2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
31 static QemuOptsList qed_create_opts
;
33 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
36 const QEDHeader
*header
= (const QEDHeader
*)buf
;
38 if (buf_size
< sizeof(*header
)) {
41 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
48 * Check whether an image format is raw
50 * @fmt: Backing file format, may be NULL
52 static bool qed_fmt_is_raw(const char *fmt
)
54 return fmt
&& strcmp(fmt
, "raw") == 0;
57 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
59 cpu
->magic
= le32_to_cpu(le
->magic
);
60 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
61 cpu
->table_size
= le32_to_cpu(le
->table_size
);
62 cpu
->header_size
= le32_to_cpu(le
->header_size
);
63 cpu
->features
= le64_to_cpu(le
->features
);
64 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
65 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
66 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
67 cpu
->image_size
= le64_to_cpu(le
->image_size
);
68 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
69 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
72 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
74 le
->magic
= cpu_to_le32(cpu
->magic
);
75 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
76 le
->table_size
= cpu_to_le32(cpu
->table_size
);
77 le
->header_size
= cpu_to_le32(cpu
->header_size
);
78 le
->features
= cpu_to_le64(cpu
->features
);
79 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
80 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
81 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
82 le
->image_size
= cpu_to_le64(cpu
->image_size
);
83 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
84 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
87 int qed_write_header_sync(BDRVQEDState
*s
)
92 qed_header_cpu_to_le(&s
->header
, &le
);
93 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
94 if (ret
!= sizeof(le
)) {
101 * Update header in-place (does not rewrite backing filename or other strings)
103 * This function only updates known header fields in-place and does not affect
104 * extra data after the QED header.
106 * No new allocating reqs can start while this function runs.
108 static int coroutine_fn
qed_write_header(BDRVQEDState
*s
)
110 /* We must write full sectors for O_DIRECT but cannot necessarily generate
111 * the data following the header if an unrecognized compat feature is
112 * active. Therefore, first read the sectors containing the header, update
113 * them, and write back.
116 int nsectors
= DIV_ROUND_UP(sizeof(QEDHeader
), BDRV_SECTOR_SIZE
);
117 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
121 assert(s
->allocating_acb
|| s
->allocating_write_reqs_plugged
);
123 buf
= qemu_blockalign(s
->bs
, len
);
125 ret
= bdrv_co_pread(s
->bs
->file
, 0, len
, buf
, 0);
131 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*) buf
);
133 ret
= bdrv_co_pwrite(s
->bs
->file
, 0, len
, buf
, 0);
144 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
146 uint64_t table_entries
;
149 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
150 l2_size
= table_entries
* cluster_size
;
152 return l2_size
* table_entries
;
155 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
157 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
158 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
161 if (cluster_size
& (cluster_size
- 1)) {
162 return false; /* not power of 2 */
167 static bool qed_is_table_size_valid(uint32_t table_size
)
169 if (table_size
< QED_MIN_TABLE_SIZE
||
170 table_size
> QED_MAX_TABLE_SIZE
) {
173 if (table_size
& (table_size
- 1)) {
174 return false; /* not power of 2 */
179 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
182 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
183 return false; /* not multiple of sector size */
185 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
186 return false; /* image is too large */
192 * Read a string of known length from the image file
195 * @offset: File offset to start of string, in bytes
196 * @n: String length in bytes
197 * @buf: Destination buffer
198 * @buflen: Destination buffer length in bytes
199 * @ret: 0 on success, -errno on failure
201 * The string is NUL-terminated.
203 static int qed_read_string(BdrvChild
*file
, uint64_t offset
, size_t n
,
204 char *buf
, size_t buflen
)
210 ret
= bdrv_pread(file
, offset
, buf
, n
);
219 * Allocate new clusters
222 * @n: Number of contiguous clusters to allocate
223 * @ret: Offset of first allocated cluster
225 * This function only produces the offset where the new clusters should be
226 * written. It updates BDRVQEDState but does not make any changes to the image
229 * Called with table_lock held.
231 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
233 uint64_t offset
= s
->file_size
;
234 s
->file_size
+= n
* s
->header
.cluster_size
;
238 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
240 /* Honor O_DIRECT memory alignment requirements */
241 return qemu_blockalign(s
->bs
,
242 s
->header
.cluster_size
* s
->header
.table_size
);
246 * Allocate a new zeroed L2 table
248 * Called with table_lock held.
250 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
252 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
254 l2_table
->table
= qed_alloc_table(s
);
255 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
257 memset(l2_table
->table
->offsets
, 0,
258 s
->header
.cluster_size
* s
->header
.table_size
);
262 static bool qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
264 qemu_co_mutex_lock(&s
->table_lock
);
266 /* No reentrancy is allowed. */
267 assert(!s
->allocating_write_reqs_plugged
);
268 if (s
->allocating_acb
!= NULL
) {
269 /* Another allocating write came concurrently. This cannot happen
270 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
272 qemu_co_mutex_unlock(&s
->table_lock
);
276 s
->allocating_write_reqs_plugged
= true;
277 qemu_co_mutex_unlock(&s
->table_lock
);
281 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
283 qemu_co_mutex_lock(&s
->table_lock
);
284 assert(s
->allocating_write_reqs_plugged
);
285 s
->allocating_write_reqs_plugged
= false;
286 qemu_co_queue_next(&s
->allocating_write_reqs
);
287 qemu_co_mutex_unlock(&s
->table_lock
);
290 static void coroutine_fn
qed_need_check_timer_entry(void *opaque
)
292 BDRVQEDState
*s
= opaque
;
295 trace_qed_need_check_timer_cb(s
);
297 if (!qed_plug_allocating_write_reqs(s
)) {
301 /* Ensure writes are on disk before clearing flag */
302 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
304 qed_unplug_allocating_write_reqs(s
);
308 s
->header
.features
&= ~QED_F_NEED_CHECK
;
309 ret
= qed_write_header(s
);
312 qed_unplug_allocating_write_reqs(s
);
314 ret
= bdrv_co_flush(s
->bs
);
318 static void qed_need_check_timer_cb(void *opaque
)
320 Coroutine
*co
= qemu_coroutine_create(qed_need_check_timer_entry
, opaque
);
321 qemu_coroutine_enter(co
);
324 static void qed_start_need_check_timer(BDRVQEDState
*s
)
326 trace_qed_start_need_check_timer(s
);
328 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
331 timer_mod(s
->need_check_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
332 NANOSECONDS_PER_SECOND
* QED_NEED_CHECK_TIMEOUT
);
335 /* It's okay to call this multiple times or when no timer is started */
336 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
338 trace_qed_cancel_need_check_timer(s
);
339 timer_del(s
->need_check_timer
);
342 static void bdrv_qed_detach_aio_context(BlockDriverState
*bs
)
344 BDRVQEDState
*s
= bs
->opaque
;
346 qed_cancel_need_check_timer(s
);
347 timer_free(s
->need_check_timer
);
350 static void bdrv_qed_attach_aio_context(BlockDriverState
*bs
,
351 AioContext
*new_context
)
353 BDRVQEDState
*s
= bs
->opaque
;
355 s
->need_check_timer
= aio_timer_new(new_context
,
356 QEMU_CLOCK_VIRTUAL
, SCALE_NS
,
357 qed_need_check_timer_cb
, s
);
358 if (s
->header
.features
& QED_F_NEED_CHECK
) {
359 qed_start_need_check_timer(s
);
363 static void coroutine_fn
bdrv_qed_co_drain_begin(BlockDriverState
*bs
)
365 BDRVQEDState
*s
= bs
->opaque
;
367 /* Fire the timer immediately in order to start doing I/O as soon as the
370 if (s
->need_check_timer
&& timer_pending(s
->need_check_timer
)) {
371 qed_cancel_need_check_timer(s
);
372 qed_need_check_timer_entry(s
);
376 static void bdrv_qed_init_state(BlockDriverState
*bs
)
378 BDRVQEDState
*s
= bs
->opaque
;
380 memset(s
, 0, sizeof(BDRVQEDState
));
382 qemu_co_mutex_init(&s
->table_lock
);
383 qemu_co_queue_init(&s
->allocating_write_reqs
);
386 /* Called with table_lock held. */
387 static int coroutine_fn
bdrv_qed_do_open(BlockDriverState
*bs
, QDict
*options
,
388 int flags
, Error
**errp
)
390 BDRVQEDState
*s
= bs
->opaque
;
395 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
397 error_setg(errp
, "Failed to read QED header");
400 qed_header_le_to_cpu(&le_header
, &s
->header
);
402 if (s
->header
.magic
!= QED_MAGIC
) {
403 error_setg(errp
, "Image not in QED format");
406 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
407 /* image uses unsupported feature bits */
408 error_setg(errp
, "Unsupported QED features: %" PRIx64
,
409 s
->header
.features
& ~QED_FEATURE_MASK
);
412 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
413 error_setg(errp
, "QED cluster size is invalid");
417 /* Round down file size to the last cluster */
418 file_size
= bdrv_getlength(bs
->file
->bs
);
420 error_setg(errp
, "Failed to get file length");
423 s
->file_size
= qed_start_of_cluster(s
, file_size
);
425 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
426 error_setg(errp
, "QED table size is invalid");
429 if (!qed_is_image_size_valid(s
->header
.image_size
,
430 s
->header
.cluster_size
,
431 s
->header
.table_size
)) {
432 error_setg(errp
, "QED image size is invalid");
435 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
436 error_setg(errp
, "QED table offset is invalid");
440 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
442 s
->l2_shift
= ctz32(s
->header
.cluster_size
);
443 s
->l2_mask
= s
->table_nelems
- 1;
444 s
->l1_shift
= s
->l2_shift
+ ctz32(s
->table_nelems
);
446 /* Header size calculation must not overflow uint32_t */
447 if (s
->header
.header_size
> UINT32_MAX
/ s
->header
.cluster_size
) {
448 error_setg(errp
, "QED header size is too large");
452 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
453 if ((uint64_t)s
->header
.backing_filename_offset
+
454 s
->header
.backing_filename_size
>
455 s
->header
.cluster_size
* s
->header
.header_size
) {
456 error_setg(errp
, "QED backing filename offset is invalid");
460 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
461 s
->header
.backing_filename_size
,
462 bs
->auto_backing_file
,
463 sizeof(bs
->auto_backing_file
));
465 error_setg(errp
, "Failed to read backing filename");
468 pstrcpy(bs
->backing_file
, sizeof(bs
->backing_file
),
469 bs
->auto_backing_file
);
471 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
472 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
476 /* Reset unknown autoclear feature bits. This is a backwards
477 * compatibility mechanism that allows images to be opened by older
478 * programs, which "knock out" unknown feature bits. When an image is
479 * opened by a newer program again it can detect that the autoclear
480 * feature is no longer valid.
482 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
483 !bdrv_is_read_only(bs
->file
->bs
) && !(flags
& BDRV_O_INACTIVE
)) {
484 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
486 ret
= qed_write_header_sync(s
);
488 error_setg(errp
, "Failed to update header");
492 /* From here on only known autoclear feature bits are valid */
493 bdrv_flush(bs
->file
->bs
);
496 s
->l1_table
= qed_alloc_table(s
);
497 qed_init_l2_cache(&s
->l2_cache
);
499 ret
= qed_read_l1_table_sync(s
);
501 error_setg(errp
, "Failed to read L1 table");
505 /* If image was not closed cleanly, check consistency */
506 if (!(flags
& BDRV_O_CHECK
) && (s
->header
.features
& QED_F_NEED_CHECK
)) {
507 /* Read-only images cannot be fixed. There is no risk of corruption
508 * since write operations are not possible. Therefore, allow
509 * potentially inconsistent images to be opened read-only. This can
510 * aid data recovery from an otherwise inconsistent image.
512 if (!bdrv_is_read_only(bs
->file
->bs
) &&
513 !(flags
& BDRV_O_INACTIVE
)) {
514 BdrvCheckResult result
= {0};
516 ret
= qed_check(s
, &result
, true);
518 error_setg(errp
, "Image corrupted");
524 bdrv_qed_attach_aio_context(bs
, bdrv_get_aio_context(bs
));
528 qed_free_l2_cache(&s
->l2_cache
);
529 qemu_vfree(s
->l1_table
);
534 typedef struct QEDOpenCo
{
535 BlockDriverState
*bs
;
542 static void coroutine_fn
bdrv_qed_open_entry(void *opaque
)
544 QEDOpenCo
*qoc
= opaque
;
545 BDRVQEDState
*s
= qoc
->bs
->opaque
;
547 qemu_co_mutex_lock(&s
->table_lock
);
548 qoc
->ret
= bdrv_qed_do_open(qoc
->bs
, qoc
->options
, qoc
->flags
, qoc
->errp
);
549 qemu_co_mutex_unlock(&s
->table_lock
);
552 static int bdrv_qed_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
563 bs
->file
= bdrv_open_child(NULL
, options
, "file", bs
, &child_of_bds
,
564 BDRV_CHILD_IMAGE
, false, errp
);
569 bdrv_qed_init_state(bs
);
570 if (qemu_in_coroutine()) {
571 bdrv_qed_open_entry(&qoc
);
573 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
574 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry
, &qoc
));
575 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
577 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
581 static void bdrv_qed_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
583 BDRVQEDState
*s
= bs
->opaque
;
585 bs
->bl
.pwrite_zeroes_alignment
= s
->header
.cluster_size
;
586 bs
->bl
.max_pwrite_zeroes
= QEMU_ALIGN_DOWN(INT_MAX
, s
->header
.cluster_size
);
589 /* We have nothing to do for QED reopen, stubs just return
591 static int bdrv_qed_reopen_prepare(BDRVReopenState
*state
,
592 BlockReopenQueue
*queue
, Error
**errp
)
597 static void bdrv_qed_close(BlockDriverState
*bs
)
599 BDRVQEDState
*s
= bs
->opaque
;
601 bdrv_qed_detach_aio_context(bs
);
603 /* Ensure writes reach stable storage */
604 bdrv_flush(bs
->file
->bs
);
606 /* Clean shutdown, no check required on next open */
607 if (s
->header
.features
& QED_F_NEED_CHECK
) {
608 s
->header
.features
&= ~QED_F_NEED_CHECK
;
609 qed_write_header_sync(s
);
612 qed_free_l2_cache(&s
->l2_cache
);
613 qemu_vfree(s
->l1_table
);
616 static int coroutine_fn
bdrv_qed_co_create(BlockdevCreateOptions
*opts
,
619 BlockdevCreateOptionsQed
*qed_opts
;
620 BlockBackend
*blk
= NULL
;
621 BlockDriverState
*bs
= NULL
;
625 uint8_t *l1_table
= NULL
;
629 assert(opts
->driver
== BLOCKDEV_DRIVER_QED
);
630 qed_opts
= &opts
->u
.qed
;
632 /* Validate options and set default values */
633 if (!qed_opts
->has_cluster_size
) {
634 qed_opts
->cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
636 if (!qed_opts
->has_table_size
) {
637 qed_opts
->table_size
= QED_DEFAULT_TABLE_SIZE
;
640 if (!qed_is_cluster_size_valid(qed_opts
->cluster_size
)) {
641 error_setg(errp
, "QED cluster size must be within range [%u, %u] "
643 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
646 if (!qed_is_table_size_valid(qed_opts
->table_size
)) {
647 error_setg(errp
, "QED table size must be within range [%u, %u] "
649 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
652 if (!qed_is_image_size_valid(qed_opts
->size
, qed_opts
->cluster_size
,
653 qed_opts
->table_size
))
655 error_setg(errp
, "QED image size must be a non-zero multiple of "
656 "cluster size and less than %" PRIu64
" bytes",
657 qed_max_image_size(qed_opts
->cluster_size
,
658 qed_opts
->table_size
));
662 /* Create BlockBackend to write to the image */
663 bs
= bdrv_open_blockdev_ref(qed_opts
->file
, errp
);
668 blk
= blk_new_with_bs(bs
, BLK_PERM_WRITE
| BLK_PERM_RESIZE
, BLK_PERM_ALL
,
674 blk_set_allow_write_beyond_eof(blk
, true);
676 /* Prepare image format */
677 header
= (QEDHeader
) {
679 .cluster_size
= qed_opts
->cluster_size
,
680 .table_size
= qed_opts
->table_size
,
683 .compat_features
= 0,
684 .l1_table_offset
= qed_opts
->cluster_size
,
685 .image_size
= qed_opts
->size
,
688 l1_size
= header
.cluster_size
* header
.table_size
;
691 * The QED format associates file length with allocation status,
692 * so a new file (which is empty) must have a length of 0.
694 ret
= blk_truncate(blk
, 0, true, PREALLOC_MODE_OFF
, 0, errp
);
699 if (qed_opts
->has_backing_file
) {
700 header
.features
|= QED_F_BACKING_FILE
;
701 header
.backing_filename_offset
= sizeof(le_header
);
702 header
.backing_filename_size
= strlen(qed_opts
->backing_file
);
704 if (qed_opts
->has_backing_fmt
) {
705 const char *backing_fmt
= BlockdevDriver_str(qed_opts
->backing_fmt
);
706 if (qed_fmt_is_raw(backing_fmt
)) {
707 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
712 qed_header_cpu_to_le(&header
, &le_header
);
713 ret
= blk_pwrite(blk
, 0, &le_header
, sizeof(le_header
), 0);
717 ret
= blk_pwrite(blk
, sizeof(le_header
), qed_opts
->backing_file
,
718 header
.backing_filename_size
, 0);
723 l1_table
= g_malloc0(l1_size
);
724 ret
= blk_pwrite(blk
, header
.l1_table_offset
, l1_table
, l1_size
, 0);
729 ret
= 0; /* success */
737 static int coroutine_fn
bdrv_qed_co_create_opts(BlockDriver
*drv
,
738 const char *filename
,
742 BlockdevCreateOptions
*create_options
= NULL
;
745 BlockDriverState
*bs
= NULL
;
748 static const QDictRenames opt_renames
[] = {
749 { BLOCK_OPT_BACKING_FILE
, "backing-file" },
750 { BLOCK_OPT_BACKING_FMT
, "backing-fmt" },
751 { BLOCK_OPT_CLUSTER_SIZE
, "cluster-size" },
752 { BLOCK_OPT_TABLE_SIZE
, "table-size" },
756 /* Parse options and convert legacy syntax */
757 qdict
= qemu_opts_to_qdict_filtered(opts
, NULL
, &qed_create_opts
, true);
759 if (!qdict_rename_keys(qdict
, opt_renames
, errp
)) {
764 /* Create and open the file (protocol layer) */
765 ret
= bdrv_create_file(filename
, opts
, errp
);
770 bs
= bdrv_open(filename
, NULL
, NULL
,
771 BDRV_O_RDWR
| BDRV_O_RESIZE
| BDRV_O_PROTOCOL
, errp
);
777 /* Now get the QAPI type BlockdevCreateOptions */
778 qdict_put_str(qdict
, "driver", "qed");
779 qdict_put_str(qdict
, "file", bs
->node_name
);
781 v
= qobject_input_visitor_new_flat_confused(qdict
, errp
);
787 visit_type_BlockdevCreateOptions(v
, NULL
, &create_options
, errp
);
789 if (!create_options
) {
794 /* Silently round up size */
795 assert(create_options
->driver
== BLOCKDEV_DRIVER_QED
);
796 create_options
->u
.qed
.size
=
797 ROUND_UP(create_options
->u
.qed
.size
, BDRV_SECTOR_SIZE
);
799 /* Create the qed image (format layer) */
800 ret
= bdrv_qed_co_create(create_options
, errp
);
803 qobject_unref(qdict
);
805 qapi_free_BlockdevCreateOptions(create_options
);
809 static int coroutine_fn
bdrv_qed_co_block_status(BlockDriverState
*bs
,
811 int64_t pos
, int64_t bytes
,
812 int64_t *pnum
, int64_t *map
,
813 BlockDriverState
**file
)
815 BDRVQEDState
*s
= bs
->opaque
;
816 size_t len
= MIN(bytes
, SIZE_MAX
);
818 QEDRequest request
= { .l2_table
= NULL
};
822 qemu_co_mutex_lock(&s
->table_lock
);
823 ret
= qed_find_cluster(s
, &request
, pos
, &len
, &offset
);
827 case QED_CLUSTER_FOUND
:
828 *map
= offset
| qed_offset_into_cluster(s
, pos
);
829 status
= BDRV_BLOCK_DATA
| BDRV_BLOCK_OFFSET_VALID
;
830 *file
= bs
->file
->bs
;
832 case QED_CLUSTER_ZERO
:
833 status
= BDRV_BLOCK_ZERO
;
845 qed_unref_l2_cache_entry(request
.l2_table
);
846 qemu_co_mutex_unlock(&s
->table_lock
);
851 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
853 return acb
->bs
->opaque
;
857 * Read from the backing file or zero-fill if no backing file
860 * @pos: Byte position in device
861 * @qiov: Destination I/O vector
863 * This function reads qiov->size bytes starting at pos from the backing file.
864 * If there is no backing file then zeroes are read.
866 static int coroutine_fn
qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
869 if (s
->bs
->backing
) {
870 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING_AIO
);
871 return bdrv_co_preadv(s
->bs
->backing
, pos
, qiov
->size
, qiov
, 0);
873 qemu_iovec_memset(qiov
, 0, 0, qiov
->size
);
878 * Copy data from backing file into the image
881 * @pos: Byte position in device
882 * @len: Number of bytes
883 * @offset: Byte offset in image file
885 static int coroutine_fn
qed_copy_from_backing_file(BDRVQEDState
*s
,
886 uint64_t pos
, uint64_t len
,
892 /* Skip copy entirely if there is no work to do */
897 qemu_iovec_init_buf(&qiov
, qemu_blockalign(s
->bs
, len
), len
);
899 ret
= qed_read_backing_file(s
, pos
, &qiov
);
905 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
906 ret
= bdrv_co_pwritev(s
->bs
->file
, offset
, qiov
.size
, &qiov
, 0);
912 qemu_vfree(qemu_iovec_buf(&qiov
));
917 * Link one or more contiguous clusters into a table
921 * @index: First cluster index
922 * @n: Number of contiguous clusters
923 * @cluster: First cluster offset
925 * The cluster offset may be an allocated byte offset in the image file, the
926 * zero cluster marker, or the unallocated cluster marker.
928 * Called with table_lock held.
930 static void coroutine_fn
qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
,
931 int index
, unsigned int n
,
935 for (i
= index
; i
< index
+ n
; i
++) {
936 table
->offsets
[i
] = cluster
;
937 if (!qed_offset_is_unalloc_cluster(cluster
) &&
938 !qed_offset_is_zero_cluster(cluster
)) {
939 cluster
+= s
->header
.cluster_size
;
944 /* Called with table_lock held. */
945 static void coroutine_fn
qed_aio_complete(QEDAIOCB
*acb
)
947 BDRVQEDState
*s
= acb_to_s(acb
);
950 qemu_iovec_destroy(&acb
->cur_qiov
);
951 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
953 /* Free the buffer we may have allocated for zero writes */
954 if (acb
->flags
& QED_AIOCB_ZERO
) {
955 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
956 acb
->qiov
->iov
[0].iov_base
= NULL
;
959 /* Start next allocating write request waiting behind this one. Note that
960 * requests enqueue themselves when they first hit an unallocated cluster
961 * but they wait until the entire request is finished before waking up the
962 * next request in the queue. This ensures that we don't cycle through
963 * requests multiple times but rather finish one at a time completely.
965 if (acb
== s
->allocating_acb
) {
966 s
->allocating_acb
= NULL
;
967 if (!qemu_co_queue_empty(&s
->allocating_write_reqs
)) {
968 qemu_co_queue_next(&s
->allocating_write_reqs
);
969 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
970 qed_start_need_check_timer(s
);
976 * Update L1 table with new L2 table offset and write it out
978 * Called with table_lock held.
980 static int coroutine_fn
qed_aio_write_l1_update(QEDAIOCB
*acb
)
982 BDRVQEDState
*s
= acb_to_s(acb
);
983 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
984 uint64_t l2_offset
= l2_table
->offset
;
987 index
= qed_l1_index(s
, acb
->cur_pos
);
988 s
->l1_table
->offsets
[index
] = l2_table
->offset
;
990 ret
= qed_write_l1_table(s
, index
, 1);
992 /* Commit the current L2 table to the cache */
993 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
995 /* This is guaranteed to succeed because we just committed the entry to the
998 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
999 assert(acb
->request
.l2_table
!= NULL
);
1006 * Update L2 table with new cluster offsets and write them out
1008 * Called with table_lock held.
1010 static int coroutine_fn
qed_aio_write_l2_update(QEDAIOCB
*acb
, uint64_t offset
)
1012 BDRVQEDState
*s
= acb_to_s(acb
);
1013 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
1017 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
1018 acb
->request
.l2_table
= qed_new_l2_table(s
);
1021 index
= qed_l2_index(s
, acb
->cur_pos
);
1022 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
1026 /* Write out the whole new L2 table */
1027 ret
= qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true);
1031 return qed_aio_write_l1_update(acb
);
1033 /* Write out only the updated part of the L2 table */
1034 ret
= qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
,
1044 * Write data to the image file
1046 * Called with table_lock *not* held.
1048 static int coroutine_fn
qed_aio_write_main(QEDAIOCB
*acb
)
1050 BDRVQEDState
*s
= acb_to_s(acb
);
1051 uint64_t offset
= acb
->cur_cluster
+
1052 qed_offset_into_cluster(s
, acb
->cur_pos
);
1054 trace_qed_aio_write_main(s
, acb
, 0, offset
, acb
->cur_qiov
.size
);
1056 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1057 return bdrv_co_pwritev(s
->bs
->file
, offset
, acb
->cur_qiov
.size
,
1062 * Populate untouched regions of new data cluster
1064 * Called with table_lock held.
1066 static int coroutine_fn
qed_aio_write_cow(QEDAIOCB
*acb
)
1068 BDRVQEDState
*s
= acb_to_s(acb
);
1069 uint64_t start
, len
, offset
;
1072 qemu_co_mutex_unlock(&s
->table_lock
);
1074 /* Populate front untouched region of new data cluster */
1075 start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1076 len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1078 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1079 ret
= qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
);
1084 /* Populate back untouched region of new data cluster */
1085 start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1086 len
= qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1087 offset
= acb
->cur_cluster
+
1088 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1091 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1092 ret
= qed_copy_from_backing_file(s
, start
, len
, offset
);
1097 ret
= qed_aio_write_main(acb
);
1102 if (s
->bs
->backing
) {
1104 * Flush new data clusters before updating the L2 table
1106 * This flush is necessary when a backing file is in use. A crash
1107 * during an allocating write could result in empty clusters in the
1108 * image. If the write only touched a subregion of the cluster,
1109 * then backing image sectors have been lost in the untouched
1110 * region. The solution is to flush after writing a new data
1111 * cluster and before updating the L2 table.
1113 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
1117 qemu_co_mutex_lock(&s
->table_lock
);
1122 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1124 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1126 /* The flush before L2 update path ensures consistency */
1127 if (s
->bs
->backing
) {
1131 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1135 * Write new data cluster
1137 * @acb: Write request
1138 * @len: Length in bytes
1140 * This path is taken when writing to previously unallocated clusters.
1142 * Called with table_lock held.
1144 static int coroutine_fn
qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1146 BDRVQEDState
*s
= acb_to_s(acb
);
1149 /* Cancel timer when the first allocating request comes in */
1150 if (s
->allocating_acb
== NULL
) {
1151 qed_cancel_need_check_timer(s
);
1154 /* Freeze this request if another allocating write is in progress */
1155 if (s
->allocating_acb
!= acb
|| s
->allocating_write_reqs_plugged
) {
1156 if (s
->allocating_acb
!= NULL
) {
1157 qemu_co_queue_wait(&s
->allocating_write_reqs
, &s
->table_lock
);
1158 assert(s
->allocating_acb
== NULL
);
1160 s
->allocating_acb
= acb
;
1161 return -EAGAIN
; /* start over with looking up table entries */
1164 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1165 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1166 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1168 if (acb
->flags
& QED_AIOCB_ZERO
) {
1169 /* Skip ahead if the clusters are already zero */
1170 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1173 acb
->cur_cluster
= 1;
1175 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1178 if (qed_should_set_need_check(s
)) {
1179 s
->header
.features
|= QED_F_NEED_CHECK
;
1180 ret
= qed_write_header(s
);
1186 if (!(acb
->flags
& QED_AIOCB_ZERO
)) {
1187 ret
= qed_aio_write_cow(acb
);
1193 return qed_aio_write_l2_update(acb
, acb
->cur_cluster
);
1197 * Write data cluster in place
1199 * @acb: Write request
1200 * @offset: Cluster offset in bytes
1201 * @len: Length in bytes
1203 * This path is taken when writing to already allocated clusters.
1205 * Called with table_lock held.
1207 static int coroutine_fn
qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
,
1210 BDRVQEDState
*s
= acb_to_s(acb
);
1213 qemu_co_mutex_unlock(&s
->table_lock
);
1215 /* Allocate buffer for zero writes */
1216 if (acb
->flags
& QED_AIOCB_ZERO
) {
1217 struct iovec
*iov
= acb
->qiov
->iov
;
1219 if (!iov
->iov_base
) {
1220 iov
->iov_base
= qemu_try_blockalign(acb
->bs
, iov
->iov_len
);
1221 if (iov
->iov_base
== NULL
) {
1225 memset(iov
->iov_base
, 0, iov
->iov_len
);
1229 /* Calculate the I/O vector */
1230 acb
->cur_cluster
= offset
;
1231 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1233 /* Do the actual write. */
1234 r
= qed_aio_write_main(acb
);
1236 qemu_co_mutex_lock(&s
->table_lock
);
1241 * Write data cluster
1243 * @opaque: Write request
1244 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1245 * @offset: Cluster offset in bytes
1246 * @len: Length in bytes
1248 * Called with table_lock held.
1250 static int coroutine_fn
qed_aio_write_data(void *opaque
, int ret
,
1251 uint64_t offset
, size_t len
)
1253 QEDAIOCB
*acb
= opaque
;
1255 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1257 acb
->find_cluster_ret
= ret
;
1260 case QED_CLUSTER_FOUND
:
1261 return qed_aio_write_inplace(acb
, offset
, len
);
1263 case QED_CLUSTER_L2
:
1264 case QED_CLUSTER_L1
:
1265 case QED_CLUSTER_ZERO
:
1266 return qed_aio_write_alloc(acb
, len
);
1269 g_assert_not_reached();
1276 * @opaque: Read request
1277 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1278 * @offset: Cluster offset in bytes
1279 * @len: Length in bytes
1281 * Called with table_lock held.
1283 static int coroutine_fn
qed_aio_read_data(void *opaque
, int ret
,
1284 uint64_t offset
, size_t len
)
1286 QEDAIOCB
*acb
= opaque
;
1287 BDRVQEDState
*s
= acb_to_s(acb
);
1288 BlockDriverState
*bs
= acb
->bs
;
1291 qemu_co_mutex_unlock(&s
->table_lock
);
1293 /* Adjust offset into cluster */
1294 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1296 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1298 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1300 /* Handle zero cluster and backing file reads, otherwise read
1301 * data cluster directly.
1303 if (ret
== QED_CLUSTER_ZERO
) {
1304 qemu_iovec_memset(&acb
->cur_qiov
, 0, 0, acb
->cur_qiov
.size
);
1306 } else if (ret
!= QED_CLUSTER_FOUND
) {
1307 r
= qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
);
1309 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1310 r
= bdrv_co_preadv(bs
->file
, offset
, acb
->cur_qiov
.size
,
1314 qemu_co_mutex_lock(&s
->table_lock
);
1319 * Begin next I/O or complete the request
1321 static int coroutine_fn
qed_aio_next_io(QEDAIOCB
*acb
)
1323 BDRVQEDState
*s
= acb_to_s(acb
);
1328 qemu_co_mutex_lock(&s
->table_lock
);
1330 trace_qed_aio_next_io(s
, acb
, 0, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1332 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1333 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1334 qemu_iovec_reset(&acb
->cur_qiov
);
1336 /* Complete request */
1337 if (acb
->cur_pos
>= acb
->end_pos
) {
1342 /* Find next cluster and start I/O */
1343 len
= acb
->end_pos
- acb
->cur_pos
;
1344 ret
= qed_find_cluster(s
, &acb
->request
, acb
->cur_pos
, &len
, &offset
);
1349 if (acb
->flags
& QED_AIOCB_WRITE
) {
1350 ret
= qed_aio_write_data(acb
, ret
, offset
, len
);
1352 ret
= qed_aio_read_data(acb
, ret
, offset
, len
);
1355 if (ret
< 0 && ret
!= -EAGAIN
) {
1360 trace_qed_aio_complete(s
, acb
, ret
);
1361 qed_aio_complete(acb
);
1362 qemu_co_mutex_unlock(&s
->table_lock
);
1366 static int coroutine_fn
qed_co_request(BlockDriverState
*bs
, int64_t sector_num
,
1367 QEMUIOVector
*qiov
, int nb_sectors
,
1372 .cur_pos
= (uint64_t) sector_num
* BDRV_SECTOR_SIZE
,
1373 .end_pos
= (sector_num
+ nb_sectors
) * BDRV_SECTOR_SIZE
,
1377 qemu_iovec_init(&acb
.cur_qiov
, qiov
->niov
);
1379 trace_qed_aio_setup(bs
->opaque
, &acb
, sector_num
, nb_sectors
, NULL
, flags
);
1382 return qed_aio_next_io(&acb
);
1385 static int coroutine_fn
bdrv_qed_co_readv(BlockDriverState
*bs
,
1386 int64_t sector_num
, int nb_sectors
,
1389 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, 0);
1392 static int coroutine_fn
bdrv_qed_co_writev(BlockDriverState
*bs
,
1393 int64_t sector_num
, int nb_sectors
,
1394 QEMUIOVector
*qiov
, int flags
)
1397 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, QED_AIOCB_WRITE
);
1400 static int coroutine_fn
bdrv_qed_co_pwrite_zeroes(BlockDriverState
*bs
,
1403 BdrvRequestFlags flags
)
1405 BDRVQEDState
*s
= bs
->opaque
;
1408 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1409 * then it will be allocated during request processing.
1411 QEMUIOVector qiov
= QEMU_IOVEC_INIT_BUF(qiov
, NULL
, bytes
);
1414 * QED is not prepared for 63bit write-zero requests, so rely on
1415 * max_pwrite_zeroes.
1417 assert(bytes
<= INT_MAX
);
1419 /* Fall back if the request is not aligned */
1420 if (qed_offset_into_cluster(s
, offset
) ||
1421 qed_offset_into_cluster(s
, bytes
)) {
1425 return qed_co_request(bs
, offset
>> BDRV_SECTOR_BITS
, &qiov
,
1426 bytes
>> BDRV_SECTOR_BITS
,
1427 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1430 static int coroutine_fn
bdrv_qed_co_truncate(BlockDriverState
*bs
,
1433 PreallocMode prealloc
,
1434 BdrvRequestFlags flags
,
1437 BDRVQEDState
*s
= bs
->opaque
;
1438 uint64_t old_image_size
;
1441 if (prealloc
!= PREALLOC_MODE_OFF
) {
1442 error_setg(errp
, "Unsupported preallocation mode '%s'",
1443 PreallocMode_str(prealloc
));
1447 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1448 s
->header
.table_size
)) {
1449 error_setg(errp
, "Invalid image size specified");
1453 if ((uint64_t)offset
< s
->header
.image_size
) {
1454 error_setg(errp
, "Shrinking images is currently not supported");
1458 old_image_size
= s
->header
.image_size
;
1459 s
->header
.image_size
= offset
;
1460 ret
= qed_write_header_sync(s
);
1462 s
->header
.image_size
= old_image_size
;
1463 error_setg_errno(errp
, -ret
, "Failed to update the image size");
1468 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1470 BDRVQEDState
*s
= bs
->opaque
;
1471 return s
->header
.image_size
;
1474 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1476 BDRVQEDState
*s
= bs
->opaque
;
1478 memset(bdi
, 0, sizeof(*bdi
));
1479 bdi
->cluster_size
= s
->header
.cluster_size
;
1480 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1484 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1485 const char *backing_file
,
1486 const char *backing_fmt
)
1488 BDRVQEDState
*s
= bs
->opaque
;
1489 QEDHeader new_header
, le_header
;
1491 size_t buffer_len
, backing_file_len
;
1494 /* Refuse to set backing filename if unknown compat feature bits are
1495 * active. If the image uses an unknown compat feature then we may not
1496 * know the layout of data following the header structure and cannot safely
1499 if (backing_file
&& (s
->header
.compat_features
&
1500 ~QED_COMPAT_FEATURE_MASK
)) {
1504 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1506 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1507 QED_F_BACKING_FORMAT_NO_PROBE
);
1509 /* Adjust feature flags */
1511 new_header
.features
|= QED_F_BACKING_FILE
;
1513 if (qed_fmt_is_raw(backing_fmt
)) {
1514 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1518 /* Calculate new header size */
1519 backing_file_len
= 0;
1522 backing_file_len
= strlen(backing_file
);
1525 buffer_len
= sizeof(new_header
);
1526 new_header
.backing_filename_offset
= buffer_len
;
1527 new_header
.backing_filename_size
= backing_file_len
;
1528 buffer_len
+= backing_file_len
;
1530 /* Make sure we can rewrite header without failing */
1531 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1535 /* Prepare new header */
1536 buffer
= g_malloc(buffer_len
);
1538 qed_header_cpu_to_le(&new_header
, &le_header
);
1539 memcpy(buffer
, &le_header
, sizeof(le_header
));
1540 buffer_len
= sizeof(le_header
);
1543 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1544 buffer_len
+= backing_file_len
;
1547 /* Write new header */
1548 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1551 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1556 static void coroutine_fn
bdrv_qed_co_invalidate_cache(BlockDriverState
*bs
,
1559 BDRVQEDState
*s
= bs
->opaque
;
1564 bdrv_qed_init_state(bs
);
1565 qemu_co_mutex_lock(&s
->table_lock
);
1566 ret
= bdrv_qed_do_open(bs
, NULL
, bs
->open_flags
, errp
);
1567 qemu_co_mutex_unlock(&s
->table_lock
);
1569 error_prepend(errp
, "Could not reopen qed layer: ");
1573 static int coroutine_fn
bdrv_qed_co_check(BlockDriverState
*bs
,
1574 BdrvCheckResult
*result
,
1577 BDRVQEDState
*s
= bs
->opaque
;
1580 qemu_co_mutex_lock(&s
->table_lock
);
1581 ret
= qed_check(s
, result
, !!fix
);
1582 qemu_co_mutex_unlock(&s
->table_lock
);
1587 static QemuOptsList qed_create_opts
= {
1588 .name
= "qed-create-opts",
1589 .head
= QTAILQ_HEAD_INITIALIZER(qed_create_opts
.head
),
1592 .name
= BLOCK_OPT_SIZE
,
1593 .type
= QEMU_OPT_SIZE
,
1594 .help
= "Virtual disk size"
1597 .name
= BLOCK_OPT_BACKING_FILE
,
1598 .type
= QEMU_OPT_STRING
,
1599 .help
= "File name of a base image"
1602 .name
= BLOCK_OPT_BACKING_FMT
,
1603 .type
= QEMU_OPT_STRING
,
1604 .help
= "Image format of the base image"
1607 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1608 .type
= QEMU_OPT_SIZE
,
1609 .help
= "Cluster size (in bytes)",
1610 .def_value_str
= stringify(QED_DEFAULT_CLUSTER_SIZE
)
1613 .name
= BLOCK_OPT_TABLE_SIZE
,
1614 .type
= QEMU_OPT_SIZE
,
1615 .help
= "L1/L2 table size (in clusters)"
1617 { /* end of list */ }
1621 static BlockDriver bdrv_qed
= {
1622 .format_name
= "qed",
1623 .instance_size
= sizeof(BDRVQEDState
),
1624 .create_opts
= &qed_create_opts
,
1626 .supports_backing
= true,
1628 .bdrv_probe
= bdrv_qed_probe
,
1629 .bdrv_open
= bdrv_qed_open
,
1630 .bdrv_close
= bdrv_qed_close
,
1631 .bdrv_reopen_prepare
= bdrv_qed_reopen_prepare
,
1632 .bdrv_child_perm
= bdrv_default_perms
,
1633 .bdrv_co_create
= bdrv_qed_co_create
,
1634 .bdrv_co_create_opts
= bdrv_qed_co_create_opts
,
1635 .bdrv_has_zero_init
= bdrv_has_zero_init_1
,
1636 .bdrv_co_block_status
= bdrv_qed_co_block_status
,
1637 .bdrv_co_readv
= bdrv_qed_co_readv
,
1638 .bdrv_co_writev
= bdrv_qed_co_writev
,
1639 .bdrv_co_pwrite_zeroes
= bdrv_qed_co_pwrite_zeroes
,
1640 .bdrv_co_truncate
= bdrv_qed_co_truncate
,
1641 .bdrv_getlength
= bdrv_qed_getlength
,
1642 .bdrv_get_info
= bdrv_qed_get_info
,
1643 .bdrv_refresh_limits
= bdrv_qed_refresh_limits
,
1644 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1645 .bdrv_co_invalidate_cache
= bdrv_qed_co_invalidate_cache
,
1646 .bdrv_co_check
= bdrv_qed_co_check
,
1647 .bdrv_detach_aio_context
= bdrv_qed_detach_aio_context
,
1648 .bdrv_attach_aio_context
= bdrv_qed_attach_aio_context
,
1649 .bdrv_co_drain_begin
= bdrv_qed_co_drain_begin
,
1652 static void bdrv_qed_init(void)
1654 bdrv_register(&bdrv_qed
);
1657 block_init(bdrv_qed_init
);