block/vpc: update comments to be compliant w/coding guidelines
[qemu.git] / hw / i386 / kvmvapic.c
blobc69f3740494083805d3393ea434bcdd4b0f8ed12
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "qemu/osdep.h"
12 #include "sysemu/sysemu.h"
13 #include "sysemu/cpus.h"
14 #include "sysemu/kvm.h"
15 #include "hw/i386/apic_internal.h"
16 #include "hw/sysbus.h"
18 #define VAPIC_IO_PORT 0x7e
20 #define VAPIC_CPU_SHIFT 7
22 #define ROM_BLOCK_SIZE 512
23 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
25 typedef enum VAPICMode {
26 VAPIC_INACTIVE = 0,
27 VAPIC_ACTIVE = 1,
28 VAPIC_STANDBY = 2,
29 } VAPICMode;
31 typedef struct VAPICHandlers {
32 uint32_t set_tpr;
33 uint32_t set_tpr_eax;
34 uint32_t get_tpr[8];
35 uint32_t get_tpr_stack;
36 } QEMU_PACKED VAPICHandlers;
38 typedef struct GuestROMState {
39 char signature[8];
40 uint32_t vaddr;
41 uint32_t fixup_start;
42 uint32_t fixup_end;
43 uint32_t vapic_vaddr;
44 uint32_t vapic_size;
45 uint32_t vcpu_shift;
46 uint32_t real_tpr_addr;
47 VAPICHandlers up;
48 VAPICHandlers mp;
49 } QEMU_PACKED GuestROMState;
51 typedef struct VAPICROMState {
52 SysBusDevice busdev;
53 MemoryRegion io;
54 MemoryRegion rom;
55 uint32_t state;
56 uint32_t rom_state_paddr;
57 uint32_t rom_state_vaddr;
58 uint32_t vapic_paddr;
59 uint32_t real_tpr_addr;
60 GuestROMState rom_state;
61 size_t rom_size;
62 bool rom_mapped_writable;
63 VMChangeStateEntry *vmsentry;
64 } VAPICROMState;
66 #define TYPE_VAPIC "kvmvapic"
67 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
69 #define TPR_INSTR_ABS_MODRM 0x1
70 #define TPR_INSTR_MATCH_MODRM_REG 0x2
72 typedef struct TPRInstruction {
73 uint8_t opcode;
74 uint8_t modrm_reg;
75 unsigned int flags;
76 TPRAccess access;
77 size_t length;
78 off_t addr_offset;
79 } TPRInstruction;
81 /* must be sorted by length, shortest first */
82 static const TPRInstruction tpr_instr[] = {
83 { /* mov abs to eax */
84 .opcode = 0xa1,
85 .access = TPR_ACCESS_READ,
86 .length = 5,
87 .addr_offset = 1,
89 { /* mov eax to abs */
90 .opcode = 0xa3,
91 .access = TPR_ACCESS_WRITE,
92 .length = 5,
93 .addr_offset = 1,
95 { /* mov r32 to r/m32 */
96 .opcode = 0x89,
97 .flags = TPR_INSTR_ABS_MODRM,
98 .access = TPR_ACCESS_WRITE,
99 .length = 6,
100 .addr_offset = 2,
102 { /* mov r/m32 to r32 */
103 .opcode = 0x8b,
104 .flags = TPR_INSTR_ABS_MODRM,
105 .access = TPR_ACCESS_READ,
106 .length = 6,
107 .addr_offset = 2,
109 { /* push r/m32 */
110 .opcode = 0xff,
111 .modrm_reg = 6,
112 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
113 .access = TPR_ACCESS_READ,
114 .length = 6,
115 .addr_offset = 2,
117 { /* mov imm32, r/m32 (c7/0) */
118 .opcode = 0xc7,
119 .modrm_reg = 0,
120 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
121 .access = TPR_ACCESS_WRITE,
122 .length = 10,
123 .addr_offset = 2,
127 static void read_guest_rom_state(VAPICROMState *s)
129 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
130 sizeof(GuestROMState));
133 static void write_guest_rom_state(VAPICROMState *s)
135 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
136 sizeof(GuestROMState));
139 static void update_guest_rom_state(VAPICROMState *s)
141 read_guest_rom_state(s);
143 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
144 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
146 write_guest_rom_state(s);
149 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
151 CPUState *cs = CPU(x86_env_get_cpu(env));
152 hwaddr paddr;
153 target_ulong addr;
155 if (s->state == VAPIC_ACTIVE) {
156 return 0;
159 * If there is no prior TPR access instruction we could analyze (which is
160 * the case after resume from hibernation), we need to scan the possible
161 * virtual address space for the APIC mapping.
163 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
164 paddr = cpu_get_phys_page_debug(cs, addr);
165 if (paddr != APIC_DEFAULT_ADDRESS) {
166 continue;
168 s->real_tpr_addr = addr + 0x80;
169 update_guest_rom_state(s);
170 return 0;
172 return -1;
175 static uint8_t modrm_reg(uint8_t modrm)
177 return (modrm >> 3) & 7;
180 static bool is_abs_modrm(uint8_t modrm)
182 return (modrm & 0xc7) == 0x05;
185 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
187 return opcode[0] == instr->opcode &&
188 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
189 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
190 modrm_reg(opcode[1]) == instr->modrm_reg);
193 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
194 target_ulong *pip, TPRAccess access)
196 CPUState *cs = CPU(cpu);
197 const TPRInstruction *instr;
198 target_ulong ip = *pip;
199 uint8_t opcode[2];
200 uint32_t real_tpr_addr;
201 int i;
203 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
204 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
205 return -1;
209 * Early Windows 2003 SMP initialization contains a
211 * mov imm32, r/m32
213 * instruction that is patched by TPR optimization. The problem is that
214 * RSP, used by the patched instruction, is zero, so the guest gets a
215 * double fault and dies.
217 if (cpu->env.regs[R_ESP] == 0) {
218 return -1;
221 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
223 * KVM without kernel-based TPR access reporting will pass an IP that
224 * points after the accessing instruction. So we need to look backward
225 * to find the reason.
227 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
228 instr = &tpr_instr[i];
229 if (instr->access != access) {
230 continue;
232 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
233 sizeof(opcode), 0) < 0) {
234 return -1;
236 if (opcode_matches(opcode, instr)) {
237 ip -= instr->length;
238 goto instruction_ok;
241 return -1;
242 } else {
243 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
244 return -1;
246 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
247 instr = &tpr_instr[i];
248 if (opcode_matches(opcode, instr)) {
249 goto instruction_ok;
252 return -1;
255 instruction_ok:
257 * Grab the virtual TPR address from the instruction
258 * and update the cached values.
260 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
261 (void *)&real_tpr_addr,
262 sizeof(real_tpr_addr), 0) < 0) {
263 return -1;
265 real_tpr_addr = le32_to_cpu(real_tpr_addr);
266 if ((real_tpr_addr & 0xfff) != 0x80) {
267 return -1;
269 s->real_tpr_addr = real_tpr_addr;
270 update_guest_rom_state(s);
272 *pip = ip;
273 return 0;
276 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
278 CPUState *cs = CPU(x86_env_get_cpu(env));
279 hwaddr paddr;
280 uint32_t rom_state_vaddr;
281 uint32_t pos, patch, offset;
283 /* nothing to do if already activated */
284 if (s->state == VAPIC_ACTIVE) {
285 return 0;
288 /* bail out if ROM init code was not executed (missing ROM?) */
289 if (s->state == VAPIC_INACTIVE) {
290 return -1;
293 /* find out virtual address of the ROM */
294 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
295 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
296 if (paddr == -1) {
297 return -1;
299 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
300 if (paddr != s->rom_state_paddr) {
301 return -1;
303 read_guest_rom_state(s);
304 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
305 return -1;
307 s->rom_state_vaddr = rom_state_vaddr;
309 /* fixup addresses in ROM if needed */
310 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
311 return 0;
313 for (pos = le32_to_cpu(s->rom_state.fixup_start);
314 pos < le32_to_cpu(s->rom_state.fixup_end);
315 pos += 4) {
316 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
317 &offset, sizeof(offset));
318 offset = le32_to_cpu(offset);
319 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
320 patch = le32_to_cpu(patch);
321 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
322 patch = cpu_to_le32(patch);
323 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
325 read_guest_rom_state(s);
326 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
327 le32_to_cpu(s->rom_state.vaddr);
329 return 0;
333 * Tries to read the unique processor number from the Kernel Processor Control
334 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
335 * cannot be accessed or is considered invalid. This also ensures that we are
336 * not patching the wrong guest.
338 static int get_kpcr_number(X86CPU *cpu)
340 CPUX86State *env = &cpu->env;
341 struct kpcr {
342 uint8_t fill1[0x1c];
343 uint32_t self;
344 uint8_t fill2[0x31];
345 uint8_t number;
346 } QEMU_PACKED kpcr;
348 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
349 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
350 kpcr.self != env->segs[R_FS].base) {
351 return -1;
353 return kpcr.number;
356 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
358 int cpu_number = get_kpcr_number(cpu);
359 hwaddr vapic_paddr;
360 static const uint8_t enabled = 1;
362 if (cpu_number < 0) {
363 return -1;
365 vapic_paddr = s->vapic_paddr +
366 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
367 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
368 &enabled, sizeof(enabled));
369 apic_enable_vapic(cpu->apic_state, vapic_paddr);
371 s->state = VAPIC_ACTIVE;
373 return 0;
376 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
378 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
381 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
382 uint32_t target)
384 uint32_t offset;
386 offset = cpu_to_le32(target - ip - 5);
387 patch_byte(cpu, ip, 0xe8); /* call near */
388 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
391 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
393 CPUState *cs = CPU(cpu);
394 CPUX86State *env = &cpu->env;
395 VAPICHandlers *handlers;
396 uint8_t opcode[2];
397 uint32_t imm32;
398 target_ulong current_pc = 0;
399 target_ulong current_cs_base = 0;
400 int current_flags = 0;
402 if (smp_cpus == 1) {
403 handlers = &s->rom_state.up;
404 } else {
405 handlers = &s->rom_state.mp;
408 if (!kvm_enabled()) {
409 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
410 &current_flags);
413 pause_all_vcpus();
415 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
417 switch (opcode[0]) {
418 case 0x89: /* mov r32 to r/m32 */
419 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
420 patch_call(s, cpu, ip + 1, handlers->set_tpr);
421 break;
422 case 0x8b: /* mov r/m32 to r32 */
423 patch_byte(cpu, ip, 0x90);
424 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
425 break;
426 case 0xa1: /* mov abs to eax */
427 patch_call(s, cpu, ip, handlers->get_tpr[0]);
428 break;
429 case 0xa3: /* mov eax to abs */
430 patch_call(s, cpu, ip, handlers->set_tpr_eax);
431 break;
432 case 0xc7: /* mov imm32, r/m32 (c7/0) */
433 patch_byte(cpu, ip, 0x68); /* push imm32 */
434 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
435 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
436 patch_call(s, cpu, ip + 5, handlers->set_tpr);
437 break;
438 case 0xff: /* push r/m32 */
439 patch_byte(cpu, ip, 0x50); /* push eax */
440 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
441 break;
442 default:
443 abort();
446 resume_all_vcpus();
448 if (!kvm_enabled()) {
449 cs->current_tb = NULL;
450 tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
451 cpu_resume_from_signal(cs, NULL);
455 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
456 TPRAccess access)
458 VAPICROMState *s = VAPIC(dev);
459 X86CPU *cpu = X86_CPU(cs);
460 CPUX86State *env = &cpu->env;
462 cpu_synchronize_state(cs);
464 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
465 if (s->state == VAPIC_ACTIVE) {
466 vapic_enable(s, cpu);
468 return;
470 if (update_rom_mapping(s, env, ip) < 0) {
471 return;
473 if (vapic_enable(s, cpu) < 0) {
474 return;
476 patch_instruction(s, cpu, ip);
479 typedef struct VAPICEnableTPRReporting {
480 DeviceState *apic;
481 bool enable;
482 } VAPICEnableTPRReporting;
484 static void vapic_do_enable_tpr_reporting(void *data)
486 VAPICEnableTPRReporting *info = data;
488 apic_enable_tpr_access_reporting(info->apic, info->enable);
491 static void vapic_enable_tpr_reporting(bool enable)
493 VAPICEnableTPRReporting info = {
494 .enable = enable,
496 CPUState *cs;
497 X86CPU *cpu;
499 CPU_FOREACH(cs) {
500 cpu = X86_CPU(cs);
501 info.apic = cpu->apic_state;
502 run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
506 static void vapic_reset(DeviceState *dev)
508 VAPICROMState *s = VAPIC(dev);
510 s->state = VAPIC_INACTIVE;
511 s->rom_state_paddr = 0;
512 vapic_enable_tpr_reporting(false);
516 * Set the IRQ polling hypercalls to the supported variant:
517 * - vmcall if using KVM in-kernel irqchip
518 * - 32-bit VAPIC port write otherwise
520 static int patch_hypercalls(VAPICROMState *s)
522 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
523 static const uint8_t vmcall_pattern[] = { /* vmcall */
524 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
526 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
527 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
529 uint8_t alternates[2];
530 const uint8_t *pattern;
531 const uint8_t *patch;
532 int patches = 0;
533 off_t pos;
534 uint8_t *rom;
536 rom = g_malloc(s->rom_size);
537 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
539 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
540 if (kvm_irqchip_in_kernel()) {
541 pattern = outl_pattern;
542 alternates[0] = outl_pattern[7];
543 alternates[1] = outl_pattern[7];
544 patch = &vmcall_pattern[5];
545 } else {
546 pattern = vmcall_pattern;
547 alternates[0] = vmcall_pattern[7];
548 alternates[1] = 0xd9; /* AMD's VMMCALL */
549 patch = &outl_pattern[5];
551 if (memcmp(rom + pos, pattern, 7) == 0 &&
552 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
553 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
555 * Don't flush the tb here. Under ordinary conditions, the patched
556 * calls are miles away from the current IP. Under malicious
557 * conditions, the guest could trick us to crash.
562 g_free(rom);
564 if (patches != 0 && patches != 2) {
565 return -1;
568 return 0;
572 * For TCG mode or the time KVM honors read-only memory regions, we need to
573 * enable write access to the option ROM so that variables can be updated by
574 * the guest.
576 static int vapic_map_rom_writable(VAPICROMState *s)
578 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
579 MemoryRegionSection section;
580 MemoryRegion *as;
581 size_t rom_size;
582 uint8_t *ram;
584 as = sysbus_address_space(&s->busdev);
586 if (s->rom_mapped_writable) {
587 memory_region_del_subregion(as, &s->rom);
588 object_unparent(OBJECT(&s->rom));
591 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
592 section = memory_region_find(as, 0, 1);
594 /* read ROM size from RAM region */
595 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
596 return -1;
598 ram = memory_region_get_ram_ptr(section.mr);
599 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
600 if (rom_size == 0) {
601 return -1;
603 s->rom_size = rom_size;
605 /* We need to round to avoid creating subpages
606 * from which we cannot run code. */
607 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
608 rom_paddr &= TARGET_PAGE_MASK;
609 rom_size = TARGET_PAGE_ALIGN(rom_size);
611 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
612 rom_paddr, rom_size);
613 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
614 s->rom_mapped_writable = true;
615 memory_region_unref(section.mr);
617 return 0;
620 static int vapic_prepare(VAPICROMState *s)
622 if (vapic_map_rom_writable(s) < 0) {
623 return -1;
626 if (patch_hypercalls(s) < 0) {
627 return -1;
630 vapic_enable_tpr_reporting(true);
632 return 0;
635 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
636 unsigned int size)
638 VAPICROMState *s = opaque;
639 X86CPU *cpu;
640 CPUX86State *env;
641 hwaddr rom_paddr;
643 if (!current_cpu) {
644 return;
647 cpu_synchronize_state(current_cpu);
648 cpu = X86_CPU(current_cpu);
649 env = &cpu->env;
652 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
653 * o 16-bit write access:
654 * Reports the option ROM initialization to the hypervisor. Written
655 * value is the offset of the state structure in the ROM.
656 * o 8-bit write access:
657 * Reactivates the VAPIC after a guest hibernation, i.e. after the
658 * option ROM content has been re-initialized by a guest power cycle.
659 * o 32-bit write access:
660 * Poll for pending IRQs, considering the current VAPIC state.
662 switch (size) {
663 case 2:
664 if (s->state == VAPIC_INACTIVE) {
665 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
666 s->rom_state_paddr = rom_paddr + data;
668 s->state = VAPIC_STANDBY;
670 if (vapic_prepare(s) < 0) {
671 s->state = VAPIC_INACTIVE;
672 s->rom_state_paddr = 0;
673 break;
675 break;
676 case 1:
677 if (kvm_enabled()) {
679 * Disable triggering instruction in ROM by writing a NOP.
681 * We cannot do this in TCG mode as the reported IP is not
682 * accurate.
684 pause_all_vcpus();
685 patch_byte(cpu, env->eip - 2, 0x66);
686 patch_byte(cpu, env->eip - 1, 0x90);
687 resume_all_vcpus();
690 if (s->state == VAPIC_ACTIVE) {
691 break;
693 if (update_rom_mapping(s, env, env->eip) < 0) {
694 break;
696 if (find_real_tpr_addr(s, env) < 0) {
697 break;
699 vapic_enable(s, cpu);
700 break;
701 default:
702 case 4:
703 if (!kvm_irqchip_in_kernel()) {
704 apic_poll_irq(cpu->apic_state);
706 break;
710 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
712 return 0xffffffff;
715 static const MemoryRegionOps vapic_ops = {
716 .write = vapic_write,
717 .read = vapic_read,
718 .endianness = DEVICE_NATIVE_ENDIAN,
721 static void vapic_realize(DeviceState *dev, Error **errp)
723 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
724 VAPICROMState *s = VAPIC(dev);
726 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
727 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
728 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
730 option_rom[nb_option_roms].name = "kvmvapic.bin";
731 option_rom[nb_option_roms].bootindex = -1;
732 nb_option_roms++;
735 static void do_vapic_enable(void *data)
737 VAPICROMState *s = data;
738 X86CPU *cpu = X86_CPU(first_cpu);
740 static const uint8_t enabled = 1;
741 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
742 &enabled, sizeof(enabled));
743 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
744 s->state = VAPIC_ACTIVE;
747 static void kvmvapic_vm_state_change(void *opaque, int running,
748 RunState state)
750 VAPICROMState *s = opaque;
751 uint8_t *zero;
753 if (!running) {
754 return;
757 if (s->state == VAPIC_ACTIVE) {
758 if (smp_cpus == 1) {
759 run_on_cpu(first_cpu, do_vapic_enable, s);
760 } else {
761 zero = g_malloc0(s->rom_state.vapic_size);
762 cpu_physical_memory_write(s->vapic_paddr, zero,
763 s->rom_state.vapic_size);
764 g_free(zero);
768 qemu_del_vm_change_state_handler(s->vmsentry);
771 static int vapic_post_load(void *opaque, int version_id)
773 VAPICROMState *s = opaque;
776 * The old implementation of qemu-kvm did not provide the state
777 * VAPIC_STANDBY. Reconstruct it.
779 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
780 s->state = VAPIC_STANDBY;
783 if (s->state != VAPIC_INACTIVE) {
784 if (vapic_prepare(s) < 0) {
785 return -1;
789 if (!s->vmsentry) {
790 s->vmsentry =
791 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
793 return 0;
796 static const VMStateDescription vmstate_handlers = {
797 .name = "kvmvapic-handlers",
798 .version_id = 1,
799 .minimum_version_id = 1,
800 .fields = (VMStateField[]) {
801 VMSTATE_UINT32(set_tpr, VAPICHandlers),
802 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
803 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
804 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
805 VMSTATE_END_OF_LIST()
809 static const VMStateDescription vmstate_guest_rom = {
810 .name = "kvmvapic-guest-rom",
811 .version_id = 1,
812 .minimum_version_id = 1,
813 .fields = (VMStateField[]) {
814 VMSTATE_UNUSED(8), /* signature */
815 VMSTATE_UINT32(vaddr, GuestROMState),
816 VMSTATE_UINT32(fixup_start, GuestROMState),
817 VMSTATE_UINT32(fixup_end, GuestROMState),
818 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
819 VMSTATE_UINT32(vapic_size, GuestROMState),
820 VMSTATE_UINT32(vcpu_shift, GuestROMState),
821 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
822 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
823 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
824 VMSTATE_END_OF_LIST()
828 static const VMStateDescription vmstate_vapic = {
829 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
830 .version_id = 1,
831 .minimum_version_id = 1,
832 .post_load = vapic_post_load,
833 .fields = (VMStateField[]) {
834 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
835 GuestROMState),
836 VMSTATE_UINT32(state, VAPICROMState),
837 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
838 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
839 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
840 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
841 VMSTATE_END_OF_LIST()
845 static void vapic_class_init(ObjectClass *klass, void *data)
847 DeviceClass *dc = DEVICE_CLASS(klass);
849 dc->reset = vapic_reset;
850 dc->vmsd = &vmstate_vapic;
851 dc->realize = vapic_realize;
854 static const TypeInfo vapic_type = {
855 .name = TYPE_VAPIC,
856 .parent = TYPE_SYS_BUS_DEVICE,
857 .instance_size = sizeof(VAPICROMState),
858 .class_init = vapic_class_init,
861 static void vapic_register(void)
863 type_register_static(&vapic_type);
866 type_init(vapic_register);