
, data
);
215 switch(s
->cmos_index
) {
216 case RTC_SECONDS_ALARM
:
217 case RTC_MINUTES_ALARM
:
218 case RTC_HOURS_ALARM
:
219 s
->cmos_data
[s
->cmos_index
] = data
;
224 case RTC_DAY_OF_WEEK
:
225 case RTC_DAY_OF_MONTH
:
228 s
->cmos_data
[s
->cmos_index
] = data
;
229 /* if in set mode, do not update the time */
230 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
235 /* UIP bit is read only */
236 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
237 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
238 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
241 if (data
& REG_B_SET
) {
242 /* set mode: reset UIP mode */
243 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
246 /* if disabling set mode, update the time */
247 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
251 if (((s
->cmos_data
[RTC_REG_B
] ^ data
) & (REG_B_DM
| REG_B_24H
)) &&
252 !(data
& REG_B_SET
)) {
253 /* If the time format has changed and not in set mode,
254 update the registers immediately. */
255 s
->cmos_data
[RTC_REG_B
] = data
;
258 s
->cmos_data
[RTC_REG_B
] = data
;
260 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
264 /* cannot write to them */
267 s
->cmos_data
[s
->cmos_index
] = data
;
273 static inline int rtc_to_bcd(RTCState
*s
, int a
)
275 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
278 return ((a
/ 10) << 4) | (a
% 10);
282 static inline int rtc_from_bcd(RTCState
*s
, int a
)
284 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
287 return ((a
>> 4) * 10) + (a
& 0x0f);
291 static void rtc_set_time(RTCState
*s
)
293 struct tm
*tm
= &s
->current_tm
;
295 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
296 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
297 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
298 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) &&
299 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
302 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
303 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
304 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
305 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
307 rtc_change_mon_event(tm
);
310 static void rtc_copy_date(RTCState
*s
)
312 const struct tm
*tm
= &s
->current_tm
;
315 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
316 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
317 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
319 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
322 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
% 12);
323 if (tm
->tm_hour
>= 12)
324 s
->cmos_data
[RTC_HOURS
] |= 0x80;
326 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
327 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
328 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
329 year
= (tm
->tm_year
- s
->base_year
) % 100;
332 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
335 /* month is between 0 and 11. */
336 static int get_days_in_month(int month
, int year
)
338 static const int days_tab
[12] = {
339 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
342 if ((unsigned )month
>= 12)
346 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
352 /* update 'tm' to the next second */
353 static void rtc_next_second(struct tm
*tm
)
358 if ((unsigned)tm
->tm_sec
>= 60) {
361 if ((unsigned)tm
->tm_min
>= 60) {
364 if ((unsigned)tm
->tm_hour
>= 24) {
368 if ((unsigned)tm
->tm_wday
>= 7)
370 days_in_month
= get_days_in_month(tm
->tm_mon
,
373 if (tm
->tm_mday
< 1) {
375 } else if (tm
->tm_mday
> days_in_month
) {
378 if (tm
->tm_mon
>= 12) {
389 static void rtc_update_second(void *opaque
)
391 RTCState
*s
= opaque
;
394 /* if the oscillator is not in normal operation, we do not update */
395 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
396 s
->next_second_time
+= get_ticks_per_sec();
397 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
399 rtc_next_second(&s
->current_tm
);
401 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
402 /* update in progress bit */
403 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
405 /* should be 244 us = 8 / 32768 seconds, but currently the
406 timers do not have the necessary resolution. */
407 delay
= (get_ticks_per_sec() * 1) / 100;
410 qemu_mod_timer(s
->second_timer2
,
411 s
->next_second_time
+ delay
);
415 static void rtc_update_second2(void *opaque
)
417 RTCState
*s
= opaque
;
419 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
424 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
425 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
426 rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]) == s
->current_tm
.tm_sec
) &&
427 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
428 rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]) == s
->current_tm
.tm_min
) &&
429 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
430 rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]) == s
->current_tm
.tm_hour
)) {
432 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
433 qemu_irq_raise(s
->irq
);
437 /* update ended interrupt */
438 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
439 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
440 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
441 qemu_irq_raise(s
->irq
);
444 /* clear update in progress bit */
445 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
447 s
->next_second_time
+= get_ticks_per_sec();
448 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
451 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
453 RTCState
*s
= opaque
;
455 if ((addr
& 1) == 0) {
458 switch(s
->cmos_index
) {
462 case RTC_DAY_OF_WEEK
:
463 case RTC_DAY_OF_MONTH
:
466 ret
= s
->cmos_data
[s
->cmos_index
];
469 ret
= s
->cmos_data
[s
->cmos_index
];
472 ret
= s
->cmos_data
[s
->cmos_index
];
473 qemu_irq_lower(s
->irq
);
475 if(s
->irq_coalesced
&&
476 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
477 s
->irq_reinject_on_ack_count
++;
478 apic_reset_irq_delivered();
479 DPRINTF_C("cmos: injecting on ack\n");
480 qemu_irq_raise(s
->irq
);
481 if (apic_get_irq_delivered()) {
483 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
490 s
->cmos_data
[RTC_REG_C
] = 0x00;
493 ret
= s
->cmos_data
[s
->cmos_index
];
496 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
502 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
504 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
505 if (addr
>= 0 && addr
<= 127)
506 s
->cmos_data
[addr
] = val
;
509 void rtc_set_date(ISADevice
*dev
, const struct tm
*tm
)
511 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
516 /* PC cmos mappings */
517 #define REG_IBM_CENTURY_BYTE 0x32
518 #define REG_IBM_PS2_CENTURY_BYTE 0x37
520 static void rtc_set_date_from_host(ISADevice
*dev
)
522 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
526 /* set the CMOS date */
527 qemu_get_timedate(&tm
, 0);
528 rtc_set_date(dev
, &tm
);
530 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
531 rtc_set_memory(dev
, REG_IBM_CENTURY_BYTE
, val
);
532 rtc_set_memory(dev
, REG_IBM_PS2_CENTURY_BYTE
, val
);
535 static int rtc_post_load(void *opaque
, int version_id
)
538 RTCState
*s
= opaque
;
540 if (version_id
>= 2) {
542 rtc_coalesced_timer_update(s
);
549 static const VMStateDescription vmstate_rtc
= {
550 .name
= "mc146818rtc",
552 .minimum_version_id
= 1,
553 .minimum_version_id_old
= 1,
554 .post_load
= rtc_post_load
,
555 .fields
= (VMStateField
[]) {
556 VMSTATE_BUFFER(cmos_data
, RTCState
),
557 VMSTATE_UINT8(cmos_index
, RTCState
),
558 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
559 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
560 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
561 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
562 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
563 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
564 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
565 VMSTATE_TIMER(periodic_timer
, RTCState
),
566 VMSTATE_INT64(next_periodic_time
, RTCState
),
567 VMSTATE_INT64(next_second_time
, RTCState
),
568 VMSTATE_TIMER(second_timer
, RTCState
),
569 VMSTATE_TIMER(second_timer2
, RTCState
),
570 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
571 VMSTATE_UINT32_V(period
, RTCState
, 2),
572 VMSTATE_END_OF_LIST()
576 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
578 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
579 int64_t now
= *(int64_t *)data
;
581 rtc_set_date_from_host(&s
->dev
);
582 s
->next_second_time
= now
+ (get_ticks_per_sec() * 99) / 100;
583 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
584 rtc_timer_update(s
, now
);
587 rtc_coalesced_timer_update(s
);
592 static void rtc_reset(void *opaque
)
594 RTCState
*s
= opaque
;
596 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
597 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
599 qemu_irq_lower(s
->irq
);
603 s
->irq_coalesced
= 0;
607 static int rtc_initfn(ISADevice
*dev
)
609 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
612 s
->cmos_data
[RTC_REG_A
] = 0x26;
613 s
->cmos_data
[RTC_REG_B
] = 0x02;
614 s
->cmos_data
[RTC_REG_C
] = 0x00;
615 s
->cmos_data
[RTC_REG_D
] = 0x80;
617 rtc_set_date_from_host(dev
);
619 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
623 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
625 s
->second_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_second
, s
);
626 s
->second_timer2
= qemu_new_timer_ns(rtc_clock
, rtc_update_second2
, s
);
628 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
629 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
631 s
->next_second_time
=
632 qemu_get_clock_ns(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
633 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
635 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
636 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
637 isa_init_ioport_range(dev
, base
, 2);
639 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 2);
640 qemu_register_reset(rtc_reset
, s
);
644 ISADevice
*rtc_init(int base_year
, qemu_irq intercept_irq
)
649 dev
= isa_create("mc146818rtc");
650 s
= DO_UPCAST(RTCState
, dev
, dev
);
651 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
652 qdev_init_nofail(&dev
->qdev
);
654 s
->irq
= intercept_irq
;
656 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
661 static ISADeviceInfo mc146818rtc_info
= {
662 .qdev
.name
= "mc146818rtc",
663 .qdev
.size
= sizeof(RTCState
),
665 .qdev
.vmsd
= &vmstate_rtc
,
667 .qdev
.props
= (Property
[]) {
668 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
669 DEFINE_PROP_END_OF_LIST(),
673 static void mc146818rtc_register(void)
675 isa_qdev_register(&mc146818rtc_info
);
677 device_init(mc146818rtc_register
)