target-arm: correct cp15 c1_sys reset value for cortex-a8
[qemu.git] / target-arm / helper.c
blobe54fb27a87b86213d2180caf28a7f8f983a1d6d2
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
13 #endif
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
27 static uint32_t mpcore_cp15_c0_c1[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
30 static uint32_t mpcore_cp15_c0_c2[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
33 static uint32_t arm1136_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
36 static uint32_t arm1136_cp15_c0_c2[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
39 static uint32_t cpu_arm_find_by_name(const char *name);
41 static inline void set_feature(CPUARMState *env, int feature)
43 env->features |= 1u << feature;
46 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_VFP);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM946:
57 set_feature(env, ARM_FEATURE_MPU);
58 env->cp15.c0_cachetype = 0x0f004006;
59 env->cp15.c1_sys = 0x00000078;
60 break;
61 case ARM_CPUID_ARM1026:
62 set_feature(env, ARM_FEATURE_VFP);
63 set_feature(env, ARM_FEATURE_AUXCR);
64 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 env->cp15.c1_sys = 0x00090078;
67 break;
68 case ARM_CPUID_ARM1136_R2:
69 case ARM_CPUID_ARM1136:
70 set_feature(env, ARM_FEATURE_V6);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 break;
80 case ARM_CPUID_ARM11MPCORE:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_VFP);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
86 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
87 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
88 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
89 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
90 env->cp15.c0_cachetype = 0x1dd20d2;
91 break;
92 case ARM_CPUID_CORTEXA8:
93 set_feature(env, ARM_FEATURE_V6);
94 set_feature(env, ARM_FEATURE_V6K);
95 set_feature(env, ARM_FEATURE_V7);
96 set_feature(env, ARM_FEATURE_AUXCR);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_VFP);
99 set_feature(env, ARM_FEATURE_VFP3);
100 set_feature(env, ARM_FEATURE_NEON);
101 set_feature(env, ARM_FEATURE_THUMB2EE);
102 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
103 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
104 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
105 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
106 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
107 env->cp15.c0_cachetype = 0x82048004;
108 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
109 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
110 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
111 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
112 env->cp15.c1_sys = 0x00c50078;
113 break;
114 case ARM_CPUID_CORTEXA9:
115 set_feature(env, ARM_FEATURE_V6);
116 set_feature(env, ARM_FEATURE_V6K);
117 set_feature(env, ARM_FEATURE_V7);
118 set_feature(env, ARM_FEATURE_AUXCR);
119 set_feature(env, ARM_FEATURE_THUMB2);
120 set_feature(env, ARM_FEATURE_VFP);
121 set_feature(env, ARM_FEATURE_VFP3);
122 set_feature(env, ARM_FEATURE_VFP_FP16);
123 set_feature(env, ARM_FEATURE_NEON);
124 set_feature(env, ARM_FEATURE_THUMB2EE);
125 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
126 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
127 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
128 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
129 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
130 env->cp15.c0_cachetype = 0x80038003;
131 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
132 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
133 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
134 break;
135 case ARM_CPUID_CORTEXM3:
136 set_feature(env, ARM_FEATURE_V6);
137 set_feature(env, ARM_FEATURE_THUMB2);
138 set_feature(env, ARM_FEATURE_V7);
139 set_feature(env, ARM_FEATURE_M);
140 set_feature(env, ARM_FEATURE_DIV);
141 break;
142 case ARM_CPUID_ANY: /* For userspace emulation. */
143 set_feature(env, ARM_FEATURE_V6);
144 set_feature(env, ARM_FEATURE_V6K);
145 set_feature(env, ARM_FEATURE_V7);
146 set_feature(env, ARM_FEATURE_THUMB2);
147 set_feature(env, ARM_FEATURE_VFP);
148 set_feature(env, ARM_FEATURE_VFP3);
149 set_feature(env, ARM_FEATURE_VFP_FP16);
150 set_feature(env, ARM_FEATURE_NEON);
151 set_feature(env, ARM_FEATURE_THUMB2EE);
152 set_feature(env, ARM_FEATURE_DIV);
153 break;
154 case ARM_CPUID_TI915T:
155 case ARM_CPUID_TI925T:
156 set_feature(env, ARM_FEATURE_OMAPCP);
157 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
158 env->cp15.c0_cachetype = 0x5109149;
159 env->cp15.c1_sys = 0x00000070;
160 env->cp15.c15_i_max = 0x000;
161 env->cp15.c15_i_min = 0xff0;
162 break;
163 case ARM_CPUID_PXA250:
164 case ARM_CPUID_PXA255:
165 case ARM_CPUID_PXA260:
166 case ARM_CPUID_PXA261:
167 case ARM_CPUID_PXA262:
168 set_feature(env, ARM_FEATURE_XSCALE);
169 /* JTAG_ID is ((id << 28) | 0x09265013) */
170 env->cp15.c0_cachetype = 0xd172172;
171 env->cp15.c1_sys = 0x00000078;
172 break;
173 case ARM_CPUID_PXA270_A0:
174 case ARM_CPUID_PXA270_A1:
175 case ARM_CPUID_PXA270_B0:
176 case ARM_CPUID_PXA270_B1:
177 case ARM_CPUID_PXA270_C0:
178 case ARM_CPUID_PXA270_C5:
179 set_feature(env, ARM_FEATURE_XSCALE);
180 /* JTAG_ID is ((id << 28) | 0x09265013) */
181 set_feature(env, ARM_FEATURE_IWMMXT);
182 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
183 env->cp15.c0_cachetype = 0xd172172;
184 env->cp15.c1_sys = 0x00000078;
185 break;
186 default:
187 cpu_abort(env, "Bad CPU ID: %x\n", id);
188 break;
192 void cpu_reset(CPUARMState *env)
194 uint32_t id;
196 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
197 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
198 log_cpu_state(env, 0);
201 id = env->cp15.c0_cpuid;
202 memset(env, 0, offsetof(CPUARMState, breakpoints));
203 if (id)
204 cpu_reset_model_id(env, id);
205 #if defined (CONFIG_USER_ONLY)
206 env->uncached_cpsr = ARM_CPU_MODE_USR;
207 /* For user mode we must enable access to coprocessors */
208 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
209 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
210 env->cp15.c15_cpar = 3;
211 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
212 env->cp15.c15_cpar = 1;
214 #else
215 /* SVC mode with interrupts disabled. */
216 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
217 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
218 clear at reset. Initial SP and PC are loaded from ROM. */
219 if (IS_M(env)) {
220 uint32_t pc;
221 uint8_t *rom;
222 env->uncached_cpsr &= ~CPSR_I;
223 rom = rom_ptr(0);
224 if (rom) {
225 /* We should really use ldl_phys here, in case the guest
226 modified flash and reset itself. However images
227 loaded via -kenrel have not been copied yet, so load the
228 values directly from there. */
229 env->regs[13] = ldl_p(rom);
230 pc = ldl_p(rom + 4);
231 env->thumb = pc & 1;
232 env->regs[15] = pc & ~1;
235 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
236 env->cp15.c2_base_mask = 0xffffc000u;
237 #endif
238 tlb_flush(env, 1);
241 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
243 int nregs;
245 /* VFP data registers are always little-endian. */
246 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
247 if (reg < nregs) {
248 stfq_le_p(buf, env->vfp.regs[reg]);
249 return 8;
251 if (arm_feature(env, ARM_FEATURE_NEON)) {
252 /* Aliases for Q regs. */
253 nregs += 16;
254 if (reg < nregs) {
255 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
256 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
257 return 16;
260 switch (reg - nregs) {
261 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
262 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
263 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
265 return 0;
268 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
270 int nregs;
272 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
273 if (reg < nregs) {
274 env->vfp.regs[reg] = ldfq_le_p(buf);
275 return 8;
277 if (arm_feature(env, ARM_FEATURE_NEON)) {
278 nregs += 16;
279 if (reg < nregs) {
280 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
281 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
282 return 16;
285 switch (reg - nregs) {
286 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
287 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
288 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
290 return 0;
293 CPUARMState *cpu_arm_init(const char *cpu_model)
295 CPUARMState *env;
296 uint32_t id;
297 static int inited = 0;
299 id = cpu_arm_find_by_name(cpu_model);
300 if (id == 0)
301 return NULL;
302 env = qemu_mallocz(sizeof(CPUARMState));
303 cpu_exec_init(env);
304 if (!inited) {
305 inited = 1;
306 arm_translate_init();
309 env->cpu_model_str = cpu_model;
310 env->cp15.c0_cpuid = id;
311 cpu_reset(env);
312 if (arm_feature(env, ARM_FEATURE_NEON)) {
313 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
314 51, "arm-neon.xml", 0);
315 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
316 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
317 35, "arm-vfp3.xml", 0);
318 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
319 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
320 19, "arm-vfp.xml", 0);
322 qemu_init_vcpu(env);
323 return env;
326 struct arm_cpu_t {
327 uint32_t id;
328 const char *name;
331 static const struct arm_cpu_t arm_cpu_names[] = {
332 { ARM_CPUID_ARM926, "arm926"},
333 { ARM_CPUID_ARM946, "arm946"},
334 { ARM_CPUID_ARM1026, "arm1026"},
335 { ARM_CPUID_ARM1136, "arm1136"},
336 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
337 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
338 { ARM_CPUID_CORTEXM3, "cortex-m3"},
339 { ARM_CPUID_CORTEXA8, "cortex-a8"},
340 { ARM_CPUID_CORTEXA9, "cortex-a9"},
341 { ARM_CPUID_TI925T, "ti925t" },
342 { ARM_CPUID_PXA250, "pxa250" },
343 { ARM_CPUID_PXA255, "pxa255" },
344 { ARM_CPUID_PXA260, "pxa260" },
345 { ARM_CPUID_PXA261, "pxa261" },
346 { ARM_CPUID_PXA262, "pxa262" },
347 { ARM_CPUID_PXA270, "pxa270" },
348 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
349 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
350 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
351 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
352 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
353 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
354 { ARM_CPUID_ANY, "any"},
355 { 0, NULL}
358 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
360 int i;
362 (*cpu_fprintf)(f, "Available CPUs:\n");
363 for (i = 0; arm_cpu_names[i].name; i++) {
364 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
368 /* return 0 if not found */
369 static uint32_t cpu_arm_find_by_name(const char *name)
371 int i;
372 uint32_t id;
374 id = 0;
375 for (i = 0; arm_cpu_names[i].name; i++) {
376 if (strcmp(name, arm_cpu_names[i].name) == 0) {
377 id = arm_cpu_names[i].id;
378 break;
381 return id;
384 void cpu_arm_close(CPUARMState *env)
386 free(env);
389 uint32_t cpsr_read(CPUARMState *env)
391 int ZF;
392 ZF = (env->ZF == 0);
393 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
394 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
395 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
396 | ((env->condexec_bits & 0xfc) << 8)
397 | (env->GE << 16);
400 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
402 if (mask & CPSR_NZCV) {
403 env->ZF = (~val) & CPSR_Z;
404 env->NF = val;
405 env->CF = (val >> 29) & 1;
406 env->VF = (val << 3) & 0x80000000;
408 if (mask & CPSR_Q)
409 env->QF = ((val & CPSR_Q) != 0);
410 if (mask & CPSR_T)
411 env->thumb = ((val & CPSR_T) != 0);
412 if (mask & CPSR_IT_0_1) {
413 env->condexec_bits &= ~3;
414 env->condexec_bits |= (val >> 25) & 3;
416 if (mask & CPSR_IT_2_7) {
417 env->condexec_bits &= 3;
418 env->condexec_bits |= (val >> 8) & 0xfc;
420 if (mask & CPSR_GE) {
421 env->GE = (val >> 16) & 0xf;
424 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
425 switch_mode(env, val & CPSR_M);
427 mask &= ~CACHED_CPSR_BITS;
428 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
431 /* Sign/zero extend */
432 uint32_t HELPER(sxtb16)(uint32_t x)
434 uint32_t res;
435 res = (uint16_t)(int8_t)x;
436 res |= (uint32_t)(int8_t)(x >> 16) << 16;
437 return res;
440 uint32_t HELPER(uxtb16)(uint32_t x)
442 uint32_t res;
443 res = (uint16_t)(uint8_t)x;
444 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
445 return res;
448 uint32_t HELPER(clz)(uint32_t x)
450 return clz32(x);
453 int32_t HELPER(sdiv)(int32_t num, int32_t den)
455 if (den == 0)
456 return 0;
457 if (num == INT_MIN && den == -1)
458 return INT_MIN;
459 return num / den;
462 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
464 if (den == 0)
465 return 0;
466 return num / den;
469 uint32_t HELPER(rbit)(uint32_t x)
471 x = ((x & 0xff000000) >> 24)
472 | ((x & 0x00ff0000) >> 8)
473 | ((x & 0x0000ff00) << 8)
474 | ((x & 0x000000ff) << 24);
475 x = ((x & 0xf0f0f0f0) >> 4)
476 | ((x & 0x0f0f0f0f) << 4);
477 x = ((x & 0x88888888) >> 3)
478 | ((x & 0x44444444) >> 1)
479 | ((x & 0x22222222) << 1)
480 | ((x & 0x11111111) << 3);
481 return x;
484 uint32_t HELPER(abs)(uint32_t x)
486 return ((int32_t)x < 0) ? -x : x;
489 #if defined(CONFIG_USER_ONLY)
491 void do_interrupt (CPUState *env)
493 env->exception_index = -1;
496 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
497 int mmu_idx, int is_softmmu)
499 if (rw == 2) {
500 env->exception_index = EXCP_PREFETCH_ABORT;
501 env->cp15.c6_insn = address;
502 } else {
503 env->exception_index = EXCP_DATA_ABORT;
504 env->cp15.c6_data = address;
506 return 1;
509 /* These should probably raise undefined insn exceptions. */
510 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
512 int op1 = (insn >> 8) & 0xf;
513 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
514 return;
517 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
519 int op1 = (insn >> 8) & 0xf;
520 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
521 return 0;
524 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
526 cpu_abort(env, "cp15 insn %08x\n", insn);
529 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
531 cpu_abort(env, "cp15 insn %08x\n", insn);
534 /* These should probably raise undefined insn exceptions. */
535 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
537 cpu_abort(env, "v7m_mrs %d\n", reg);
540 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
542 cpu_abort(env, "v7m_mrs %d\n", reg);
543 return 0;
546 void switch_mode(CPUState *env, int mode)
548 if (mode != ARM_CPU_MODE_USR)
549 cpu_abort(env, "Tried to switch out of user mode\n");
552 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
554 cpu_abort(env, "banked r13 write\n");
557 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
559 cpu_abort(env, "banked r13 read\n");
560 return 0;
563 #else
565 extern int semihosting_enabled;
567 /* Map CPU modes onto saved register banks. */
568 static inline int bank_number (int mode)
570 switch (mode) {
571 case ARM_CPU_MODE_USR:
572 case ARM_CPU_MODE_SYS:
573 return 0;
574 case ARM_CPU_MODE_SVC:
575 return 1;
576 case ARM_CPU_MODE_ABT:
577 return 2;
578 case ARM_CPU_MODE_UND:
579 return 3;
580 case ARM_CPU_MODE_IRQ:
581 return 4;
582 case ARM_CPU_MODE_FIQ:
583 return 5;
585 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
586 return -1;
589 void switch_mode(CPUState *env, int mode)
591 int old_mode;
592 int i;
594 old_mode = env->uncached_cpsr & CPSR_M;
595 if (mode == old_mode)
596 return;
598 if (old_mode == ARM_CPU_MODE_FIQ) {
599 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
600 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
601 } else if (mode == ARM_CPU_MODE_FIQ) {
602 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
603 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
606 i = bank_number(old_mode);
607 env->banked_r13[i] = env->regs[13];
608 env->banked_r14[i] = env->regs[14];
609 env->banked_spsr[i] = env->spsr;
611 i = bank_number(mode);
612 env->regs[13] = env->banked_r13[i];
613 env->regs[14] = env->banked_r14[i];
614 env->spsr = env->banked_spsr[i];
617 static void v7m_push(CPUARMState *env, uint32_t val)
619 env->regs[13] -= 4;
620 stl_phys(env->regs[13], val);
623 static uint32_t v7m_pop(CPUARMState *env)
625 uint32_t val;
626 val = ldl_phys(env->regs[13]);
627 env->regs[13] += 4;
628 return val;
631 /* Switch to V7M main or process stack pointer. */
632 static void switch_v7m_sp(CPUARMState *env, int process)
634 uint32_t tmp;
635 if (env->v7m.current_sp != process) {
636 tmp = env->v7m.other_sp;
637 env->v7m.other_sp = env->regs[13];
638 env->regs[13] = tmp;
639 env->v7m.current_sp = process;
643 static void do_v7m_exception_exit(CPUARMState *env)
645 uint32_t type;
646 uint32_t xpsr;
648 type = env->regs[15];
649 if (env->v7m.exception != 0)
650 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
652 /* Switch to the target stack. */
653 switch_v7m_sp(env, (type & 4) != 0);
654 /* Pop registers. */
655 env->regs[0] = v7m_pop(env);
656 env->regs[1] = v7m_pop(env);
657 env->regs[2] = v7m_pop(env);
658 env->regs[3] = v7m_pop(env);
659 env->regs[12] = v7m_pop(env);
660 env->regs[14] = v7m_pop(env);
661 env->regs[15] = v7m_pop(env);
662 xpsr = v7m_pop(env);
663 xpsr_write(env, xpsr, 0xfffffdff);
664 /* Undo stack alignment. */
665 if (xpsr & 0x200)
666 env->regs[13] |= 4;
667 /* ??? The exception return type specifies Thread/Handler mode. However
668 this is also implied by the xPSR value. Not sure what to do
669 if there is a mismatch. */
670 /* ??? Likewise for mismatches between the CONTROL register and the stack
671 pointer. */
674 static void do_interrupt_v7m(CPUARMState *env)
676 uint32_t xpsr = xpsr_read(env);
677 uint32_t lr;
678 uint32_t addr;
680 lr = 0xfffffff1;
681 if (env->v7m.current_sp)
682 lr |= 4;
683 if (env->v7m.exception == 0)
684 lr |= 8;
686 /* For exceptions we just mark as pending on the NVIC, and let that
687 handle it. */
688 /* TODO: Need to escalate if the current priority is higher than the
689 one we're raising. */
690 switch (env->exception_index) {
691 case EXCP_UDEF:
692 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
693 return;
694 case EXCP_SWI:
695 env->regs[15] += 2;
696 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
697 return;
698 case EXCP_PREFETCH_ABORT:
699 case EXCP_DATA_ABORT:
700 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
701 return;
702 case EXCP_BKPT:
703 if (semihosting_enabled) {
704 int nr;
705 nr = lduw_code(env->regs[15]) & 0xff;
706 if (nr == 0xab) {
707 env->regs[15] += 2;
708 env->regs[0] = do_arm_semihosting(env);
709 return;
712 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
713 return;
714 case EXCP_IRQ:
715 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
716 break;
717 case EXCP_EXCEPTION_EXIT:
718 do_v7m_exception_exit(env);
719 return;
720 default:
721 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
722 return; /* Never happens. Keep compiler happy. */
725 /* Align stack pointer. */
726 /* ??? Should only do this if Configuration Control Register
727 STACKALIGN bit is set. */
728 if (env->regs[13] & 4) {
729 env->regs[13] -= 4;
730 xpsr |= 0x200;
732 /* Switch to the handler mode. */
733 v7m_push(env, xpsr);
734 v7m_push(env, env->regs[15]);
735 v7m_push(env, env->regs[14]);
736 v7m_push(env, env->regs[12]);
737 v7m_push(env, env->regs[3]);
738 v7m_push(env, env->regs[2]);
739 v7m_push(env, env->regs[1]);
740 v7m_push(env, env->regs[0]);
741 switch_v7m_sp(env, 0);
742 env->uncached_cpsr &= ~CPSR_IT;
743 env->regs[14] = lr;
744 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
745 env->regs[15] = addr & 0xfffffffe;
746 env->thumb = addr & 1;
749 /* Handle a CPU exception. */
750 void do_interrupt(CPUARMState *env)
752 uint32_t addr;
753 uint32_t mask;
754 int new_mode;
755 uint32_t offset;
757 if (IS_M(env)) {
758 do_interrupt_v7m(env);
759 return;
761 /* TODO: Vectored interrupt controller. */
762 switch (env->exception_index) {
763 case EXCP_UDEF:
764 new_mode = ARM_CPU_MODE_UND;
765 addr = 0x04;
766 mask = CPSR_I;
767 if (env->thumb)
768 offset = 2;
769 else
770 offset = 4;
771 break;
772 case EXCP_SWI:
773 if (semihosting_enabled) {
774 /* Check for semihosting interrupt. */
775 if (env->thumb) {
776 mask = lduw_code(env->regs[15] - 2) & 0xff;
777 } else {
778 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
780 /* Only intercept calls from privileged modes, to provide some
781 semblance of security. */
782 if (((mask == 0x123456 && !env->thumb)
783 || (mask == 0xab && env->thumb))
784 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
785 env->regs[0] = do_arm_semihosting(env);
786 return;
789 new_mode = ARM_CPU_MODE_SVC;
790 addr = 0x08;
791 mask = CPSR_I;
792 /* The PC already points to the next instruction. */
793 offset = 0;
794 break;
795 case EXCP_BKPT:
796 /* See if this is a semihosting syscall. */
797 if (env->thumb && semihosting_enabled) {
798 mask = lduw_code(env->regs[15]) & 0xff;
799 if (mask == 0xab
800 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
801 env->regs[15] += 2;
802 env->regs[0] = do_arm_semihosting(env);
803 return;
806 /* Fall through to prefetch abort. */
807 case EXCP_PREFETCH_ABORT:
808 new_mode = ARM_CPU_MODE_ABT;
809 addr = 0x0c;
810 mask = CPSR_A | CPSR_I;
811 offset = 4;
812 break;
813 case EXCP_DATA_ABORT:
814 new_mode = ARM_CPU_MODE_ABT;
815 addr = 0x10;
816 mask = CPSR_A | CPSR_I;
817 offset = 8;
818 break;
819 case EXCP_IRQ:
820 new_mode = ARM_CPU_MODE_IRQ;
821 addr = 0x18;
822 /* Disable IRQ and imprecise data aborts. */
823 mask = CPSR_A | CPSR_I;
824 offset = 4;
825 break;
826 case EXCP_FIQ:
827 new_mode = ARM_CPU_MODE_FIQ;
828 addr = 0x1c;
829 /* Disable FIQ, IRQ and imprecise data aborts. */
830 mask = CPSR_A | CPSR_I | CPSR_F;
831 offset = 4;
832 break;
833 default:
834 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
835 return; /* Never happens. Keep compiler happy. */
837 /* High vectors. */
838 if (env->cp15.c1_sys & (1 << 13)) {
839 addr += 0xffff0000;
841 switch_mode (env, new_mode);
842 env->spsr = cpsr_read(env);
843 /* Clear IT bits. */
844 env->condexec_bits = 0;
845 /* Switch to the new mode, and to the correct instruction set. */
846 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
847 env->uncached_cpsr |= mask;
848 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
849 env->regs[14] = env->regs[15] + offset;
850 env->regs[15] = addr;
851 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
854 /* Check section/page access permissions.
855 Returns the page protection flags, or zero if the access is not
856 permitted. */
857 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
858 int is_user)
860 int prot_ro;
862 if (domain == 3)
863 return PAGE_READ | PAGE_WRITE;
865 if (access_type == 1)
866 prot_ro = 0;
867 else
868 prot_ro = PAGE_READ;
870 switch (ap) {
871 case 0:
872 if (access_type == 1)
873 return 0;
874 switch ((env->cp15.c1_sys >> 8) & 3) {
875 case 1:
876 return is_user ? 0 : PAGE_READ;
877 case 2:
878 return PAGE_READ;
879 default:
880 return 0;
882 case 1:
883 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
884 case 2:
885 if (is_user)
886 return prot_ro;
887 else
888 return PAGE_READ | PAGE_WRITE;
889 case 3:
890 return PAGE_READ | PAGE_WRITE;
891 case 4: /* Reserved. */
892 return 0;
893 case 5:
894 return is_user ? 0 : prot_ro;
895 case 6:
896 return prot_ro;
897 case 7:
898 if (!arm_feature (env, ARM_FEATURE_V7))
899 return 0;
900 return prot_ro;
901 default:
902 abort();
906 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
908 uint32_t table;
910 if (address & env->cp15.c2_mask)
911 table = env->cp15.c2_base1 & 0xffffc000;
912 else
913 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
915 table |= (address >> 18) & 0x3ffc;
916 return table;
919 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
920 int is_user, uint32_t *phys_ptr, int *prot,
921 target_ulong *page_size)
923 int code;
924 uint32_t table;
925 uint32_t desc;
926 int type;
927 int ap;
928 int domain;
929 uint32_t phys_addr;
931 /* Pagetable walk. */
932 /* Lookup l1 descriptor. */
933 table = get_level1_table_address(env, address);
934 desc = ldl_phys(table);
935 type = (desc & 3);
936 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
937 if (type == 0) {
938 /* Section translation fault. */
939 code = 5;
940 goto do_fault;
942 if (domain == 0 || domain == 2) {
943 if (type == 2)
944 code = 9; /* Section domain fault. */
945 else
946 code = 11; /* Page domain fault. */
947 goto do_fault;
949 if (type == 2) {
950 /* 1Mb section. */
951 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
952 ap = (desc >> 10) & 3;
953 code = 13;
954 *page_size = 1024 * 1024;
955 } else {
956 /* Lookup l2 entry. */
957 if (type == 1) {
958 /* Coarse pagetable. */
959 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
960 } else {
961 /* Fine pagetable. */
962 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
964 desc = ldl_phys(table);
965 switch (desc & 3) {
966 case 0: /* Page translation fault. */
967 code = 7;
968 goto do_fault;
969 case 1: /* 64k page. */
970 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
971 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
972 *page_size = 0x10000;
973 break;
974 case 2: /* 4k page. */
975 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
976 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
977 *page_size = 0x1000;
978 break;
979 case 3: /* 1k page. */
980 if (type == 1) {
981 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
982 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
983 } else {
984 /* Page translation fault. */
985 code = 7;
986 goto do_fault;
988 } else {
989 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
991 ap = (desc >> 4) & 3;
992 *page_size = 0x400;
993 break;
994 default:
995 /* Never happens, but compiler isn't smart enough to tell. */
996 abort();
998 code = 15;
1000 *prot = check_ap(env, ap, domain, access_type, is_user);
1001 if (!*prot) {
1002 /* Access permission fault. */
1003 goto do_fault;
1005 *prot |= PAGE_EXEC;
1006 *phys_ptr = phys_addr;
1007 return 0;
1008 do_fault:
1009 return code | (domain << 4);
1012 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1013 int is_user, uint32_t *phys_ptr, int *prot,
1014 target_ulong *page_size)
1016 int code;
1017 uint32_t table;
1018 uint32_t desc;
1019 uint32_t xn;
1020 int type;
1021 int ap;
1022 int domain;
1023 uint32_t phys_addr;
1025 /* Pagetable walk. */
1026 /* Lookup l1 descriptor. */
1027 table = get_level1_table_address(env, address);
1028 desc = ldl_phys(table);
1029 type = (desc & 3);
1030 if (type == 0) {
1031 /* Section translation fault. */
1032 code = 5;
1033 domain = 0;
1034 goto do_fault;
1035 } else if (type == 2 && (desc & (1 << 18))) {
1036 /* Supersection. */
1037 domain = 0;
1038 } else {
1039 /* Section or page. */
1040 domain = (desc >> 4) & 0x1e;
1042 domain = (env->cp15.c3 >> domain) & 3;
1043 if (domain == 0 || domain == 2) {
1044 if (type == 2)
1045 code = 9; /* Section domain fault. */
1046 else
1047 code = 11; /* Page domain fault. */
1048 goto do_fault;
1050 if (type == 2) {
1051 if (desc & (1 << 18)) {
1052 /* Supersection. */
1053 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1054 *page_size = 0x1000000;
1055 } else {
1056 /* Section. */
1057 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1058 *page_size = 0x100000;
1060 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1061 xn = desc & (1 << 4);
1062 code = 13;
1063 } else {
1064 /* Lookup l2 entry. */
1065 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1066 desc = ldl_phys(table);
1067 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1068 switch (desc & 3) {
1069 case 0: /* Page translation fault. */
1070 code = 7;
1071 goto do_fault;
1072 case 1: /* 64k page. */
1073 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1074 xn = desc & (1 << 15);
1075 *page_size = 0x10000;
1076 break;
1077 case 2: case 3: /* 4k page. */
1078 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1079 xn = desc & 1;
1080 *page_size = 0x1000;
1081 break;
1082 default:
1083 /* Never happens, but compiler isn't smart enough to tell. */
1084 abort();
1086 code = 15;
1088 if (domain == 3) {
1089 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1090 } else {
1091 if (xn && access_type == 2)
1092 goto do_fault;
1094 /* The simplified model uses AP[0] as an access control bit. */
1095 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1096 /* Access flag fault. */
1097 code = (code == 15) ? 6 : 3;
1098 goto do_fault;
1100 *prot = check_ap(env, ap, domain, access_type, is_user);
1101 if (!*prot) {
1102 /* Access permission fault. */
1103 goto do_fault;
1105 if (!xn) {
1106 *prot |= PAGE_EXEC;
1109 *phys_ptr = phys_addr;
1110 return 0;
1111 do_fault:
1112 return code | (domain << 4);
1115 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1116 int is_user, uint32_t *phys_ptr, int *prot)
1118 int n;
1119 uint32_t mask;
1120 uint32_t base;
1122 *phys_ptr = address;
1123 for (n = 7; n >= 0; n--) {
1124 base = env->cp15.c6_region[n];
1125 if ((base & 1) == 0)
1126 continue;
1127 mask = 1 << ((base >> 1) & 0x1f);
1128 /* Keep this shift separate from the above to avoid an
1129 (undefined) << 32. */
1130 mask = (mask << 1) - 1;
1131 if (((base ^ address) & ~mask) == 0)
1132 break;
1134 if (n < 0)
1135 return 2;
1137 if (access_type == 2) {
1138 mask = env->cp15.c5_insn;
1139 } else {
1140 mask = env->cp15.c5_data;
1142 mask = (mask >> (n * 4)) & 0xf;
1143 switch (mask) {
1144 case 0:
1145 return 1;
1146 case 1:
1147 if (is_user)
1148 return 1;
1149 *prot = PAGE_READ | PAGE_WRITE;
1150 break;
1151 case 2:
1152 *prot = PAGE_READ;
1153 if (!is_user)
1154 *prot |= PAGE_WRITE;
1155 break;
1156 case 3:
1157 *prot = PAGE_READ | PAGE_WRITE;
1158 break;
1159 case 5:
1160 if (is_user)
1161 return 1;
1162 *prot = PAGE_READ;
1163 break;
1164 case 6:
1165 *prot = PAGE_READ;
1166 break;
1167 default:
1168 /* Bad permission. */
1169 return 1;
1171 *prot |= PAGE_EXEC;
1172 return 0;
1175 static inline int get_phys_addr(CPUState *env, uint32_t address,
1176 int access_type, int is_user,
1177 uint32_t *phys_ptr, int *prot,
1178 target_ulong *page_size)
1180 /* Fast Context Switch Extension. */
1181 if (address < 0x02000000)
1182 address += env->cp15.c13_fcse;
1184 if ((env->cp15.c1_sys & 1) == 0) {
1185 /* MMU/MPU disabled. */
1186 *phys_ptr = address;
1187 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1188 *page_size = TARGET_PAGE_SIZE;
1189 return 0;
1190 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1191 *page_size = TARGET_PAGE_SIZE;
1192 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1193 prot);
1194 } else if (env->cp15.c1_sys & (1 << 23)) {
1195 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1196 prot, page_size);
1197 } else {
1198 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1199 prot, page_size);
1203 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1204 int access_type, int mmu_idx, int is_softmmu)
1206 uint32_t phys_addr;
1207 target_ulong page_size;
1208 int prot;
1209 int ret, is_user;
1211 is_user = mmu_idx == MMU_USER_IDX;
1212 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1213 &page_size);
1214 if (ret == 0) {
1215 /* Map a single [sub]page. */
1216 phys_addr &= ~(uint32_t)0x3ff;
1217 address &= ~(uint32_t)0x3ff;
1218 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1219 return 0;
1222 if (access_type == 2) {
1223 env->cp15.c5_insn = ret;
1224 env->cp15.c6_insn = address;
1225 env->exception_index = EXCP_PREFETCH_ABORT;
1226 } else {
1227 env->cp15.c5_data = ret;
1228 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1229 env->cp15.c5_data |= (1 << 11);
1230 env->cp15.c6_data = address;
1231 env->exception_index = EXCP_DATA_ABORT;
1233 return 1;
1236 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1238 uint32_t phys_addr;
1239 target_ulong page_size;
1240 int prot;
1241 int ret;
1243 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1245 if (ret != 0)
1246 return -1;
1248 return phys_addr;
1251 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1253 int cp_num = (insn >> 8) & 0xf;
1254 int cp_info = (insn >> 5) & 7;
1255 int src = (insn >> 16) & 0xf;
1256 int operand = insn & 0xf;
1258 if (env->cp[cp_num].cp_write)
1259 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1260 cp_info, src, operand, val);
1263 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1265 int cp_num = (insn >> 8) & 0xf;
1266 int cp_info = (insn >> 5) & 7;
1267 int dest = (insn >> 16) & 0xf;
1268 int operand = insn & 0xf;
1270 if (env->cp[cp_num].cp_read)
1271 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1272 cp_info, dest, operand);
1273 return 0;
1276 /* Return basic MPU access permission bits. */
1277 static uint32_t simple_mpu_ap_bits(uint32_t val)
1279 uint32_t ret;
1280 uint32_t mask;
1281 int i;
1282 ret = 0;
1283 mask = 3;
1284 for (i = 0; i < 16; i += 2) {
1285 ret |= (val >> i) & mask;
1286 mask <<= 2;
1288 return ret;
1291 /* Pad basic MPU access permission bits to extended format. */
1292 static uint32_t extended_mpu_ap_bits(uint32_t val)
1294 uint32_t ret;
1295 uint32_t mask;
1296 int i;
1297 ret = 0;
1298 mask = 3;
1299 for (i = 0; i < 16; i += 2) {
1300 ret |= (val & mask) << i;
1301 mask <<= 2;
1303 return ret;
1306 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1308 int op1;
1309 int op2;
1310 int crm;
1312 op1 = (insn >> 21) & 7;
1313 op2 = (insn >> 5) & 7;
1314 crm = insn & 0xf;
1315 switch ((insn >> 16) & 0xf) {
1316 case 0:
1317 /* ID codes. */
1318 if (arm_feature(env, ARM_FEATURE_XSCALE))
1319 break;
1320 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1321 break;
1322 if (arm_feature(env, ARM_FEATURE_V7)
1323 && op1 == 2 && crm == 0 && op2 == 0) {
1324 env->cp15.c0_cssel = val & 0xf;
1325 break;
1327 goto bad_reg;
1328 case 1: /* System configuration. */
1329 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1330 op2 = 0;
1331 switch (op2) {
1332 case 0:
1333 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1334 env->cp15.c1_sys = val;
1335 /* ??? Lots of these bits are not implemented. */
1336 /* This may enable/disable the MMU, so do a TLB flush. */
1337 tlb_flush(env, 1);
1338 break;
1339 case 1: /* Auxiliary cotrol register. */
1340 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1341 env->cp15.c1_xscaleauxcr = val;
1342 break;
1344 /* Not implemented. */
1345 break;
1346 case 2:
1347 if (arm_feature(env, ARM_FEATURE_XSCALE))
1348 goto bad_reg;
1349 if (env->cp15.c1_coproc != val) {
1350 env->cp15.c1_coproc = val;
1351 /* ??? Is this safe when called from within a TB? */
1352 tb_flush(env);
1354 break;
1355 default:
1356 goto bad_reg;
1358 break;
1359 case 2: /* MMU Page table control / MPU cache control. */
1360 if (arm_feature(env, ARM_FEATURE_MPU)) {
1361 switch (op2) {
1362 case 0:
1363 env->cp15.c2_data = val;
1364 break;
1365 case 1:
1366 env->cp15.c2_insn = val;
1367 break;
1368 default:
1369 goto bad_reg;
1371 } else {
1372 switch (op2) {
1373 case 0:
1374 env->cp15.c2_base0 = val;
1375 break;
1376 case 1:
1377 env->cp15.c2_base1 = val;
1378 break;
1379 case 2:
1380 val &= 7;
1381 env->cp15.c2_control = val;
1382 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1383 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1384 break;
1385 default:
1386 goto bad_reg;
1389 break;
1390 case 3: /* MMU Domain access control / MPU write buffer control. */
1391 env->cp15.c3 = val;
1392 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1393 break;
1394 case 4: /* Reserved. */
1395 goto bad_reg;
1396 case 5: /* MMU Fault status / MPU access permission. */
1397 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1398 op2 = 0;
1399 switch (op2) {
1400 case 0:
1401 if (arm_feature(env, ARM_FEATURE_MPU))
1402 val = extended_mpu_ap_bits(val);
1403 env->cp15.c5_data = val;
1404 break;
1405 case 1:
1406 if (arm_feature(env, ARM_FEATURE_MPU))
1407 val = extended_mpu_ap_bits(val);
1408 env->cp15.c5_insn = val;
1409 break;
1410 case 2:
1411 if (!arm_feature(env, ARM_FEATURE_MPU))
1412 goto bad_reg;
1413 env->cp15.c5_data = val;
1414 break;
1415 case 3:
1416 if (!arm_feature(env, ARM_FEATURE_MPU))
1417 goto bad_reg;
1418 env->cp15.c5_insn = val;
1419 break;
1420 default:
1421 goto bad_reg;
1423 break;
1424 case 6: /* MMU Fault address / MPU base/size. */
1425 if (arm_feature(env, ARM_FEATURE_MPU)) {
1426 if (crm >= 8)
1427 goto bad_reg;
1428 env->cp15.c6_region[crm] = val;
1429 } else {
1430 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1431 op2 = 0;
1432 switch (op2) {
1433 case 0:
1434 env->cp15.c6_data = val;
1435 break;
1436 case 1: /* ??? This is WFAR on armv6 */
1437 case 2:
1438 env->cp15.c6_insn = val;
1439 break;
1440 default:
1441 goto bad_reg;
1444 break;
1445 case 7: /* Cache control. */
1446 env->cp15.c15_i_max = 0x000;
1447 env->cp15.c15_i_min = 0xff0;
1448 /* No cache, so nothing to do. */
1449 /* ??? MPCore has VA to PA translation functions. */
1450 break;
1451 case 8: /* MMU TLB control. */
1452 switch (op2) {
1453 case 0: /* Invalidate all. */
1454 tlb_flush(env, 0);
1455 break;
1456 case 1: /* Invalidate single TLB entry. */
1457 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1458 break;
1459 case 2: /* Invalidate on ASID. */
1460 tlb_flush(env, val == 0);
1461 break;
1462 case 3: /* Invalidate single entry on MVA. */
1463 /* ??? This is like case 1, but ignores ASID. */
1464 tlb_flush(env, 1);
1465 break;
1466 default:
1467 goto bad_reg;
1469 break;
1470 case 9:
1471 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1472 break;
1473 switch (crm) {
1474 case 0: /* Cache lockdown. */
1475 switch (op1) {
1476 case 0: /* L1 cache. */
1477 switch (op2) {
1478 case 0:
1479 env->cp15.c9_data = val;
1480 break;
1481 case 1:
1482 env->cp15.c9_insn = val;
1483 break;
1484 default:
1485 goto bad_reg;
1487 break;
1488 case 1: /* L2 cache. */
1489 /* Ignore writes to L2 lockdown/auxiliary registers. */
1490 break;
1491 default:
1492 goto bad_reg;
1494 break;
1495 case 1: /* TCM memory region registers. */
1496 /* Not implemented. */
1497 goto bad_reg;
1498 default:
1499 goto bad_reg;
1501 break;
1502 case 10: /* MMU TLB lockdown. */
1503 /* ??? TLB lockdown not implemented. */
1504 break;
1505 case 12: /* Reserved. */
1506 goto bad_reg;
1507 case 13: /* Process ID. */
1508 switch (op2) {
1509 case 0:
1510 /* Unlike real hardware the qemu TLB uses virtual addresses,
1511 not modified virtual addresses, so this causes a TLB flush.
1513 if (env->cp15.c13_fcse != val)
1514 tlb_flush(env, 1);
1515 env->cp15.c13_fcse = val;
1516 break;
1517 case 1:
1518 /* This changes the ASID, so do a TLB flush. */
1519 if (env->cp15.c13_context != val
1520 && !arm_feature(env, ARM_FEATURE_MPU))
1521 tlb_flush(env, 0);
1522 env->cp15.c13_context = val;
1523 break;
1524 default:
1525 goto bad_reg;
1527 break;
1528 case 14: /* Reserved. */
1529 goto bad_reg;
1530 case 15: /* Implementation specific. */
1531 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1532 if (op2 == 0 && crm == 1) {
1533 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1534 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1535 tb_flush(env);
1536 env->cp15.c15_cpar = val & 0x3fff;
1538 break;
1540 goto bad_reg;
1542 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1543 switch (crm) {
1544 case 0:
1545 break;
1546 case 1: /* Set TI925T configuration. */
1547 env->cp15.c15_ticonfig = val & 0xe7;
1548 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1549 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1550 break;
1551 case 2: /* Set I_max. */
1552 env->cp15.c15_i_max = val;
1553 break;
1554 case 3: /* Set I_min. */
1555 env->cp15.c15_i_min = val;
1556 break;
1557 case 4: /* Set thread-ID. */
1558 env->cp15.c15_threadid = val & 0xffff;
1559 break;
1560 case 8: /* Wait-for-interrupt (deprecated). */
1561 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1562 break;
1563 default:
1564 goto bad_reg;
1567 break;
1569 return;
1570 bad_reg:
1571 /* ??? For debugging only. Should raise illegal instruction exception. */
1572 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1573 (insn >> 16) & 0xf, crm, op1, op2);
1576 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1578 int op1;
1579 int op2;
1580 int crm;
1582 op1 = (insn >> 21) & 7;
1583 op2 = (insn >> 5) & 7;
1584 crm = insn & 0xf;
1585 switch ((insn >> 16) & 0xf) {
1586 case 0: /* ID codes. */
1587 switch (op1) {
1588 case 0:
1589 switch (crm) {
1590 case 0:
1591 switch (op2) {
1592 case 0: /* Device ID. */
1593 return env->cp15.c0_cpuid;
1594 case 1: /* Cache Type. */
1595 return env->cp15.c0_cachetype;
1596 case 2: /* TCM status. */
1597 return 0;
1598 case 3: /* TLB type register. */
1599 return 0; /* No lockable TLB entries. */
1600 case 5: /* CPU ID */
1601 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1602 return env->cpu_index | 0x80000900;
1603 } else {
1604 return env->cpu_index;
1606 default:
1607 goto bad_reg;
1609 case 1:
1610 if (!arm_feature(env, ARM_FEATURE_V6))
1611 goto bad_reg;
1612 return env->cp15.c0_c1[op2];
1613 case 2:
1614 if (!arm_feature(env, ARM_FEATURE_V6))
1615 goto bad_reg;
1616 return env->cp15.c0_c2[op2];
1617 case 3: case 4: case 5: case 6: case 7:
1618 return 0;
1619 default:
1620 goto bad_reg;
1622 case 1:
1623 /* These registers aren't documented on arm11 cores. However
1624 Linux looks at them anyway. */
1625 if (!arm_feature(env, ARM_FEATURE_V6))
1626 goto bad_reg;
1627 if (crm != 0)
1628 goto bad_reg;
1629 if (!arm_feature(env, ARM_FEATURE_V7))
1630 return 0;
1632 switch (op2) {
1633 case 0:
1634 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1635 case 1:
1636 return env->cp15.c0_clid;
1637 case 7:
1638 return 0;
1640 goto bad_reg;
1641 case 2:
1642 if (op2 != 0 || crm != 0)
1643 goto bad_reg;
1644 return env->cp15.c0_cssel;
1645 default:
1646 goto bad_reg;
1648 case 1: /* System configuration. */
1649 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1650 op2 = 0;
1651 switch (op2) {
1652 case 0: /* Control register. */
1653 return env->cp15.c1_sys;
1654 case 1: /* Auxiliary control register. */
1655 if (arm_feature(env, ARM_FEATURE_XSCALE))
1656 return env->cp15.c1_xscaleauxcr;
1657 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1658 goto bad_reg;
1659 switch (ARM_CPUID(env)) {
1660 case ARM_CPUID_ARM1026:
1661 return 1;
1662 case ARM_CPUID_ARM1136:
1663 case ARM_CPUID_ARM1136_R2:
1664 return 7;
1665 case ARM_CPUID_ARM11MPCORE:
1666 return 1;
1667 case ARM_CPUID_CORTEXA8:
1668 return 2;
1669 case ARM_CPUID_CORTEXA9:
1670 return 0;
1671 default:
1672 goto bad_reg;
1674 case 2: /* Coprocessor access register. */
1675 if (arm_feature(env, ARM_FEATURE_XSCALE))
1676 goto bad_reg;
1677 return env->cp15.c1_coproc;
1678 default:
1679 goto bad_reg;
1681 case 2: /* MMU Page table control / MPU cache control. */
1682 if (arm_feature(env, ARM_FEATURE_MPU)) {
1683 switch (op2) {
1684 case 0:
1685 return env->cp15.c2_data;
1686 break;
1687 case 1:
1688 return env->cp15.c2_insn;
1689 break;
1690 default:
1691 goto bad_reg;
1693 } else {
1694 switch (op2) {
1695 case 0:
1696 return env->cp15.c2_base0;
1697 case 1:
1698 return env->cp15.c2_base1;
1699 case 2:
1700 return env->cp15.c2_control;
1701 default:
1702 goto bad_reg;
1705 case 3: /* MMU Domain access control / MPU write buffer control. */
1706 return env->cp15.c3;
1707 case 4: /* Reserved. */
1708 goto bad_reg;
1709 case 5: /* MMU Fault status / MPU access permission. */
1710 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1711 op2 = 0;
1712 switch (op2) {
1713 case 0:
1714 if (arm_feature(env, ARM_FEATURE_MPU))
1715 return simple_mpu_ap_bits(env->cp15.c5_data);
1716 return env->cp15.c5_data;
1717 case 1:
1718 if (arm_feature(env, ARM_FEATURE_MPU))
1719 return simple_mpu_ap_bits(env->cp15.c5_data);
1720 return env->cp15.c5_insn;
1721 case 2:
1722 if (!arm_feature(env, ARM_FEATURE_MPU))
1723 goto bad_reg;
1724 return env->cp15.c5_data;
1725 case 3:
1726 if (!arm_feature(env, ARM_FEATURE_MPU))
1727 goto bad_reg;
1728 return env->cp15.c5_insn;
1729 default:
1730 goto bad_reg;
1732 case 6: /* MMU Fault address. */
1733 if (arm_feature(env, ARM_FEATURE_MPU)) {
1734 if (crm >= 8)
1735 goto bad_reg;
1736 return env->cp15.c6_region[crm];
1737 } else {
1738 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1739 op2 = 0;
1740 switch (op2) {
1741 case 0:
1742 return env->cp15.c6_data;
1743 case 1:
1744 if (arm_feature(env, ARM_FEATURE_V6)) {
1745 /* Watchpoint Fault Adrress. */
1746 return 0; /* Not implemented. */
1747 } else {
1748 /* Instruction Fault Adrress. */
1749 /* Arm9 doesn't have an IFAR, but implementing it anyway
1750 shouldn't do any harm. */
1751 return env->cp15.c6_insn;
1753 case 2:
1754 if (arm_feature(env, ARM_FEATURE_V6)) {
1755 /* Instruction Fault Adrress. */
1756 return env->cp15.c6_insn;
1757 } else {
1758 goto bad_reg;
1760 default:
1761 goto bad_reg;
1764 case 7: /* Cache control. */
1765 /* FIXME: Should only clear Z flag if destination is r15. */
1766 env->ZF = 0;
1767 return 0;
1768 case 8: /* MMU TLB control. */
1769 goto bad_reg;
1770 case 9: /* Cache lockdown. */
1771 switch (op1) {
1772 case 0: /* L1 cache. */
1773 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1774 return 0;
1775 switch (op2) {
1776 case 0:
1777 return env->cp15.c9_data;
1778 case 1:
1779 return env->cp15.c9_insn;
1780 default:
1781 goto bad_reg;
1783 case 1: /* L2 cache */
1784 if (crm != 0)
1785 goto bad_reg;
1786 /* L2 Lockdown and Auxiliary control. */
1787 return 0;
1788 default:
1789 goto bad_reg;
1791 case 10: /* MMU TLB lockdown. */
1792 /* ??? TLB lockdown not implemented. */
1793 return 0;
1794 case 11: /* TCM DMA control. */
1795 case 12: /* Reserved. */
1796 goto bad_reg;
1797 case 13: /* Process ID. */
1798 switch (op2) {
1799 case 0:
1800 return env->cp15.c13_fcse;
1801 case 1:
1802 return env->cp15.c13_context;
1803 default:
1804 goto bad_reg;
1806 case 14: /* Reserved. */
1807 goto bad_reg;
1808 case 15: /* Implementation specific. */
1809 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1810 if (op2 == 0 && crm == 1)
1811 return env->cp15.c15_cpar;
1813 goto bad_reg;
1815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1816 switch (crm) {
1817 case 0:
1818 return 0;
1819 case 1: /* Read TI925T configuration. */
1820 return env->cp15.c15_ticonfig;
1821 case 2: /* Read I_max. */
1822 return env->cp15.c15_i_max;
1823 case 3: /* Read I_min. */
1824 return env->cp15.c15_i_min;
1825 case 4: /* Read thread-ID. */
1826 return env->cp15.c15_threadid;
1827 case 8: /* TI925T_status */
1828 return 0;
1830 /* TODO: Peripheral port remap register:
1831 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1832 * controller base address at $rn & ~0xfff and map size of
1833 * 0x200 << ($rn & 0xfff), when MMU is off. */
1834 goto bad_reg;
1836 return 0;
1838 bad_reg:
1839 /* ??? For debugging only. Should raise illegal instruction exception. */
1840 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1841 (insn >> 16) & 0xf, crm, op1, op2);
1842 return 0;
1845 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1847 env->banked_r13[bank_number(mode)] = val;
1850 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1852 return env->banked_r13[bank_number(mode)];
1855 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1857 switch (reg) {
1858 case 0: /* APSR */
1859 return xpsr_read(env) & 0xf8000000;
1860 case 1: /* IAPSR */
1861 return xpsr_read(env) & 0xf80001ff;
1862 case 2: /* EAPSR */
1863 return xpsr_read(env) & 0xff00fc00;
1864 case 3: /* xPSR */
1865 return xpsr_read(env) & 0xff00fdff;
1866 case 5: /* IPSR */
1867 return xpsr_read(env) & 0x000001ff;
1868 case 6: /* EPSR */
1869 return xpsr_read(env) & 0x0700fc00;
1870 case 7: /* IEPSR */
1871 return xpsr_read(env) & 0x0700edff;
1872 case 8: /* MSP */
1873 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1874 case 9: /* PSP */
1875 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1876 case 16: /* PRIMASK */
1877 return (env->uncached_cpsr & CPSR_I) != 0;
1878 case 17: /* FAULTMASK */
1879 return (env->uncached_cpsr & CPSR_F) != 0;
1880 case 18: /* BASEPRI */
1881 case 19: /* BASEPRI_MAX */
1882 return env->v7m.basepri;
1883 case 20: /* CONTROL */
1884 return env->v7m.control;
1885 default:
1886 /* ??? For debugging only. */
1887 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1888 return 0;
1892 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1894 switch (reg) {
1895 case 0: /* APSR */
1896 xpsr_write(env, val, 0xf8000000);
1897 break;
1898 case 1: /* IAPSR */
1899 xpsr_write(env, val, 0xf8000000);
1900 break;
1901 case 2: /* EAPSR */
1902 xpsr_write(env, val, 0xfe00fc00);
1903 break;
1904 case 3: /* xPSR */
1905 xpsr_write(env, val, 0xfe00fc00);
1906 break;
1907 case 5: /* IPSR */
1908 /* IPSR bits are readonly. */
1909 break;
1910 case 6: /* EPSR */
1911 xpsr_write(env, val, 0x0600fc00);
1912 break;
1913 case 7: /* IEPSR */
1914 xpsr_write(env, val, 0x0600fc00);
1915 break;
1916 case 8: /* MSP */
1917 if (env->v7m.current_sp)
1918 env->v7m.other_sp = val;
1919 else
1920 env->regs[13] = val;
1921 break;
1922 case 9: /* PSP */
1923 if (env->v7m.current_sp)
1924 env->regs[13] = val;
1925 else
1926 env->v7m.other_sp = val;
1927 break;
1928 case 16: /* PRIMASK */
1929 if (val & 1)
1930 env->uncached_cpsr |= CPSR_I;
1931 else
1932 env->uncached_cpsr &= ~CPSR_I;
1933 break;
1934 case 17: /* FAULTMASK */
1935 if (val & 1)
1936 env->uncached_cpsr |= CPSR_F;
1937 else
1938 env->uncached_cpsr &= ~CPSR_F;
1939 break;
1940 case 18: /* BASEPRI */
1941 env->v7m.basepri = val & 0xff;
1942 break;
1943 case 19: /* BASEPRI_MAX */
1944 val &= 0xff;
1945 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1946 env->v7m.basepri = val;
1947 break;
1948 case 20: /* CONTROL */
1949 env->v7m.control = val & 3;
1950 switch_v7m_sp(env, (val & 2) != 0);
1951 break;
1952 default:
1953 /* ??? For debugging only. */
1954 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1955 return;
1959 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1960 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1961 void *opaque)
1963 if (cpnum < 0 || cpnum > 14) {
1964 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1965 return;
1968 env->cp[cpnum].cp_read = cp_read;
1969 env->cp[cpnum].cp_write = cp_write;
1970 env->cp[cpnum].opaque = opaque;
1973 #endif
1975 /* Note that signed overflow is undefined in C. The following routines are
1976 careful to use unsigned types where modulo arithmetic is required.
1977 Failure to do so _will_ break on newer gcc. */
1979 /* Signed saturating arithmetic. */
1981 /* Perform 16-bit signed saturating addition. */
1982 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1984 uint16_t res;
1986 res = a + b;
1987 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1988 if (a & 0x8000)
1989 res = 0x8000;
1990 else
1991 res = 0x7fff;
1993 return res;
1996 /* Perform 8-bit signed saturating addition. */
1997 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1999 uint8_t res;
2001 res = a + b;
2002 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2003 if (a & 0x80)
2004 res = 0x80;
2005 else
2006 res = 0x7f;
2008 return res;
2011 /* Perform 16-bit signed saturating subtraction. */
2012 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2014 uint16_t res;
2016 res = a - b;
2017 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2018 if (a & 0x8000)
2019 res = 0x8000;
2020 else
2021 res = 0x7fff;
2023 return res;
2026 /* Perform 8-bit signed saturating subtraction. */
2027 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2029 uint8_t res;
2031 res = a - b;
2032 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2033 if (a & 0x80)
2034 res = 0x80;
2035 else
2036 res = 0x7f;
2038 return res;
2041 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2042 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2043 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2044 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2045 #define PFX q
2047 #include "op_addsub.h"
2049 /* Unsigned saturating arithmetic. */
2050 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2052 uint16_t res;
2053 res = a + b;
2054 if (res < a)
2055 res = 0xffff;
2056 return res;
2059 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2061 if (a > b)
2062 return a - b;
2063 else
2064 return 0;
2067 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2069 uint8_t res;
2070 res = a + b;
2071 if (res < a)
2072 res = 0xff;
2073 return res;
2076 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2078 if (a > b)
2079 return a - b;
2080 else
2081 return 0;
2084 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2085 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2086 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2087 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2088 #define PFX uq
2090 #include "op_addsub.h"
2092 /* Signed modulo arithmetic. */
2093 #define SARITH16(a, b, n, op) do { \
2094 int32_t sum; \
2095 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2096 RESULT(sum, n, 16); \
2097 if (sum >= 0) \
2098 ge |= 3 << (n * 2); \
2099 } while(0)
2101 #define SARITH8(a, b, n, op) do { \
2102 int32_t sum; \
2103 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2104 RESULT(sum, n, 8); \
2105 if (sum >= 0) \
2106 ge |= 1 << n; \
2107 } while(0)
2110 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2111 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2112 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2113 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2114 #define PFX s
2115 #define ARITH_GE
2117 #include "op_addsub.h"
2119 /* Unsigned modulo arithmetic. */
2120 #define ADD16(a, b, n) do { \
2121 uint32_t sum; \
2122 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2123 RESULT(sum, n, 16); \
2124 if ((sum >> 16) == 1) \
2125 ge |= 3 << (n * 2); \
2126 } while(0)
2128 #define ADD8(a, b, n) do { \
2129 uint32_t sum; \
2130 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2131 RESULT(sum, n, 8); \
2132 if ((sum >> 8) == 1) \
2133 ge |= 1 << n; \
2134 } while(0)
2136 #define SUB16(a, b, n) do { \
2137 uint32_t sum; \
2138 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2139 RESULT(sum, n, 16); \
2140 if ((sum >> 16) == 0) \
2141 ge |= 3 << (n * 2); \
2142 } while(0)
2144 #define SUB8(a, b, n) do { \
2145 uint32_t sum; \
2146 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2147 RESULT(sum, n, 8); \
2148 if ((sum >> 8) == 0) \
2149 ge |= 1 << n; \
2150 } while(0)
2152 #define PFX u
2153 #define ARITH_GE
2155 #include "op_addsub.h"
2157 /* Halved signed arithmetic. */
2158 #define ADD16(a, b, n) \
2159 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2160 #define SUB16(a, b, n) \
2161 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2162 #define ADD8(a, b, n) \
2163 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2164 #define SUB8(a, b, n) \
2165 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2166 #define PFX sh
2168 #include "op_addsub.h"
2170 /* Halved unsigned arithmetic. */
2171 #define ADD16(a, b, n) \
2172 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2173 #define SUB16(a, b, n) \
2174 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2175 #define ADD8(a, b, n) \
2176 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2177 #define SUB8(a, b, n) \
2178 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2179 #define PFX uh
2181 #include "op_addsub.h"
2183 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2185 if (a > b)
2186 return a - b;
2187 else
2188 return b - a;
2191 /* Unsigned sum of absolute byte differences. */
2192 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2194 uint32_t sum;
2195 sum = do_usad(a, b);
2196 sum += do_usad(a >> 8, b >> 8);
2197 sum += do_usad(a >> 16, b >>16);
2198 sum += do_usad(a >> 24, b >> 24);
2199 return sum;
2202 /* For ARMv6 SEL instruction. */
2203 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2205 uint32_t mask;
2207 mask = 0;
2208 if (flags & 1)
2209 mask |= 0xff;
2210 if (flags & 2)
2211 mask |= 0xff00;
2212 if (flags & 4)
2213 mask |= 0xff0000;
2214 if (flags & 8)
2215 mask |= 0xff000000;
2216 return (a & mask) | (b & ~mask);
2219 uint32_t HELPER(logicq_cc)(uint64_t val)
2221 return (val >> 32) | (val != 0);
2224 /* VFP support. We follow the convention used for VFP instrunctions:
2225 Single precition routines have a "s" suffix, double precision a
2226 "d" suffix. */
2228 /* Convert host exception flags to vfp form. */
2229 static inline int vfp_exceptbits_from_host(int host_bits)
2231 int target_bits = 0;
2233 if (host_bits & float_flag_invalid)
2234 target_bits |= 1;
2235 if (host_bits & float_flag_divbyzero)
2236 target_bits |= 2;
2237 if (host_bits & float_flag_overflow)
2238 target_bits |= 4;
2239 if (host_bits & float_flag_underflow)
2240 target_bits |= 8;
2241 if (host_bits & float_flag_inexact)
2242 target_bits |= 0x10;
2243 return target_bits;
2246 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2248 int i;
2249 uint32_t fpscr;
2251 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2252 | (env->vfp.vec_len << 16)
2253 | (env->vfp.vec_stride << 20);
2254 i = get_float_exception_flags(&env->vfp.fp_status);
2255 fpscr |= vfp_exceptbits_from_host(i);
2256 return fpscr;
2259 uint32_t vfp_get_fpscr(CPUState *env)
2261 return HELPER(vfp_get_fpscr)(env);
2264 /* Convert vfp exception flags to target form. */
2265 static inline int vfp_exceptbits_to_host(int target_bits)
2267 int host_bits = 0;
2269 if (target_bits & 1)
2270 host_bits |= float_flag_invalid;
2271 if (target_bits & 2)
2272 host_bits |= float_flag_divbyzero;
2273 if (target_bits & 4)
2274 host_bits |= float_flag_overflow;
2275 if (target_bits & 8)
2276 host_bits |= float_flag_underflow;
2277 if (target_bits & 0x10)
2278 host_bits |= float_flag_inexact;
2279 return host_bits;
2282 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2284 int i;
2285 uint32_t changed;
2287 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2288 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2289 env->vfp.vec_len = (val >> 16) & 7;
2290 env->vfp.vec_stride = (val >> 20) & 3;
2292 changed ^= val;
2293 if (changed & (3 << 22)) {
2294 i = (val >> 22) & 3;
2295 switch (i) {
2296 case 0:
2297 i = float_round_nearest_even;
2298 break;
2299 case 1:
2300 i = float_round_up;
2301 break;
2302 case 2:
2303 i = float_round_down;
2304 break;
2305 case 3:
2306 i = float_round_to_zero;
2307 break;
2309 set_float_rounding_mode(i, &env->vfp.fp_status);
2311 if (changed & (1 << 24))
2312 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2313 if (changed & (1 << 25))
2314 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2316 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2317 set_float_exception_flags(i, &env->vfp.fp_status);
2320 void vfp_set_fpscr(CPUState *env, uint32_t val)
2322 HELPER(vfp_set_fpscr)(env, val);
2325 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2327 #define VFP_BINOP(name) \
2328 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2330 return float32_ ## name (a, b, &env->vfp.fp_status); \
2332 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2334 return float64_ ## name (a, b, &env->vfp.fp_status); \
2336 VFP_BINOP(add)
2337 VFP_BINOP(sub)
2338 VFP_BINOP(mul)
2339 VFP_BINOP(div)
2340 #undef VFP_BINOP
2342 float32 VFP_HELPER(neg, s)(float32 a)
2344 return float32_chs(a);
2347 float64 VFP_HELPER(neg, d)(float64 a)
2349 return float64_chs(a);
2352 float32 VFP_HELPER(abs, s)(float32 a)
2354 return float32_abs(a);
2357 float64 VFP_HELPER(abs, d)(float64 a)
2359 return float64_abs(a);
2362 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2364 return float32_sqrt(a, &env->vfp.fp_status);
2367 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2369 return float64_sqrt(a, &env->vfp.fp_status);
2372 /* XXX: check quiet/signaling case */
2373 #define DO_VFP_cmp(p, type) \
2374 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2376 uint32_t flags; \
2377 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2378 case 0: flags = 0x6; break; \
2379 case -1: flags = 0x8; break; \
2380 case 1: flags = 0x2; break; \
2381 default: case 2: flags = 0x3; break; \
2383 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2384 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2386 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2388 uint32_t flags; \
2389 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2390 case 0: flags = 0x6; break; \
2391 case -1: flags = 0x8; break; \
2392 case 1: flags = 0x2; break; \
2393 default: case 2: flags = 0x3; break; \
2395 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2396 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2398 DO_VFP_cmp(s, float32)
2399 DO_VFP_cmp(d, float64)
2400 #undef DO_VFP_cmp
2402 /* Helper routines to perform bitwise copies between float and int. */
2403 static inline float32 vfp_itos(uint32_t i)
2405 union {
2406 uint32_t i;
2407 float32 s;
2408 } v;
2410 v.i = i;
2411 return v.s;
2414 static inline uint32_t vfp_stoi(float32 s)
2416 union {
2417 uint32_t i;
2418 float32 s;
2419 } v;
2421 v.s = s;
2422 return v.i;
2425 static inline float64 vfp_itod(uint64_t i)
2427 union {
2428 uint64_t i;
2429 float64 d;
2430 } v;
2432 v.i = i;
2433 return v.d;
2436 static inline uint64_t vfp_dtoi(float64 d)
2438 union {
2439 uint64_t i;
2440 float64 d;
2441 } v;
2443 v.d = d;
2444 return v.i;
2447 /* Integer to float conversion. */
2448 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2450 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2453 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2455 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2458 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2460 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2463 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2465 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2468 /* Float to integer conversion. */
2469 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2471 if (float32_is_any_nan(x)) {
2472 return float32_zero;
2474 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2477 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2479 if (float64_is_any_nan(x)) {
2480 return float32_zero;
2482 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2485 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2487 if (float32_is_any_nan(x)) {
2488 return float32_zero;
2490 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2493 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2495 if (float64_is_any_nan(x)) {
2496 return float32_zero;
2498 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2501 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2503 if (float32_is_any_nan(x)) {
2504 return float32_zero;
2506 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2509 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2511 if (float64_is_any_nan(x)) {
2512 return float32_zero;
2514 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2517 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2519 if (float32_is_any_nan(x)) {
2520 return float32_zero;
2522 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2525 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2527 if (float64_is_any_nan(x)) {
2528 return float32_zero;
2530 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2533 /* floating point conversion */
2534 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2536 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2537 /* ARM requires that S<->D conversion of any kind of NaN generates
2538 * a quiet NaN by forcing the most significant frac bit to 1.
2540 return float64_maybe_silence_nan(r);
2543 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2545 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2546 /* ARM requires that S<->D conversion of any kind of NaN generates
2547 * a quiet NaN by forcing the most significant frac bit to 1.
2549 return float32_maybe_silence_nan(r);
2552 /* VFP3 fixed point conversion. */
2553 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2554 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2556 ftype tmp; \
2557 tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \
2558 &env->vfp.fp_status); \
2559 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2561 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2563 ftype tmp; \
2564 if (ftype##_is_any_nan(x)) { \
2565 return ftype##_zero; \
2567 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2568 return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \
2569 &env->vfp.fp_status)); \
2572 VFP_CONV_FIX(sh, d, float64, int16, )
2573 VFP_CONV_FIX(sl, d, float64, int32, )
2574 VFP_CONV_FIX(uh, d, float64, uint16, u)
2575 VFP_CONV_FIX(ul, d, float64, uint32, u)
2576 VFP_CONV_FIX(sh, s, float32, int16, )
2577 VFP_CONV_FIX(sl, s, float32, int32, )
2578 VFP_CONV_FIX(uh, s, float32, uint16, u)
2579 VFP_CONV_FIX(ul, s, float32, uint32, u)
2580 #undef VFP_CONV_FIX
2582 /* Half precision conversions. */
2583 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2585 float_status *s = &env->vfp.fp_status;
2586 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2587 return float16_to_float32(a, ieee, s);
2590 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2592 float_status *s = &env->vfp.fp_status;
2593 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2594 return float32_to_float16(a, ieee, s);
2597 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2599 float_status *s = &env->vfp.fp_status;
2600 float32 two = int32_to_float32(2, s);
2601 return float32_sub(two, float32_mul(a, b, s), s);
2604 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2606 float_status *s = &env->vfp.fp_status;
2607 float32 three = int32_to_float32(3, s);
2608 return float32_sub(three, float32_mul(a, b, s), s);
2611 /* NEON helpers. */
2613 /* TODO: The architecture specifies the value that the estimate functions
2614 should return. We return the exact reciprocal/root instead. */
2615 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2617 float_status *s = &env->vfp.fp_status;
2618 float32 one = int32_to_float32(1, s);
2619 return float32_div(one, a, s);
2622 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2624 float_status *s = &env->vfp.fp_status;
2625 float32 one = int32_to_float32(1, s);
2626 return float32_div(one, float32_sqrt(a, s), s);
2629 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2631 float_status *s = &env->vfp.fp_status;
2632 float32 tmp;
2633 tmp = int32_to_float32(a, s);
2634 tmp = float32_scalbn(tmp, -32, s);
2635 tmp = helper_recpe_f32(tmp, env);
2636 tmp = float32_scalbn(tmp, 31, s);
2637 return float32_to_int32(tmp, s);
2640 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2642 float_status *s = &env->vfp.fp_status;
2643 float32 tmp;
2644 tmp = int32_to_float32(a, s);
2645 tmp = float32_scalbn(tmp, -32, s);
2646 tmp = helper_rsqrte_f32(tmp, env);
2647 tmp = float32_scalbn(tmp, 31, s);
2648 return float32_to_int32(tmp, s);
2651 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2653 val &= 1;
2654 if (env->teecr != val) {
2655 env->teecr = val;
2656 tb_flush(env);