acpi: validate hotplug selector on access
[qemu.git] / include / exec / cpu_ldst.h
bloba878fd0105e969ab9a7acfa87db1f88f1b6befea
1 /*
2 * Software MMU support
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 * Generate inline load/store functions for all MMU modes (typically
21 * at least _user and _kernel) as well as _data versions, for all data
22 * sizes.
24 * Used by target op helpers.
26 * The syntax for the accessors is:
28 * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr)
29 * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr)
30 * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr)
31 * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr)
33 * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val)
34 * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr)
35 * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr)
36 * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr)
38 * sign is:
39 * (empty): for 32 and 64 bit sizes
40 * u : unsigned
41 * s : signed
43 * size is:
44 * b: 8 bits
45 * w: 16 bits
46 * l: 32 bits
47 * q: 64 bits
49 * end is:
50 * (empty): for target native endian, or for 8 bit access
51 * _be: for forced big endian
52 * _le: for forced little endian
54 * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx".
55 * The "mmuidx" suffix carries an extra mmu_idx argument that specifies
56 * the index to use; the "data" and "code" suffixes take the index from
57 * cpu_mmu_index().
59 * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the
60 * MemOp including alignment requirements. The alignment will be enforced.
62 #ifndef CPU_LDST_H
63 #define CPU_LDST_H
65 #include "exec/memopidx.h"
66 #include "qemu/int128.h"
68 #if defined(CONFIG_USER_ONLY)
69 /* sparc32plus has 64bit long but 32bit space address
70 * this can make bad result with g2h() and h2g()
72 #if TARGET_VIRT_ADDR_SPACE_BITS <= 32
73 typedef uint32_t abi_ptr;
74 #define TARGET_ABI_FMT_ptr "%x"
75 #else
76 typedef uint64_t abi_ptr;
77 #define TARGET_ABI_FMT_ptr "%"PRIx64
78 #endif
80 #ifndef TARGET_TAGGED_ADDRESSES
81 static inline abi_ptr cpu_untagged_addr(CPUState *cs, abi_ptr x)
83 return x;
85 #endif
87 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
88 static inline void *g2h_untagged(abi_ptr x)
90 return (void *)((uintptr_t)(x) + guest_base);
93 static inline void *g2h(CPUState *cs, abi_ptr x)
95 return g2h_untagged(cpu_untagged_addr(cs, x));
98 static inline bool guest_addr_valid_untagged(abi_ulong x)
100 return x <= GUEST_ADDR_MAX;
103 static inline bool guest_range_valid_untagged(abi_ulong start, abi_ulong len)
105 return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1;
108 #define h2g_valid(x) \
109 (HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS || \
110 (uintptr_t)(x) - guest_base <= GUEST_ADDR_MAX)
112 #define h2g_nocheck(x) ({ \
113 uintptr_t __ret = (uintptr_t)(x) - guest_base; \
114 (abi_ptr)__ret; \
117 #define h2g(x) ({ \
118 /* Check if given address fits target address space */ \
119 assert(h2g_valid(x)); \
120 h2g_nocheck(x); \
122 #else
123 typedef target_ulong abi_ptr;
124 #define TARGET_ABI_FMT_ptr TARGET_ABI_FMT_lx
125 #endif
127 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr);
128 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr);
129 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr);
130 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr);
131 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr);
132 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr);
133 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr);
134 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr);
135 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr);
136 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr);
138 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
139 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
140 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
141 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
142 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
143 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
144 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
145 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
146 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
147 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
149 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
150 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
151 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
152 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
153 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
154 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
155 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
157 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
158 uint32_t val, uintptr_t ra);
159 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
160 uint32_t val, uintptr_t ra);
161 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
162 uint32_t val, uintptr_t ra);
163 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
164 uint64_t val, uintptr_t ra);
165 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
166 uint32_t val, uintptr_t ra);
167 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
168 uint32_t val, uintptr_t ra);
169 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
170 uint64_t val, uintptr_t ra);
172 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
173 int mmu_idx, uintptr_t ra);
174 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
175 int mmu_idx, uintptr_t ra);
176 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
177 int mmu_idx, uintptr_t ra);
178 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
179 int mmu_idx, uintptr_t ra);
180 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
181 int mmu_idx, uintptr_t ra);
182 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
183 int mmu_idx, uintptr_t ra);
184 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
185 int mmu_idx, uintptr_t ra);
186 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
187 int mmu_idx, uintptr_t ra);
188 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
189 int mmu_idx, uintptr_t ra);
190 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr,
191 int mmu_idx, uintptr_t ra);
193 void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
194 int mmu_idx, uintptr_t ra);
195 void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
196 int mmu_idx, uintptr_t ra);
197 void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
198 int mmu_idx, uintptr_t ra);
199 void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
200 int mmu_idx, uintptr_t ra);
201 void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
202 int mmu_idx, uintptr_t ra);
203 void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint32_t val,
204 int mmu_idx, uintptr_t ra);
205 void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr ptr, uint64_t val,
206 int mmu_idx, uintptr_t ra);
208 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr ptr, MemOpIdx oi, uintptr_t ra);
209 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr ptr,
210 MemOpIdx oi, uintptr_t ra);
211 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr ptr,
212 MemOpIdx oi, uintptr_t ra);
213 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr ptr,
214 MemOpIdx oi, uintptr_t ra);
215 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr ptr,
216 MemOpIdx oi, uintptr_t ra);
217 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr ptr,
218 MemOpIdx oi, uintptr_t ra);
219 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr ptr,
220 MemOpIdx oi, uintptr_t ra);
222 void cpu_stb_mmu(CPUArchState *env, abi_ptr ptr, uint8_t val,
223 MemOpIdx oi, uintptr_t ra);
224 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
225 MemOpIdx oi, uintptr_t ra);
226 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
227 MemOpIdx oi, uintptr_t ra);
228 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
229 MemOpIdx oi, uintptr_t ra);
230 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr ptr, uint16_t val,
231 MemOpIdx oi, uintptr_t ra);
232 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr ptr, uint32_t val,
233 MemOpIdx oi, uintptr_t ra);
234 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr ptr, uint64_t val,
235 MemOpIdx oi, uintptr_t ra);
237 uint32_t cpu_atomic_cmpxchgb_mmu(CPUArchState *env, target_ulong addr,
238 uint32_t cmpv, uint32_t newv,
239 MemOpIdx oi, uintptr_t retaddr);
240 uint32_t cpu_atomic_cmpxchgw_le_mmu(CPUArchState *env, target_ulong addr,
241 uint32_t cmpv, uint32_t newv,
242 MemOpIdx oi, uintptr_t retaddr);
243 uint32_t cpu_atomic_cmpxchgl_le_mmu(CPUArchState *env, target_ulong addr,
244 uint32_t cmpv, uint32_t newv,
245 MemOpIdx oi, uintptr_t retaddr);
246 uint64_t cpu_atomic_cmpxchgq_le_mmu(CPUArchState *env, target_ulong addr,
247 uint64_t cmpv, uint64_t newv,
248 MemOpIdx oi, uintptr_t retaddr);
249 uint32_t cpu_atomic_cmpxchgw_be_mmu(CPUArchState *env, target_ulong addr,
250 uint32_t cmpv, uint32_t newv,
251 MemOpIdx oi, uintptr_t retaddr);
252 uint32_t cpu_atomic_cmpxchgl_be_mmu(CPUArchState *env, target_ulong addr,
253 uint32_t cmpv, uint32_t newv,
254 MemOpIdx oi, uintptr_t retaddr);
255 uint64_t cpu_atomic_cmpxchgq_be_mmu(CPUArchState *env, target_ulong addr,
256 uint64_t cmpv, uint64_t newv,
257 MemOpIdx oi, uintptr_t retaddr);
259 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
260 TYPE cpu_atomic_ ## NAME ## SUFFIX ## _mmu \
261 (CPUArchState *env, target_ulong addr, TYPE val, \
262 MemOpIdx oi, uintptr_t retaddr);
264 #ifdef CONFIG_ATOMIC64
265 #define GEN_ATOMIC_HELPER_ALL(NAME) \
266 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
267 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
268 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
269 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
270 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
271 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
272 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
273 #else
274 #define GEN_ATOMIC_HELPER_ALL(NAME) \
275 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
276 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
277 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
278 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
279 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
280 #endif
282 GEN_ATOMIC_HELPER_ALL(fetch_add)
283 GEN_ATOMIC_HELPER_ALL(fetch_sub)
284 GEN_ATOMIC_HELPER_ALL(fetch_and)
285 GEN_ATOMIC_HELPER_ALL(fetch_or)
286 GEN_ATOMIC_HELPER_ALL(fetch_xor)
287 GEN_ATOMIC_HELPER_ALL(fetch_smin)
288 GEN_ATOMIC_HELPER_ALL(fetch_umin)
289 GEN_ATOMIC_HELPER_ALL(fetch_smax)
290 GEN_ATOMIC_HELPER_ALL(fetch_umax)
292 GEN_ATOMIC_HELPER_ALL(add_fetch)
293 GEN_ATOMIC_HELPER_ALL(sub_fetch)
294 GEN_ATOMIC_HELPER_ALL(and_fetch)
295 GEN_ATOMIC_HELPER_ALL(or_fetch)
296 GEN_ATOMIC_HELPER_ALL(xor_fetch)
297 GEN_ATOMIC_HELPER_ALL(smin_fetch)
298 GEN_ATOMIC_HELPER_ALL(umin_fetch)
299 GEN_ATOMIC_HELPER_ALL(smax_fetch)
300 GEN_ATOMIC_HELPER_ALL(umax_fetch)
302 GEN_ATOMIC_HELPER_ALL(xchg)
304 #undef GEN_ATOMIC_HELPER_ALL
305 #undef GEN_ATOMIC_HELPER
307 Int128 cpu_atomic_cmpxchgo_le_mmu(CPUArchState *env, target_ulong addr,
308 Int128 cmpv, Int128 newv,
309 MemOpIdx oi, uintptr_t retaddr);
310 Int128 cpu_atomic_cmpxchgo_be_mmu(CPUArchState *env, target_ulong addr,
311 Int128 cmpv, Int128 newv,
312 MemOpIdx oi, uintptr_t retaddr);
314 Int128 cpu_atomic_ldo_le_mmu(CPUArchState *env, target_ulong addr,
315 MemOpIdx oi, uintptr_t retaddr);
316 Int128 cpu_atomic_ldo_be_mmu(CPUArchState *env, target_ulong addr,
317 MemOpIdx oi, uintptr_t retaddr);
318 void cpu_atomic_sto_le_mmu(CPUArchState *env, target_ulong addr, Int128 val,
319 MemOpIdx oi, uintptr_t retaddr);
320 void cpu_atomic_sto_be_mmu(CPUArchState *env, target_ulong addr, Int128 val,
321 MemOpIdx oi, uintptr_t retaddr);
323 #if defined(CONFIG_USER_ONLY)
325 extern __thread uintptr_t helper_retaddr;
327 static inline void set_helper_retaddr(uintptr_t ra)
329 helper_retaddr = ra;
331 * Ensure that this write is visible to the SIGSEGV handler that
332 * may be invoked due to a subsequent invalid memory operation.
334 signal_barrier();
337 static inline void clear_helper_retaddr(void)
340 * Ensure that previous memory operations have succeeded before
341 * removing the data visible to the signal handler.
343 signal_barrier();
344 helper_retaddr = 0;
347 #else
349 /* Needed for TCG_OVERSIZED_GUEST */
350 #include "tcg/tcg.h"
352 static inline target_ulong tlb_addr_write(const CPUTLBEntry *entry)
354 #if TCG_OVERSIZED_GUEST
355 return entry->addr_write;
356 #else
357 return qatomic_read(&entry->addr_write);
358 #endif
361 /* Find the TLB index corresponding to the mmu_idx + address pair. */
362 static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx,
363 target_ulong addr)
365 uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
367 return (addr >> TARGET_PAGE_BITS) & size_mask;
370 /* Find the TLB entry corresponding to the mmu_idx + address pair. */
371 static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
372 target_ulong addr)
374 return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)];
377 #endif /* defined(CONFIG_USER_ONLY) */
379 #ifdef TARGET_WORDS_BIGENDIAN
380 # define cpu_lduw_data cpu_lduw_be_data
381 # define cpu_ldsw_data cpu_ldsw_be_data
382 # define cpu_ldl_data cpu_ldl_be_data
383 # define cpu_ldq_data cpu_ldq_be_data
384 # define cpu_lduw_data_ra cpu_lduw_be_data_ra
385 # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra
386 # define cpu_ldl_data_ra cpu_ldl_be_data_ra
387 # define cpu_ldq_data_ra cpu_ldq_be_data_ra
388 # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra
389 # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra
390 # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra
391 # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra
392 # define cpu_ldw_mmu cpu_ldw_be_mmu
393 # define cpu_ldl_mmu cpu_ldl_be_mmu
394 # define cpu_ldq_mmu cpu_ldq_be_mmu
395 # define cpu_stw_data cpu_stw_be_data
396 # define cpu_stl_data cpu_stl_be_data
397 # define cpu_stq_data cpu_stq_be_data
398 # define cpu_stw_data_ra cpu_stw_be_data_ra
399 # define cpu_stl_data_ra cpu_stl_be_data_ra
400 # define cpu_stq_data_ra cpu_stq_be_data_ra
401 # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra
402 # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra
403 # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra
404 # define cpu_stw_mmu cpu_stw_be_mmu
405 # define cpu_stl_mmu cpu_stl_be_mmu
406 # define cpu_stq_mmu cpu_stq_be_mmu
407 #else
408 # define cpu_lduw_data cpu_lduw_le_data
409 # define cpu_ldsw_data cpu_ldsw_le_data
410 # define cpu_ldl_data cpu_ldl_le_data
411 # define cpu_ldq_data cpu_ldq_le_data
412 # define cpu_lduw_data_ra cpu_lduw_le_data_ra
413 # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra
414 # define cpu_ldl_data_ra cpu_ldl_le_data_ra
415 # define cpu_ldq_data_ra cpu_ldq_le_data_ra
416 # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra
417 # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra
418 # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra
419 # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra
420 # define cpu_ldw_mmu cpu_ldw_le_mmu
421 # define cpu_ldl_mmu cpu_ldl_le_mmu
422 # define cpu_ldq_mmu cpu_ldq_le_mmu
423 # define cpu_stw_data cpu_stw_le_data
424 # define cpu_stl_data cpu_stl_le_data
425 # define cpu_stq_data cpu_stq_le_data
426 # define cpu_stw_data_ra cpu_stw_le_data_ra
427 # define cpu_stl_data_ra cpu_stl_le_data_ra
428 # define cpu_stq_data_ra cpu_stq_le_data_ra
429 # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra
430 # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra
431 # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra
432 # define cpu_stw_mmu cpu_stw_le_mmu
433 # define cpu_stl_mmu cpu_stl_le_mmu
434 # define cpu_stq_mmu cpu_stq_le_mmu
435 #endif
437 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr);
438 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr);
439 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr);
440 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr);
442 static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr)
444 return (int8_t)cpu_ldub_code(env, addr);
447 static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr)
449 return (int16_t)cpu_lduw_code(env, addr);
453 * tlb_vaddr_to_host:
454 * @env: CPUArchState
455 * @addr: guest virtual address to look up
456 * @access_type: 0 for read, 1 for write, 2 for execute
457 * @mmu_idx: MMU index to use for lookup
459 * Look up the specified guest virtual index in the TCG softmmu TLB.
460 * If we can translate a host virtual address suitable for direct RAM
461 * access, without causing a guest exception, then return it.
462 * Otherwise (TLB entry is for an I/O access, guest software
463 * TLB fill required, etc) return NULL.
465 #ifdef CONFIG_USER_ONLY
466 static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
467 MMUAccessType access_type, int mmu_idx)
469 return g2h(env_cpu(env), addr);
471 #else
472 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
473 MMUAccessType access_type, int mmu_idx);
474 #endif
476 #endif /* CPU_LDST_H */