block: Return original error codes in bdrv_pread/write
[qemu.git] / fpu / softfloat-native.c
blob8d64f4eff434e6bca03eb7ee39cda866d48ee7a3
1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
3 #include "softfloat.h"
4 #include <math.h>
5 #if defined(CONFIG_SOLARIS)
6 #include <fenv.h>
7 #endif
9 void set_float_rounding_mode(int val STATUS_PARAM)
11 STATUS(float_rounding_mode) = val;
12 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) || \
13 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
14 fpsetround(val);
15 #elif defined(__arm__)
16 /* nothing to do */
17 #else
18 fesetround(val);
19 #endif
22 #ifdef FLOATX80
23 void set_floatx80_rounding_precision(int val STATUS_PARAM)
25 STATUS(floatx80_rounding_precision) = val;
27 #endif
29 #if defined(CONFIG_BSD) || \
30 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
31 #define lrint(d) ((int32_t)rint(d))
32 #define llrint(d) ((int64_t)rint(d))
33 #define lrintf(f) ((int32_t)rint(f))
34 #define llrintf(f) ((int64_t)rint(f))
35 #define sqrtf(f) ((float)sqrt(f))
36 #define remainderf(fa, fb) ((float)remainder(fa, fb))
37 #define rintf(f) ((float)rint(f))
38 #if !defined(__sparc__) && \
39 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
40 extern long double rintl(long double);
41 extern long double scalbnl(long double, int);
43 long long
44 llrintl(long double x) {
45 return ((long long) rintl(x));
48 long
49 lrintl(long double x) {
50 return ((long) rintl(x));
53 long double
54 ldexpl(long double x, int n) {
55 return (scalbnl(x, n));
57 #endif
58 #endif
60 #if defined(_ARCH_PPC)
62 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
63 static double qemu_rint(double x)
65 double y = 4503599627370496.0;
66 if (fabs(x) >= y)
67 return x;
68 if (x < 0)
69 y = -y;
70 y = (x + y) - y;
71 if (y == 0.0)
72 y = copysign(y, x);
73 return y;
76 #define rint qemu_rint
77 #endif
79 /*----------------------------------------------------------------------------
80 | Software IEC/IEEE integer-to-floating-point conversion routines.
81 *----------------------------------------------------------------------------*/
82 float32 int32_to_float32(int v STATUS_PARAM)
84 return (float32)v;
87 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
89 return (float32)v;
92 float64 int32_to_float64(int v STATUS_PARAM)
94 return (float64)v;
97 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
99 return (float64)v;
102 #ifdef FLOATX80
103 floatx80 int32_to_floatx80(int v STATUS_PARAM)
105 return (floatx80)v;
107 #endif
108 float32 int64_to_float32( int64_t v STATUS_PARAM)
110 return (float32)v;
112 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
114 return (float32)v;
116 float64 int64_to_float64( int64_t v STATUS_PARAM)
118 return (float64)v;
120 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
122 return (float64)v;
124 #ifdef FLOATX80
125 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
127 return (floatx80)v;
129 #endif
131 /* XXX: this code implements the x86 behaviour, not the IEEE one. */
132 #if HOST_LONG_BITS == 32
133 static inline int long_to_int32(long a)
135 return a;
137 #else
138 static inline int long_to_int32(long a)
140 if (a != (int32_t)a)
141 a = 0x80000000;
142 return a;
144 #endif
146 /*----------------------------------------------------------------------------
147 | Software IEC/IEEE single-precision conversion routines.
148 *----------------------------------------------------------------------------*/
149 int float32_to_int32( float32 a STATUS_PARAM)
151 return long_to_int32(lrintf(a));
153 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
155 return (int)a;
157 int64_t float32_to_int64( float32 a STATUS_PARAM)
159 return llrintf(a);
162 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
164 return (int64_t)a;
167 float64 float32_to_float64( float32 a STATUS_PARAM)
169 return a;
171 #ifdef FLOATX80
172 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
174 return a;
176 #endif
178 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
180 int64_t v;
181 unsigned int res;
183 v = llrintf(a);
184 if (v < 0) {
185 res = 0;
186 } else if (v > 0xffffffff) {
187 res = 0xffffffff;
188 } else {
189 res = v;
191 return res;
193 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
195 int64_t v;
196 unsigned int res;
198 v = (int64_t)a;
199 if (v < 0) {
200 res = 0;
201 } else if (v > 0xffffffff) {
202 res = 0xffffffff;
203 } else {
204 res = v;
206 return res;
209 /*----------------------------------------------------------------------------
210 | Software IEC/IEEE single-precision operations.
211 *----------------------------------------------------------------------------*/
212 float32 float32_round_to_int( float32 a STATUS_PARAM)
214 return rintf(a);
217 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
219 return remainderf(a, b);
222 float32 float32_sqrt( float32 a STATUS_PARAM)
224 return sqrtf(a);
226 int float32_compare( float32 a, float32 b STATUS_PARAM )
228 if (a < b) {
229 return float_relation_less;
230 } else if (a == b) {
231 return float_relation_equal;
232 } else if (a > b) {
233 return float_relation_greater;
234 } else {
235 return float_relation_unordered;
238 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
240 if (isless(a, b)) {
241 return float_relation_less;
242 } else if (a == b) {
243 return float_relation_equal;
244 } else if (isgreater(a, b)) {
245 return float_relation_greater;
246 } else {
247 return float_relation_unordered;
250 int float32_is_signaling_nan( float32 a1)
252 float32u u;
253 uint32_t a;
254 u.f = a1;
255 a = u.i;
256 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
259 int float32_is_nan( float32 a1 )
261 float32u u;
262 uint64_t a;
263 u.f = a1;
264 a = u.i;
265 return ( 0xFF800000 < ( a<<1 ) );
268 /*----------------------------------------------------------------------------
269 | Software IEC/IEEE double-precision conversion routines.
270 *----------------------------------------------------------------------------*/
271 int float64_to_int32( float64 a STATUS_PARAM)
273 return long_to_int32(lrint(a));
275 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
277 return (int)a;
279 int64_t float64_to_int64( float64 a STATUS_PARAM)
281 return llrint(a);
283 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
285 return (int64_t)a;
287 float32 float64_to_float32( float64 a STATUS_PARAM)
289 return a;
291 #ifdef FLOATX80
292 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
294 return a;
296 #endif
297 #ifdef FLOAT128
298 float128 float64_to_float128( float64 a STATUS_PARAM)
300 return a;
302 #endif
304 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
306 int64_t v;
307 unsigned int res;
309 v = llrint(a);
310 if (v < 0) {
311 res = 0;
312 } else if (v > 0xffffffff) {
313 res = 0xffffffff;
314 } else {
315 res = v;
317 return res;
319 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
321 int64_t v;
322 unsigned int res;
324 v = (int64_t)a;
325 if (v < 0) {
326 res = 0;
327 } else if (v > 0xffffffff) {
328 res = 0xffffffff;
329 } else {
330 res = v;
332 return res;
334 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
336 int64_t v;
338 v = llrint(a + (float64)INT64_MIN);
340 return v - INT64_MIN;
342 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
344 int64_t v;
346 v = (int64_t)(a + (float64)INT64_MIN);
348 return v - INT64_MIN;
351 /*----------------------------------------------------------------------------
352 | Software IEC/IEEE double-precision operations.
353 *----------------------------------------------------------------------------*/
354 #if defined(__sun__) && \
355 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
356 static inline float64 trunc(float64 x)
358 return x < 0 ? -floor(-x) : floor(x);
360 #endif
361 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
363 return trunc(a);
366 float64 float64_round_to_int( float64 a STATUS_PARAM )
368 #if defined(__arm__)
369 switch(STATUS(float_rounding_mode)) {
370 default:
371 case float_round_nearest_even:
372 asm("rndd %0, %1" : "=f" (a) : "f"(a));
373 break;
374 case float_round_down:
375 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
376 break;
377 case float_round_up:
378 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
379 break;
380 case float_round_to_zero:
381 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
382 break;
384 #else
385 return rint(a);
386 #endif
389 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
391 return remainder(a, b);
394 float64 float64_sqrt( float64 a STATUS_PARAM)
396 return sqrt(a);
398 int float64_compare( float64 a, float64 b STATUS_PARAM )
400 if (a < b) {
401 return float_relation_less;
402 } else if (a == b) {
403 return float_relation_equal;
404 } else if (a > b) {
405 return float_relation_greater;
406 } else {
407 return float_relation_unordered;
410 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
412 if (isless(a, b)) {
413 return float_relation_less;
414 } else if (a == b) {
415 return float_relation_equal;
416 } else if (isgreater(a, b)) {
417 return float_relation_greater;
418 } else {
419 return float_relation_unordered;
422 int float64_is_signaling_nan( float64 a1)
424 float64u u;
425 uint64_t a;
426 u.f = a1;
427 a = u.i;
428 return
429 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
430 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
434 int float64_is_nan( float64 a1 )
436 float64u u;
437 uint64_t a;
438 u.f = a1;
439 a = u.i;
441 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
445 #ifdef FLOATX80
447 /*----------------------------------------------------------------------------
448 | Software IEC/IEEE extended double-precision conversion routines.
449 *----------------------------------------------------------------------------*/
450 int floatx80_to_int32( floatx80 a STATUS_PARAM)
452 return long_to_int32(lrintl(a));
454 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
456 return (int)a;
458 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
460 return llrintl(a);
462 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
464 return (int64_t)a;
466 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
468 return a;
470 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
472 return a;
475 /*----------------------------------------------------------------------------
476 | Software IEC/IEEE extended double-precision operations.
477 *----------------------------------------------------------------------------*/
478 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
480 return rintl(a);
482 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
484 return remainderl(a, b);
486 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
488 return sqrtl(a);
490 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
492 if (a < b) {
493 return float_relation_less;
494 } else if (a == b) {
495 return float_relation_equal;
496 } else if (a > b) {
497 return float_relation_greater;
498 } else {
499 return float_relation_unordered;
502 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
504 if (isless(a, b)) {
505 return float_relation_less;
506 } else if (a == b) {
507 return float_relation_equal;
508 } else if (isgreater(a, b)) {
509 return float_relation_greater;
510 } else {
511 return float_relation_unordered;
514 int floatx80_is_signaling_nan( floatx80 a1)
516 floatx80u u;
517 uint64_t aLow;
518 u.f = a1;
520 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
521 return
522 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
523 && (bits64) ( aLow<<1 )
524 && ( u.i.low == aLow );
527 int floatx80_is_nan( floatx80 a1 )
529 floatx80u u;
530 u.f = a1;
531 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
534 #endif