ppc/pnv: Remove user-created PHB{3,4,5} devices
[qemu.git] / block / qed.c
blobf34d9a3ac1a02bf1e552d40ca4a2310ab4c52ed8
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
31 static QemuOptsList qed_create_opts;
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
36 const QEDHeader *header = (const QEDHeader *)buf;
38 if (buf_size < sizeof(*header)) {
39 return 0;
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
44 return 100;
47 /**
48 * Check whether an image format is raw
50 * @fmt: Backing file format, may be NULL
52 static bool qed_fmt_is_raw(const char *fmt)
54 return fmt && strcmp(fmt, "raw") == 0;
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
87 int qed_write_header_sync(BDRVQEDState *s)
89 QEDHeader le;
90 int ret;
92 qed_header_cpu_to_le(&s->header, &le);
93 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
94 if (ret != sizeof(le)) {
95 return ret;
97 return 0;
101 * Update header in-place (does not rewrite backing filename or other strings)
103 * This function only updates known header fields in-place and does not affect
104 * extra data after the QED header.
106 * No new allocating reqs can start while this function runs.
108 static int coroutine_fn qed_write_header(BDRVQEDState *s)
110 /* We must write full sectors for O_DIRECT but cannot necessarily generate
111 * the data following the header if an unrecognized compat feature is
112 * active. Therefore, first read the sectors containing the header, update
113 * them, and write back.
116 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
117 size_t len = nsectors * BDRV_SECTOR_SIZE;
118 uint8_t *buf;
119 int ret;
121 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
123 buf = qemu_blockalign(s->bs, len);
125 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
126 if (ret < 0) {
127 goto out;
130 /* Update header */
131 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
133 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
134 if (ret < 0) {
135 goto out;
138 ret = 0;
139 out:
140 qemu_vfree(buf);
141 return ret;
144 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
146 uint64_t table_entries;
147 uint64_t l2_size;
149 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
150 l2_size = table_entries * cluster_size;
152 return l2_size * table_entries;
155 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
157 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
158 cluster_size > QED_MAX_CLUSTER_SIZE) {
159 return false;
161 if (cluster_size & (cluster_size - 1)) {
162 return false; /* not power of 2 */
164 return true;
167 static bool qed_is_table_size_valid(uint32_t table_size)
169 if (table_size < QED_MIN_TABLE_SIZE ||
170 table_size > QED_MAX_TABLE_SIZE) {
171 return false;
173 if (table_size & (table_size - 1)) {
174 return false; /* not power of 2 */
176 return true;
179 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
180 uint32_t table_size)
182 if (image_size % BDRV_SECTOR_SIZE != 0) {
183 return false; /* not multiple of sector size */
185 if (image_size > qed_max_image_size(cluster_size, table_size)) {
186 return false; /* image is too large */
188 return true;
192 * Read a string of known length from the image file
194 * @file: Image file
195 * @offset: File offset to start of string, in bytes
196 * @n: String length in bytes
197 * @buf: Destination buffer
198 * @buflen: Destination buffer length in bytes
199 * @ret: 0 on success, -errno on failure
201 * The string is NUL-terminated.
203 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
204 char *buf, size_t buflen)
206 int ret;
207 if (n >= buflen) {
208 return -EINVAL;
210 ret = bdrv_pread(file, offset, buf, n);
211 if (ret < 0) {
212 return ret;
214 buf[n] = '\0';
215 return 0;
219 * Allocate new clusters
221 * @s: QED state
222 * @n: Number of contiguous clusters to allocate
223 * @ret: Offset of first allocated cluster
225 * This function only produces the offset where the new clusters should be
226 * written. It updates BDRVQEDState but does not make any changes to the image
227 * file.
229 * Called with table_lock held.
231 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
233 uint64_t offset = s->file_size;
234 s->file_size += n * s->header.cluster_size;
235 return offset;
238 QEDTable *qed_alloc_table(BDRVQEDState *s)
240 /* Honor O_DIRECT memory alignment requirements */
241 return qemu_blockalign(s->bs,
242 s->header.cluster_size * s->header.table_size);
246 * Allocate a new zeroed L2 table
248 * Called with table_lock held.
250 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
252 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
254 l2_table->table = qed_alloc_table(s);
255 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
257 memset(l2_table->table->offsets, 0,
258 s->header.cluster_size * s->header.table_size);
259 return l2_table;
262 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
264 qemu_co_mutex_lock(&s->table_lock);
266 /* No reentrancy is allowed. */
267 assert(!s->allocating_write_reqs_plugged);
268 if (s->allocating_acb != NULL) {
269 /* Another allocating write came concurrently. This cannot happen
270 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
272 qemu_co_mutex_unlock(&s->table_lock);
273 return false;
276 s->allocating_write_reqs_plugged = true;
277 qemu_co_mutex_unlock(&s->table_lock);
278 return true;
281 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
283 qemu_co_mutex_lock(&s->table_lock);
284 assert(s->allocating_write_reqs_plugged);
285 s->allocating_write_reqs_plugged = false;
286 qemu_co_queue_next(&s->allocating_write_reqs);
287 qemu_co_mutex_unlock(&s->table_lock);
290 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
292 BDRVQEDState *s = opaque;
293 int ret;
295 trace_qed_need_check_timer_cb(s);
297 if (!qed_plug_allocating_write_reqs(s)) {
298 return;
301 /* Ensure writes are on disk before clearing flag */
302 ret = bdrv_co_flush(s->bs->file->bs);
303 if (ret < 0) {
304 qed_unplug_allocating_write_reqs(s);
305 return;
308 s->header.features &= ~QED_F_NEED_CHECK;
309 ret = qed_write_header(s);
310 (void) ret;
312 qed_unplug_allocating_write_reqs(s);
314 ret = bdrv_co_flush(s->bs);
315 (void) ret;
318 static void qed_need_check_timer_cb(void *opaque)
320 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
321 qemu_coroutine_enter(co);
324 static void qed_start_need_check_timer(BDRVQEDState *s)
326 trace_qed_start_need_check_timer(s);
328 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
329 * migration.
331 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
332 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
335 /* It's okay to call this multiple times or when no timer is started */
336 static void qed_cancel_need_check_timer(BDRVQEDState *s)
338 trace_qed_cancel_need_check_timer(s);
339 timer_del(s->need_check_timer);
342 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
344 BDRVQEDState *s = bs->opaque;
346 qed_cancel_need_check_timer(s);
347 timer_free(s->need_check_timer);
350 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
351 AioContext *new_context)
353 BDRVQEDState *s = bs->opaque;
355 s->need_check_timer = aio_timer_new(new_context,
356 QEMU_CLOCK_VIRTUAL, SCALE_NS,
357 qed_need_check_timer_cb, s);
358 if (s->header.features & QED_F_NEED_CHECK) {
359 qed_start_need_check_timer(s);
363 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
365 BDRVQEDState *s = bs->opaque;
367 /* Fire the timer immediately in order to start doing I/O as soon as the
368 * header is flushed.
370 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
371 qed_cancel_need_check_timer(s);
372 qed_need_check_timer_entry(s);
376 static void bdrv_qed_init_state(BlockDriverState *bs)
378 BDRVQEDState *s = bs->opaque;
380 memset(s, 0, sizeof(BDRVQEDState));
381 s->bs = bs;
382 qemu_co_mutex_init(&s->table_lock);
383 qemu_co_queue_init(&s->allocating_write_reqs);
386 /* Called with table_lock held. */
387 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
388 int flags, Error **errp)
390 BDRVQEDState *s = bs->opaque;
391 QEDHeader le_header;
392 int64_t file_size;
393 int ret;
395 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
396 if (ret < 0) {
397 error_setg(errp, "Failed to read QED header");
398 return ret;
400 qed_header_le_to_cpu(&le_header, &s->header);
402 if (s->header.magic != QED_MAGIC) {
403 error_setg(errp, "Image not in QED format");
404 return -EINVAL;
406 if (s->header.features & ~QED_FEATURE_MASK) {
407 /* image uses unsupported feature bits */
408 error_setg(errp, "Unsupported QED features: %" PRIx64,
409 s->header.features & ~QED_FEATURE_MASK);
410 return -ENOTSUP;
412 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
413 error_setg(errp, "QED cluster size is invalid");
414 return -EINVAL;
417 /* Round down file size to the last cluster */
418 file_size = bdrv_getlength(bs->file->bs);
419 if (file_size < 0) {
420 error_setg(errp, "Failed to get file length");
421 return file_size;
423 s->file_size = qed_start_of_cluster(s, file_size);
425 if (!qed_is_table_size_valid(s->header.table_size)) {
426 error_setg(errp, "QED table size is invalid");
427 return -EINVAL;
429 if (!qed_is_image_size_valid(s->header.image_size,
430 s->header.cluster_size,
431 s->header.table_size)) {
432 error_setg(errp, "QED image size is invalid");
433 return -EINVAL;
435 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
436 error_setg(errp, "QED table offset is invalid");
437 return -EINVAL;
440 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
441 sizeof(uint64_t);
442 s->l2_shift = ctz32(s->header.cluster_size);
443 s->l2_mask = s->table_nelems - 1;
444 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
446 /* Header size calculation must not overflow uint32_t */
447 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
448 error_setg(errp, "QED header size is too large");
449 return -EINVAL;
452 if ((s->header.features & QED_F_BACKING_FILE)) {
453 if ((uint64_t)s->header.backing_filename_offset +
454 s->header.backing_filename_size >
455 s->header.cluster_size * s->header.header_size) {
456 error_setg(errp, "QED backing filename offset is invalid");
457 return -EINVAL;
460 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
461 s->header.backing_filename_size,
462 bs->auto_backing_file,
463 sizeof(bs->auto_backing_file));
464 if (ret < 0) {
465 error_setg(errp, "Failed to read backing filename");
466 return ret;
468 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
469 bs->auto_backing_file);
471 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
472 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
476 /* Reset unknown autoclear feature bits. This is a backwards
477 * compatibility mechanism that allows images to be opened by older
478 * programs, which "knock out" unknown feature bits. When an image is
479 * opened by a newer program again it can detect that the autoclear
480 * feature is no longer valid.
482 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
483 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
484 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
486 ret = qed_write_header_sync(s);
487 if (ret) {
488 error_setg(errp, "Failed to update header");
489 return ret;
492 /* From here on only known autoclear feature bits are valid */
493 bdrv_flush(bs->file->bs);
496 s->l1_table = qed_alloc_table(s);
497 qed_init_l2_cache(&s->l2_cache);
499 ret = qed_read_l1_table_sync(s);
500 if (ret) {
501 error_setg(errp, "Failed to read L1 table");
502 goto out;
505 /* If image was not closed cleanly, check consistency */
506 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
507 /* Read-only images cannot be fixed. There is no risk of corruption
508 * since write operations are not possible. Therefore, allow
509 * potentially inconsistent images to be opened read-only. This can
510 * aid data recovery from an otherwise inconsistent image.
512 if (!bdrv_is_read_only(bs->file->bs) &&
513 !(flags & BDRV_O_INACTIVE)) {
514 BdrvCheckResult result = {0};
516 ret = qed_check(s, &result, true);
517 if (ret) {
518 error_setg(errp, "Image corrupted");
519 goto out;
524 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
526 out:
527 if (ret) {
528 qed_free_l2_cache(&s->l2_cache);
529 qemu_vfree(s->l1_table);
531 return ret;
534 typedef struct QEDOpenCo {
535 BlockDriverState *bs;
536 QDict *options;
537 int flags;
538 Error **errp;
539 int ret;
540 } QEDOpenCo;
542 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
544 QEDOpenCo *qoc = opaque;
545 BDRVQEDState *s = qoc->bs->opaque;
547 qemu_co_mutex_lock(&s->table_lock);
548 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
549 qemu_co_mutex_unlock(&s->table_lock);
552 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
553 Error **errp)
555 QEDOpenCo qoc = {
556 .bs = bs,
557 .options = options,
558 .flags = flags,
559 .errp = errp,
560 .ret = -EINPROGRESS
563 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
564 BDRV_CHILD_IMAGE, false, errp);
565 if (!bs->file) {
566 return -EINVAL;
569 bdrv_qed_init_state(bs);
570 if (qemu_in_coroutine()) {
571 bdrv_qed_open_entry(&qoc);
572 } else {
573 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
574 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
575 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
577 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
578 return qoc.ret;
581 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
583 BDRVQEDState *s = bs->opaque;
585 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
586 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
589 /* We have nothing to do for QED reopen, stubs just return
590 * success */
591 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
592 BlockReopenQueue *queue, Error **errp)
594 return 0;
597 static void bdrv_qed_close(BlockDriverState *bs)
599 BDRVQEDState *s = bs->opaque;
601 bdrv_qed_detach_aio_context(bs);
603 /* Ensure writes reach stable storage */
604 bdrv_flush(bs->file->bs);
606 /* Clean shutdown, no check required on next open */
607 if (s->header.features & QED_F_NEED_CHECK) {
608 s->header.features &= ~QED_F_NEED_CHECK;
609 qed_write_header_sync(s);
612 qed_free_l2_cache(&s->l2_cache);
613 qemu_vfree(s->l1_table);
616 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
617 Error **errp)
619 BlockdevCreateOptionsQed *qed_opts;
620 BlockBackend *blk = NULL;
621 BlockDriverState *bs = NULL;
623 QEDHeader header;
624 QEDHeader le_header;
625 uint8_t *l1_table = NULL;
626 size_t l1_size;
627 int ret = 0;
629 assert(opts->driver == BLOCKDEV_DRIVER_QED);
630 qed_opts = &opts->u.qed;
632 /* Validate options and set default values */
633 if (!qed_opts->has_cluster_size) {
634 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
636 if (!qed_opts->has_table_size) {
637 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
640 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
641 error_setg(errp, "QED cluster size must be within range [%u, %u] "
642 "and power of 2",
643 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
644 return -EINVAL;
646 if (!qed_is_table_size_valid(qed_opts->table_size)) {
647 error_setg(errp, "QED table size must be within range [%u, %u] "
648 "and power of 2",
649 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
650 return -EINVAL;
652 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
653 qed_opts->table_size))
655 error_setg(errp, "QED image size must be a non-zero multiple of "
656 "cluster size and less than %" PRIu64 " bytes",
657 qed_max_image_size(qed_opts->cluster_size,
658 qed_opts->table_size));
659 return -EINVAL;
662 /* Create BlockBackend to write to the image */
663 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
664 if (bs == NULL) {
665 return -EIO;
668 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
669 errp);
670 if (!blk) {
671 ret = -EPERM;
672 goto out;
674 blk_set_allow_write_beyond_eof(blk, true);
676 /* Prepare image format */
677 header = (QEDHeader) {
678 .magic = QED_MAGIC,
679 .cluster_size = qed_opts->cluster_size,
680 .table_size = qed_opts->table_size,
681 .header_size = 1,
682 .features = 0,
683 .compat_features = 0,
684 .l1_table_offset = qed_opts->cluster_size,
685 .image_size = qed_opts->size,
688 l1_size = header.cluster_size * header.table_size;
691 * The QED format associates file length with allocation status,
692 * so a new file (which is empty) must have a length of 0.
694 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
695 if (ret < 0) {
696 goto out;
699 if (qed_opts->has_backing_file) {
700 header.features |= QED_F_BACKING_FILE;
701 header.backing_filename_offset = sizeof(le_header);
702 header.backing_filename_size = strlen(qed_opts->backing_file);
704 if (qed_opts->has_backing_fmt) {
705 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
706 if (qed_fmt_is_raw(backing_fmt)) {
707 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
712 qed_header_cpu_to_le(&header, &le_header);
713 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
714 if (ret < 0) {
715 goto out;
717 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
718 header.backing_filename_size, 0);
719 if (ret < 0) {
720 goto out;
723 l1_table = g_malloc0(l1_size);
724 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
725 if (ret < 0) {
726 goto out;
729 ret = 0; /* success */
730 out:
731 g_free(l1_table);
732 blk_unref(blk);
733 bdrv_unref(bs);
734 return ret;
737 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
738 const char *filename,
739 QemuOpts *opts,
740 Error **errp)
742 BlockdevCreateOptions *create_options = NULL;
743 QDict *qdict;
744 Visitor *v;
745 BlockDriverState *bs = NULL;
746 int ret;
748 static const QDictRenames opt_renames[] = {
749 { BLOCK_OPT_BACKING_FILE, "backing-file" },
750 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
751 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
752 { BLOCK_OPT_TABLE_SIZE, "table-size" },
753 { NULL, NULL },
756 /* Parse options and convert legacy syntax */
757 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
759 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
760 ret = -EINVAL;
761 goto fail;
764 /* Create and open the file (protocol layer) */
765 ret = bdrv_create_file(filename, opts, errp);
766 if (ret < 0) {
767 goto fail;
770 bs = bdrv_open(filename, NULL, NULL,
771 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
772 if (bs == NULL) {
773 ret = -EIO;
774 goto fail;
777 /* Now get the QAPI type BlockdevCreateOptions */
778 qdict_put_str(qdict, "driver", "qed");
779 qdict_put_str(qdict, "file", bs->node_name);
781 v = qobject_input_visitor_new_flat_confused(qdict, errp);
782 if (!v) {
783 ret = -EINVAL;
784 goto fail;
787 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
788 visit_free(v);
789 if (!create_options) {
790 ret = -EINVAL;
791 goto fail;
794 /* Silently round up size */
795 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
796 create_options->u.qed.size =
797 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
799 /* Create the qed image (format layer) */
800 ret = bdrv_qed_co_create(create_options, errp);
802 fail:
803 qobject_unref(qdict);
804 bdrv_unref(bs);
805 qapi_free_BlockdevCreateOptions(create_options);
806 return ret;
809 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
810 bool want_zero,
811 int64_t pos, int64_t bytes,
812 int64_t *pnum, int64_t *map,
813 BlockDriverState **file)
815 BDRVQEDState *s = bs->opaque;
816 size_t len = MIN(bytes, SIZE_MAX);
817 int status;
818 QEDRequest request = { .l2_table = NULL };
819 uint64_t offset;
820 int ret;
822 qemu_co_mutex_lock(&s->table_lock);
823 ret = qed_find_cluster(s, &request, pos, &len, &offset);
825 *pnum = len;
826 switch (ret) {
827 case QED_CLUSTER_FOUND:
828 *map = offset | qed_offset_into_cluster(s, pos);
829 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
830 *file = bs->file->bs;
831 break;
832 case QED_CLUSTER_ZERO:
833 status = BDRV_BLOCK_ZERO;
834 break;
835 case QED_CLUSTER_L2:
836 case QED_CLUSTER_L1:
837 status = 0;
838 break;
839 default:
840 assert(ret < 0);
841 status = ret;
842 break;
845 qed_unref_l2_cache_entry(request.l2_table);
846 qemu_co_mutex_unlock(&s->table_lock);
848 return status;
851 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
853 return acb->bs->opaque;
857 * Read from the backing file or zero-fill if no backing file
859 * @s: QED state
860 * @pos: Byte position in device
861 * @qiov: Destination I/O vector
863 * This function reads qiov->size bytes starting at pos from the backing file.
864 * If there is no backing file then zeroes are read.
866 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
867 QEMUIOVector *qiov)
869 if (s->bs->backing) {
870 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
871 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
873 qemu_iovec_memset(qiov, 0, 0, qiov->size);
874 return 0;
878 * Copy data from backing file into the image
880 * @s: QED state
881 * @pos: Byte position in device
882 * @len: Number of bytes
883 * @offset: Byte offset in image file
885 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
886 uint64_t pos, uint64_t len,
887 uint64_t offset)
889 QEMUIOVector qiov;
890 int ret;
892 /* Skip copy entirely if there is no work to do */
893 if (len == 0) {
894 return 0;
897 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
899 ret = qed_read_backing_file(s, pos, &qiov);
901 if (ret) {
902 goto out;
905 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
906 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
907 if (ret < 0) {
908 goto out;
910 ret = 0;
911 out:
912 qemu_vfree(qemu_iovec_buf(&qiov));
913 return ret;
917 * Link one or more contiguous clusters into a table
919 * @s: QED state
920 * @table: L2 table
921 * @index: First cluster index
922 * @n: Number of contiguous clusters
923 * @cluster: First cluster offset
925 * The cluster offset may be an allocated byte offset in the image file, the
926 * zero cluster marker, or the unallocated cluster marker.
928 * Called with table_lock held.
930 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
931 int index, unsigned int n,
932 uint64_t cluster)
934 int i;
935 for (i = index; i < index + n; i++) {
936 table->offsets[i] = cluster;
937 if (!qed_offset_is_unalloc_cluster(cluster) &&
938 !qed_offset_is_zero_cluster(cluster)) {
939 cluster += s->header.cluster_size;
944 /* Called with table_lock held. */
945 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
947 BDRVQEDState *s = acb_to_s(acb);
949 /* Free resources */
950 qemu_iovec_destroy(&acb->cur_qiov);
951 qed_unref_l2_cache_entry(acb->request.l2_table);
953 /* Free the buffer we may have allocated for zero writes */
954 if (acb->flags & QED_AIOCB_ZERO) {
955 qemu_vfree(acb->qiov->iov[0].iov_base);
956 acb->qiov->iov[0].iov_base = NULL;
959 /* Start next allocating write request waiting behind this one. Note that
960 * requests enqueue themselves when they first hit an unallocated cluster
961 * but they wait until the entire request is finished before waking up the
962 * next request in the queue. This ensures that we don't cycle through
963 * requests multiple times but rather finish one at a time completely.
965 if (acb == s->allocating_acb) {
966 s->allocating_acb = NULL;
967 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
968 qemu_co_queue_next(&s->allocating_write_reqs);
969 } else if (s->header.features & QED_F_NEED_CHECK) {
970 qed_start_need_check_timer(s);
976 * Update L1 table with new L2 table offset and write it out
978 * Called with table_lock held.
980 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
982 BDRVQEDState *s = acb_to_s(acb);
983 CachedL2Table *l2_table = acb->request.l2_table;
984 uint64_t l2_offset = l2_table->offset;
985 int index, ret;
987 index = qed_l1_index(s, acb->cur_pos);
988 s->l1_table->offsets[index] = l2_table->offset;
990 ret = qed_write_l1_table(s, index, 1);
992 /* Commit the current L2 table to the cache */
993 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
995 /* This is guaranteed to succeed because we just committed the entry to the
996 * cache.
998 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
999 assert(acb->request.l2_table != NULL);
1001 return ret;
1006 * Update L2 table with new cluster offsets and write them out
1008 * Called with table_lock held.
1010 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1012 BDRVQEDState *s = acb_to_s(acb);
1013 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1014 int index, ret;
1016 if (need_alloc) {
1017 qed_unref_l2_cache_entry(acb->request.l2_table);
1018 acb->request.l2_table = qed_new_l2_table(s);
1021 index = qed_l2_index(s, acb->cur_pos);
1022 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1023 offset);
1025 if (need_alloc) {
1026 /* Write out the whole new L2 table */
1027 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1028 if (ret) {
1029 return ret;
1031 return qed_aio_write_l1_update(acb);
1032 } else {
1033 /* Write out only the updated part of the L2 table */
1034 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1035 false);
1036 if (ret) {
1037 return ret;
1040 return 0;
1044 * Write data to the image file
1046 * Called with table_lock *not* held.
1048 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1050 BDRVQEDState *s = acb_to_s(acb);
1051 uint64_t offset = acb->cur_cluster +
1052 qed_offset_into_cluster(s, acb->cur_pos);
1054 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1056 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1057 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1058 &acb->cur_qiov, 0);
1062 * Populate untouched regions of new data cluster
1064 * Called with table_lock held.
1066 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1068 BDRVQEDState *s = acb_to_s(acb);
1069 uint64_t start, len, offset;
1070 int ret;
1072 qemu_co_mutex_unlock(&s->table_lock);
1074 /* Populate front untouched region of new data cluster */
1075 start = qed_start_of_cluster(s, acb->cur_pos);
1076 len = qed_offset_into_cluster(s, acb->cur_pos);
1078 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1079 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1080 if (ret < 0) {
1081 goto out;
1084 /* Populate back untouched region of new data cluster */
1085 start = acb->cur_pos + acb->cur_qiov.size;
1086 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1087 offset = acb->cur_cluster +
1088 qed_offset_into_cluster(s, acb->cur_pos) +
1089 acb->cur_qiov.size;
1091 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1092 ret = qed_copy_from_backing_file(s, start, len, offset);
1093 if (ret < 0) {
1094 goto out;
1097 ret = qed_aio_write_main(acb);
1098 if (ret < 0) {
1099 goto out;
1102 if (s->bs->backing) {
1104 * Flush new data clusters before updating the L2 table
1106 * This flush is necessary when a backing file is in use. A crash
1107 * during an allocating write could result in empty clusters in the
1108 * image. If the write only touched a subregion of the cluster,
1109 * then backing image sectors have been lost in the untouched
1110 * region. The solution is to flush after writing a new data
1111 * cluster and before updating the L2 table.
1113 ret = bdrv_co_flush(s->bs->file->bs);
1116 out:
1117 qemu_co_mutex_lock(&s->table_lock);
1118 return ret;
1122 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1124 static bool qed_should_set_need_check(BDRVQEDState *s)
1126 /* The flush before L2 update path ensures consistency */
1127 if (s->bs->backing) {
1128 return false;
1131 return !(s->header.features & QED_F_NEED_CHECK);
1135 * Write new data cluster
1137 * @acb: Write request
1138 * @len: Length in bytes
1140 * This path is taken when writing to previously unallocated clusters.
1142 * Called with table_lock held.
1144 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1146 BDRVQEDState *s = acb_to_s(acb);
1147 int ret;
1149 /* Cancel timer when the first allocating request comes in */
1150 if (s->allocating_acb == NULL) {
1151 qed_cancel_need_check_timer(s);
1154 /* Freeze this request if another allocating write is in progress */
1155 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1156 if (s->allocating_acb != NULL) {
1157 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1158 assert(s->allocating_acb == NULL);
1160 s->allocating_acb = acb;
1161 return -EAGAIN; /* start over with looking up table entries */
1164 acb->cur_nclusters = qed_bytes_to_clusters(s,
1165 qed_offset_into_cluster(s, acb->cur_pos) + len);
1166 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1168 if (acb->flags & QED_AIOCB_ZERO) {
1169 /* Skip ahead if the clusters are already zero */
1170 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1171 return 0;
1173 acb->cur_cluster = 1;
1174 } else {
1175 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1178 if (qed_should_set_need_check(s)) {
1179 s->header.features |= QED_F_NEED_CHECK;
1180 ret = qed_write_header(s);
1181 if (ret < 0) {
1182 return ret;
1186 if (!(acb->flags & QED_AIOCB_ZERO)) {
1187 ret = qed_aio_write_cow(acb);
1188 if (ret < 0) {
1189 return ret;
1193 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1197 * Write data cluster in place
1199 * @acb: Write request
1200 * @offset: Cluster offset in bytes
1201 * @len: Length in bytes
1203 * This path is taken when writing to already allocated clusters.
1205 * Called with table_lock held.
1207 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1208 size_t len)
1210 BDRVQEDState *s = acb_to_s(acb);
1211 int r;
1213 qemu_co_mutex_unlock(&s->table_lock);
1215 /* Allocate buffer for zero writes */
1216 if (acb->flags & QED_AIOCB_ZERO) {
1217 struct iovec *iov = acb->qiov->iov;
1219 if (!iov->iov_base) {
1220 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1221 if (iov->iov_base == NULL) {
1222 r = -ENOMEM;
1223 goto out;
1225 memset(iov->iov_base, 0, iov->iov_len);
1229 /* Calculate the I/O vector */
1230 acb->cur_cluster = offset;
1231 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1233 /* Do the actual write. */
1234 r = qed_aio_write_main(acb);
1235 out:
1236 qemu_co_mutex_lock(&s->table_lock);
1237 return r;
1241 * Write data cluster
1243 * @opaque: Write request
1244 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1245 * @offset: Cluster offset in bytes
1246 * @len: Length in bytes
1248 * Called with table_lock held.
1250 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1251 uint64_t offset, size_t len)
1253 QEDAIOCB *acb = opaque;
1255 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1257 acb->find_cluster_ret = ret;
1259 switch (ret) {
1260 case QED_CLUSTER_FOUND:
1261 return qed_aio_write_inplace(acb, offset, len);
1263 case QED_CLUSTER_L2:
1264 case QED_CLUSTER_L1:
1265 case QED_CLUSTER_ZERO:
1266 return qed_aio_write_alloc(acb, len);
1268 default:
1269 g_assert_not_reached();
1274 * Read data cluster
1276 * @opaque: Read request
1277 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1278 * @offset: Cluster offset in bytes
1279 * @len: Length in bytes
1281 * Called with table_lock held.
1283 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1284 uint64_t offset, size_t len)
1286 QEDAIOCB *acb = opaque;
1287 BDRVQEDState *s = acb_to_s(acb);
1288 BlockDriverState *bs = acb->bs;
1289 int r;
1291 qemu_co_mutex_unlock(&s->table_lock);
1293 /* Adjust offset into cluster */
1294 offset += qed_offset_into_cluster(s, acb->cur_pos);
1296 trace_qed_aio_read_data(s, acb, ret, offset, len);
1298 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1300 /* Handle zero cluster and backing file reads, otherwise read
1301 * data cluster directly.
1303 if (ret == QED_CLUSTER_ZERO) {
1304 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1305 r = 0;
1306 } else if (ret != QED_CLUSTER_FOUND) {
1307 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1308 } else {
1309 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1310 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1311 &acb->cur_qiov, 0);
1314 qemu_co_mutex_lock(&s->table_lock);
1315 return r;
1319 * Begin next I/O or complete the request
1321 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1323 BDRVQEDState *s = acb_to_s(acb);
1324 uint64_t offset;
1325 size_t len;
1326 int ret;
1328 qemu_co_mutex_lock(&s->table_lock);
1329 while (1) {
1330 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1332 acb->qiov_offset += acb->cur_qiov.size;
1333 acb->cur_pos += acb->cur_qiov.size;
1334 qemu_iovec_reset(&acb->cur_qiov);
1336 /* Complete request */
1337 if (acb->cur_pos >= acb->end_pos) {
1338 ret = 0;
1339 break;
1342 /* Find next cluster and start I/O */
1343 len = acb->end_pos - acb->cur_pos;
1344 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1345 if (ret < 0) {
1346 break;
1349 if (acb->flags & QED_AIOCB_WRITE) {
1350 ret = qed_aio_write_data(acb, ret, offset, len);
1351 } else {
1352 ret = qed_aio_read_data(acb, ret, offset, len);
1355 if (ret < 0 && ret != -EAGAIN) {
1356 break;
1360 trace_qed_aio_complete(s, acb, ret);
1361 qed_aio_complete(acb);
1362 qemu_co_mutex_unlock(&s->table_lock);
1363 return ret;
1366 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1367 QEMUIOVector *qiov, int nb_sectors,
1368 int flags)
1370 QEDAIOCB acb = {
1371 .bs = bs,
1372 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1373 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1374 .qiov = qiov,
1375 .flags = flags,
1377 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1379 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1381 /* Start request */
1382 return qed_aio_next_io(&acb);
1385 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1386 int64_t sector_num, int nb_sectors,
1387 QEMUIOVector *qiov)
1389 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1392 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1393 int64_t sector_num, int nb_sectors,
1394 QEMUIOVector *qiov, int flags)
1396 assert(!flags);
1397 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1400 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1401 int64_t offset,
1402 int64_t bytes,
1403 BdrvRequestFlags flags)
1405 BDRVQEDState *s = bs->opaque;
1408 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1409 * then it will be allocated during request processing.
1411 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1414 * QED is not prepared for 63bit write-zero requests, so rely on
1415 * max_pwrite_zeroes.
1417 assert(bytes <= INT_MAX);
1419 /* Fall back if the request is not aligned */
1420 if (qed_offset_into_cluster(s, offset) ||
1421 qed_offset_into_cluster(s, bytes)) {
1422 return -ENOTSUP;
1425 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1426 bytes >> BDRV_SECTOR_BITS,
1427 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1430 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1431 int64_t offset,
1432 bool exact,
1433 PreallocMode prealloc,
1434 BdrvRequestFlags flags,
1435 Error **errp)
1437 BDRVQEDState *s = bs->opaque;
1438 uint64_t old_image_size;
1439 int ret;
1441 if (prealloc != PREALLOC_MODE_OFF) {
1442 error_setg(errp, "Unsupported preallocation mode '%s'",
1443 PreallocMode_str(prealloc));
1444 return -ENOTSUP;
1447 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1448 s->header.table_size)) {
1449 error_setg(errp, "Invalid image size specified");
1450 return -EINVAL;
1453 if ((uint64_t)offset < s->header.image_size) {
1454 error_setg(errp, "Shrinking images is currently not supported");
1455 return -ENOTSUP;
1458 old_image_size = s->header.image_size;
1459 s->header.image_size = offset;
1460 ret = qed_write_header_sync(s);
1461 if (ret < 0) {
1462 s->header.image_size = old_image_size;
1463 error_setg_errno(errp, -ret, "Failed to update the image size");
1465 return ret;
1468 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1470 BDRVQEDState *s = bs->opaque;
1471 return s->header.image_size;
1474 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1476 BDRVQEDState *s = bs->opaque;
1478 memset(bdi, 0, sizeof(*bdi));
1479 bdi->cluster_size = s->header.cluster_size;
1480 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1481 return 0;
1484 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1485 const char *backing_file,
1486 const char *backing_fmt)
1488 BDRVQEDState *s = bs->opaque;
1489 QEDHeader new_header, le_header;
1490 void *buffer;
1491 size_t buffer_len, backing_file_len;
1492 int ret;
1494 /* Refuse to set backing filename if unknown compat feature bits are
1495 * active. If the image uses an unknown compat feature then we may not
1496 * know the layout of data following the header structure and cannot safely
1497 * add a new string.
1499 if (backing_file && (s->header.compat_features &
1500 ~QED_COMPAT_FEATURE_MASK)) {
1501 return -ENOTSUP;
1504 memcpy(&new_header, &s->header, sizeof(new_header));
1506 new_header.features &= ~(QED_F_BACKING_FILE |
1507 QED_F_BACKING_FORMAT_NO_PROBE);
1509 /* Adjust feature flags */
1510 if (backing_file) {
1511 new_header.features |= QED_F_BACKING_FILE;
1513 if (qed_fmt_is_raw(backing_fmt)) {
1514 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1518 /* Calculate new header size */
1519 backing_file_len = 0;
1521 if (backing_file) {
1522 backing_file_len = strlen(backing_file);
1525 buffer_len = sizeof(new_header);
1526 new_header.backing_filename_offset = buffer_len;
1527 new_header.backing_filename_size = backing_file_len;
1528 buffer_len += backing_file_len;
1530 /* Make sure we can rewrite header without failing */
1531 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1532 return -ENOSPC;
1535 /* Prepare new header */
1536 buffer = g_malloc(buffer_len);
1538 qed_header_cpu_to_le(&new_header, &le_header);
1539 memcpy(buffer, &le_header, sizeof(le_header));
1540 buffer_len = sizeof(le_header);
1542 if (backing_file) {
1543 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1544 buffer_len += backing_file_len;
1547 /* Write new header */
1548 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1549 g_free(buffer);
1550 if (ret == 0) {
1551 memcpy(&s->header, &new_header, sizeof(new_header));
1553 return ret;
1556 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1557 Error **errp)
1559 BDRVQEDState *s = bs->opaque;
1560 int ret;
1562 bdrv_qed_close(bs);
1564 bdrv_qed_init_state(bs);
1565 qemu_co_mutex_lock(&s->table_lock);
1566 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1567 qemu_co_mutex_unlock(&s->table_lock);
1568 if (ret < 0) {
1569 error_prepend(errp, "Could not reopen qed layer: ");
1573 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1574 BdrvCheckResult *result,
1575 BdrvCheckMode fix)
1577 BDRVQEDState *s = bs->opaque;
1578 int ret;
1580 qemu_co_mutex_lock(&s->table_lock);
1581 ret = qed_check(s, result, !!fix);
1582 qemu_co_mutex_unlock(&s->table_lock);
1584 return ret;
1587 static QemuOptsList qed_create_opts = {
1588 .name = "qed-create-opts",
1589 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1590 .desc = {
1592 .name = BLOCK_OPT_SIZE,
1593 .type = QEMU_OPT_SIZE,
1594 .help = "Virtual disk size"
1597 .name = BLOCK_OPT_BACKING_FILE,
1598 .type = QEMU_OPT_STRING,
1599 .help = "File name of a base image"
1602 .name = BLOCK_OPT_BACKING_FMT,
1603 .type = QEMU_OPT_STRING,
1604 .help = "Image format of the base image"
1607 .name = BLOCK_OPT_CLUSTER_SIZE,
1608 .type = QEMU_OPT_SIZE,
1609 .help = "Cluster size (in bytes)",
1610 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1613 .name = BLOCK_OPT_TABLE_SIZE,
1614 .type = QEMU_OPT_SIZE,
1615 .help = "L1/L2 table size (in clusters)"
1617 { /* end of list */ }
1621 static BlockDriver bdrv_qed = {
1622 .format_name = "qed",
1623 .instance_size = sizeof(BDRVQEDState),
1624 .create_opts = &qed_create_opts,
1625 .is_format = true,
1626 .supports_backing = true,
1628 .bdrv_probe = bdrv_qed_probe,
1629 .bdrv_open = bdrv_qed_open,
1630 .bdrv_close = bdrv_qed_close,
1631 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1632 .bdrv_child_perm = bdrv_default_perms,
1633 .bdrv_co_create = bdrv_qed_co_create,
1634 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1635 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1636 .bdrv_co_block_status = bdrv_qed_co_block_status,
1637 .bdrv_co_readv = bdrv_qed_co_readv,
1638 .bdrv_co_writev = bdrv_qed_co_writev,
1639 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1640 .bdrv_co_truncate = bdrv_qed_co_truncate,
1641 .bdrv_getlength = bdrv_qed_getlength,
1642 .bdrv_get_info = bdrv_qed_get_info,
1643 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1644 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1645 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1646 .bdrv_co_check = bdrv_qed_co_check,
1647 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1648 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1649 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1652 static void bdrv_qed_init(void)
1654 bdrv_register(&bdrv_qed);
1657 block_init(bdrv_qed_init);