4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
41 #else /* !CONFIG_USER_ONLY */
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <linux/falloc.h>
58 #include "exec/cpu-all.h"
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
72 #include "qemu/mmap-alloc.h"
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
85 static MemoryRegion
*system_memory
;
86 static MemoryRegion
*system_io
;
88 AddressSpace address_space_io
;
89 AddressSpace address_space_memory
;
91 MemoryRegion io_mem_rom
, io_mem_notdirty
;
92 static MemoryRegion io_mem_unassigned
;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits
;
109 bool target_page_bits_decided
;
112 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
113 /* current CPU in the current thread. It is only valid inside
115 __thread CPUState
*current_cpu
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
121 bool set_preferred_target_page_bits(int bits
)
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits
>= TARGET_PAGE_BITS_MIN
);
130 if (target_page_bits
== 0 || target_page_bits
> bits
) {
131 if (target_page_bits_decided
) {
134 target_page_bits
= bits
;
140 #if !defined(CONFIG_USER_ONLY)
142 static void finalize_target_page_bits(void)
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits
== 0) {
146 target_page_bits
= TARGET_PAGE_BITS_MIN
;
148 target_page_bits_decided
= true;
152 typedef struct PhysPageEntry PhysPageEntry
;
154 struct PhysPageEntry
{
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
167 #define P_L2_SIZE (1 << P_L2_BITS)
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
171 typedef PhysPageEntry Node
[P_L2_SIZE
];
173 typedef struct PhysPageMap
{
176 unsigned sections_nb
;
177 unsigned sections_nb_alloc
;
179 unsigned nodes_nb_alloc
;
181 MemoryRegionSection
*sections
;
184 struct AddressSpaceDispatch
{
187 MemoryRegionSection
*mru_section
;
188 /* This is a multi-level map on the physical address space.
189 * The bottom level has pointers to MemoryRegionSections.
191 PhysPageEntry phys_map
;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t
{
201 uint16_t sub_section
[];
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener
*listener
);
213 static MemoryRegion io_mem_watch
;
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
222 struct CPUAddressSpace
{
225 struct AddressSpaceDispatch
*memory_dispatch
;
226 MemoryListener tcg_as_listener
;
229 struct DirtyBitmapSnapshot
{
232 unsigned long dirty
[];
237 #if !defined(CONFIG_USER_ONLY)
239 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
241 static unsigned alloc_hint
= 16;
242 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
243 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
244 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
245 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
246 alloc_hint
= map
->nodes_nb_alloc
;
250 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
257 ret
= map
->nodes_nb
++;
259 assert(ret
!= PHYS_MAP_NODE_NIL
);
260 assert(ret
!= map
->nodes_nb_alloc
);
262 e
.skip
= leaf
? 0 : 1;
263 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
264 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
265 memcpy(&p
[i
], &e
, sizeof(e
));
270 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
271 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
275 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
277 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
278 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
280 p
= map
->nodes
[lp
->ptr
];
281 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
283 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
284 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
290 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
296 static void phys_page_set(AddressSpaceDispatch
*d
,
297 hwaddr index
, hwaddr nb
,
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
303 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
309 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
311 unsigned valid_ptr
= P_L2_SIZE
;
316 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
321 for (i
= 0; i
< P_L2_SIZE
; i
++) {
322 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
329 phys_page_compact(&p
[i
], nodes
);
333 /* We can only compress if there's only one child. */
338 assert(valid_ptr
< P_L2_SIZE
);
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
345 lp
->ptr
= p
[valid_ptr
].ptr
;
346 if (!p
[valid_ptr
].skip
) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
355 lp
->skip
+= p
[valid_ptr
].skip
;
359 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
361 if (d
->phys_map
.skip
) {
362 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
366 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
372 return int128_gethi(section
->size
) ||
373 range_covers_byte(section
->offset_within_address_space
,
374 int128_getlo(section
->size
), addr
);
377 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
378 Node
*nodes
, MemoryRegionSection
*sections
)
381 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
384 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
385 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
386 return §ions
[PHYS_SECTION_UNASSIGNED
];
389 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
392 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
393 return §ions
[lp
.ptr
];
395 return §ions
[PHYS_SECTION_UNASSIGNED
];
399 bool memory_region_is_unassigned(MemoryRegion
*mr
)
401 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
402 && mr
!= &io_mem_watch
;
405 /* Called from RCU critical section */
406 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
408 bool resolve_subpage
)
410 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
414 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
415 section_covers_addr(section
, addr
)) {
418 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
422 if (resolve_subpage
&& section
->mr
->subpage
) {
423 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
424 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
427 atomic_set(&d
->mru_section
, section
);
432 /* Called from RCU critical section */
433 static MemoryRegionSection
*
434 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
435 hwaddr
*plen
, bool resolve_subpage
)
437 MemoryRegionSection
*section
;
441 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
442 /* Compute offset within MemoryRegionSection */
443 addr
-= section
->offset_within_address_space
;
445 /* Compute offset within MemoryRegion */
446 *xlat
= addr
+ section
->offset_within_region
;
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
461 if (memory_region_is_ram(mr
)) {
462 diff
= int128_sub(section
->size
, int128_make64(addr
));
463 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
468 /* Called from RCU critical section */
469 static MemoryRegionSection
address_space_do_translate(AddressSpace
*as
,
477 MemoryRegionSection
*section
;
481 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
482 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, is_mmio
);
485 if (!mr
->iommu_ops
) {
489 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
490 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
491 | (addr
& iotlb
.addr_mask
));
492 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
493 if (!(iotlb
.perm
& (1 << is_write
))) {
497 as
= iotlb
.target_as
;
505 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
508 /* Called from RCU critical section */
509 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
512 MemoryRegionSection section
;
515 /* Try to get maximum page mask during translation. */
518 /* This can never be MMIO. */
519 section
= address_space_do_translate(as
, addr
, &xlat
, &plen
,
522 /* Illegal translation */
523 if (section
.mr
== &io_mem_unassigned
) {
527 /* Convert memory region offset into address space offset */
528 xlat
+= section
.offset_within_address_space
-
529 section
.offset_within_region
;
531 if (plen
== (hwaddr
)-1) {
533 * We use default page size here. Logically it only happens
534 * for identity mappings.
536 plen
= TARGET_PAGE_SIZE
;
539 /* Convert to address mask */
542 return (IOMMUTLBEntry
) {
543 .target_as
= section
.address_space
,
544 .iova
= addr
& ~plen
,
545 .translated_addr
= xlat
& ~plen
,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
552 return (IOMMUTLBEntry
) {0};
555 /* Called from RCU critical section */
556 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
557 hwaddr
*xlat
, hwaddr
*plen
,
561 MemoryRegionSection section
;
563 /* This can be MMIO, so setup MMIO bit. */
564 section
= address_space_do_translate(as
, addr
, xlat
, plen
, is_write
, true);
567 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
568 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
569 *plen
= MIN(page
, *plen
);
575 /* Called from RCU critical section */
576 MemoryRegionSection
*
577 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
578 hwaddr
*xlat
, hwaddr
*plen
)
580 MemoryRegionSection
*section
;
581 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
583 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
585 assert(!section
->mr
->iommu_ops
);
590 #if !defined(CONFIG_USER_ONLY)
592 static int cpu_common_post_load(void *opaque
, int version_id
)
594 CPUState
*cpu
= opaque
;
596 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
597 version_id is increased. */
598 cpu
->interrupt_request
&= ~0x01;
604 static int cpu_common_pre_load(void *opaque
)
606 CPUState
*cpu
= opaque
;
608 cpu
->exception_index
= -1;
613 static bool cpu_common_exception_index_needed(void *opaque
)
615 CPUState
*cpu
= opaque
;
617 return tcg_enabled() && cpu
->exception_index
!= -1;
620 static const VMStateDescription vmstate_cpu_common_exception_index
= {
621 .name
= "cpu_common/exception_index",
623 .minimum_version_id
= 1,
624 .needed
= cpu_common_exception_index_needed
,
625 .fields
= (VMStateField
[]) {
626 VMSTATE_INT32(exception_index
, CPUState
),
627 VMSTATE_END_OF_LIST()
631 static bool cpu_common_crash_occurred_needed(void *opaque
)
633 CPUState
*cpu
= opaque
;
635 return cpu
->crash_occurred
;
638 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
639 .name
= "cpu_common/crash_occurred",
641 .minimum_version_id
= 1,
642 .needed
= cpu_common_crash_occurred_needed
,
643 .fields
= (VMStateField
[]) {
644 VMSTATE_BOOL(crash_occurred
, CPUState
),
645 VMSTATE_END_OF_LIST()
649 const VMStateDescription vmstate_cpu_common
= {
650 .name
= "cpu_common",
652 .minimum_version_id
= 1,
653 .pre_load
= cpu_common_pre_load
,
654 .post_load
= cpu_common_post_load
,
655 .fields
= (VMStateField
[]) {
656 VMSTATE_UINT32(halted
, CPUState
),
657 VMSTATE_UINT32(interrupt_request
, CPUState
),
658 VMSTATE_END_OF_LIST()
660 .subsections
= (const VMStateDescription
*[]) {
661 &vmstate_cpu_common_exception_index
,
662 &vmstate_cpu_common_crash_occurred
,
669 CPUState
*qemu_get_cpu(int index
)
674 if (cpu
->cpu_index
== index
) {
682 #if !defined(CONFIG_USER_ONLY)
683 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
685 CPUAddressSpace
*newas
;
687 /* Target code should have set num_ases before calling us */
688 assert(asidx
< cpu
->num_ases
);
691 /* address space 0 gets the convenience alias */
695 /* KVM cannot currently support multiple address spaces. */
696 assert(asidx
== 0 || !kvm_enabled());
698 if (!cpu
->cpu_ases
) {
699 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
702 newas
= &cpu
->cpu_ases
[asidx
];
706 newas
->tcg_as_listener
.commit
= tcg_commit
;
707 memory_listener_register(&newas
->tcg_as_listener
, as
);
711 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
713 /* Return the AddressSpace corresponding to the specified index */
714 return cpu
->cpu_ases
[asidx
].as
;
718 void cpu_exec_unrealizefn(CPUState
*cpu
)
720 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
722 cpu_list_remove(cpu
);
724 if (cc
->vmsd
!= NULL
) {
725 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
727 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
728 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
732 void cpu_exec_initfn(CPUState
*cpu
)
737 #ifndef CONFIG_USER_ONLY
738 cpu
->thread_id
= qemu_get_thread_id();
740 /* This is a softmmu CPU object, so create a property for it
741 * so users can wire up its memory. (This can't go in qom/cpu.c
742 * because that file is compiled only once for both user-mode
743 * and system builds.) The default if no link is set up is to use
744 * the system address space.
746 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
747 (Object
**)&cpu
->memory
,
748 qdev_prop_allow_set_link_before_realize
,
749 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
751 cpu
->memory
= system_memory
;
752 object_ref(OBJECT(cpu
->memory
));
756 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
758 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
762 #ifndef CONFIG_USER_ONLY
763 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
764 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
766 if (cc
->vmsd
!= NULL
) {
767 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
772 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
774 /* Flush the whole TB as this will not have race conditions
775 * even if we don't have proper locking yet.
776 * Ideally we would just invalidate the TBs for the
782 #if defined(CONFIG_USER_ONLY)
783 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
788 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
794 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
798 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
799 int flags
, CPUWatchpoint
**watchpoint
)
804 /* Add a watchpoint. */
805 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
806 int flags
, CPUWatchpoint
**watchpoint
)
810 /* forbid ranges which are empty or run off the end of the address space */
811 if (len
== 0 || (addr
+ len
- 1) < addr
) {
812 error_report("tried to set invalid watchpoint at %"
813 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
816 wp
= g_malloc(sizeof(*wp
));
822 /* keep all GDB-injected watchpoints in front */
823 if (flags
& BP_GDB
) {
824 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
826 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
829 tlb_flush_page(cpu
, addr
);
836 /* Remove a specific watchpoint. */
837 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
842 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
843 if (addr
== wp
->vaddr
&& len
== wp
->len
844 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
845 cpu_watchpoint_remove_by_ref(cpu
, wp
);
852 /* Remove a specific watchpoint by reference. */
853 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
855 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
857 tlb_flush_page(cpu
, watchpoint
->vaddr
);
862 /* Remove all matching watchpoints. */
863 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
865 CPUWatchpoint
*wp
, *next
;
867 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
868 if (wp
->flags
& mask
) {
869 cpu_watchpoint_remove_by_ref(cpu
, wp
);
874 /* Return true if this watchpoint address matches the specified
875 * access (ie the address range covered by the watchpoint overlaps
876 * partially or completely with the address range covered by the
879 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
883 /* We know the lengths are non-zero, but a little caution is
884 * required to avoid errors in the case where the range ends
885 * exactly at the top of the address space and so addr + len
886 * wraps round to zero.
888 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
889 vaddr addrend
= addr
+ len
- 1;
891 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
896 /* Add a breakpoint. */
897 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
898 CPUBreakpoint
**breakpoint
)
902 bp
= g_malloc(sizeof(*bp
));
907 /* keep all GDB-injected breakpoints in front */
908 if (flags
& BP_GDB
) {
909 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
911 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
914 breakpoint_invalidate(cpu
, pc
);
922 /* Remove a specific breakpoint. */
923 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
927 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
928 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
929 cpu_breakpoint_remove_by_ref(cpu
, bp
);
936 /* Remove a specific breakpoint by reference. */
937 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
939 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
941 breakpoint_invalidate(cpu
, breakpoint
->pc
);
946 /* Remove all matching breakpoints. */
947 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
949 CPUBreakpoint
*bp
, *next
;
951 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
952 if (bp
->flags
& mask
) {
953 cpu_breakpoint_remove_by_ref(cpu
, bp
);
958 /* enable or disable single step mode. EXCP_DEBUG is returned by the
959 CPU loop after each instruction */
960 void cpu_single_step(CPUState
*cpu
, int enabled
)
962 if (cpu
->singlestep_enabled
!= enabled
) {
963 cpu
->singlestep_enabled
= enabled
;
965 kvm_update_guest_debug(cpu
, 0);
967 /* must flush all the translated code to avoid inconsistencies */
968 /* XXX: only flush what is necessary */
974 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
981 fprintf(stderr
, "qemu: fatal: ");
982 vfprintf(stderr
, fmt
, ap
);
983 fprintf(stderr
, "\n");
984 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
985 if (qemu_log_separate()) {
987 qemu_log("qemu: fatal: ");
988 qemu_log_vprintf(fmt
, ap2
);
990 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
998 #if defined(CONFIG_USER_ONLY)
1000 struct sigaction act
;
1001 sigfillset(&act
.sa_mask
);
1002 act
.sa_handler
= SIG_DFL
;
1003 sigaction(SIGABRT
, &act
, NULL
);
1009 #if !defined(CONFIG_USER_ONLY)
1010 /* Called from RCU critical section */
1011 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1015 block
= atomic_rcu_read(&ram_list
.mru_block
);
1016 if (block
&& addr
- block
->offset
< block
->max_length
) {
1019 RAMBLOCK_FOREACH(block
) {
1020 if (addr
- block
->offset
< block
->max_length
) {
1025 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1029 /* It is safe to write mru_block outside the iothread lock. This
1034 * xxx removed from list
1038 * call_rcu(reclaim_ramblock, xxx);
1041 * atomic_rcu_set is not needed here. The block was already published
1042 * when it was placed into the list. Here we're just making an extra
1043 * copy of the pointer.
1045 ram_list
.mru_block
= block
;
1049 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1056 end
= TARGET_PAGE_ALIGN(start
+ length
);
1057 start
&= TARGET_PAGE_MASK
;
1060 block
= qemu_get_ram_block(start
);
1061 assert(block
== qemu_get_ram_block(end
- 1));
1062 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1064 tlb_reset_dirty(cpu
, start1
, length
);
1069 /* Note: start and end must be within the same ram block. */
1070 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1074 DirtyMemoryBlocks
*blocks
;
1075 unsigned long end
, page
;
1082 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1083 page
= start
>> TARGET_PAGE_BITS
;
1087 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1089 while (page
< end
) {
1090 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1091 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1092 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1094 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1101 if (dirty
&& tcg_enabled()) {
1102 tlb_reset_dirty_range_all(start
, length
);
1108 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1109 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1111 DirtyMemoryBlocks
*blocks
;
1112 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1113 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1114 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1115 DirtyBitmapSnapshot
*snap
;
1116 unsigned long page
, end
, dest
;
1118 snap
= g_malloc0(sizeof(*snap
) +
1119 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1120 snap
->start
= first
;
1123 page
= first
>> TARGET_PAGE_BITS
;
1124 end
= last
>> TARGET_PAGE_BITS
;
1129 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1131 while (page
< end
) {
1132 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1133 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1134 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1136 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1137 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1138 offset
>>= BITS_PER_LEVEL
;
1140 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1141 blocks
->blocks
[idx
] + offset
,
1144 dest
+= num
>> BITS_PER_LEVEL
;
1149 if (tcg_enabled()) {
1150 tlb_reset_dirty_range_all(start
, length
);
1156 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1160 unsigned long page
, end
;
1162 assert(start
>= snap
->start
);
1163 assert(start
+ length
<= snap
->end
);
1165 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1166 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1168 while (page
< end
) {
1169 if (test_bit(page
, snap
->dirty
)) {
1177 /* Called from RCU critical section */
1178 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1179 MemoryRegionSection
*section
,
1181 hwaddr paddr
, hwaddr xlat
,
1183 target_ulong
*address
)
1188 if (memory_region_is_ram(section
->mr
)) {
1190 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1191 if (!section
->readonly
) {
1192 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1194 iotlb
|= PHYS_SECTION_ROM
;
1197 AddressSpaceDispatch
*d
;
1199 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1200 iotlb
= section
- d
->map
.sections
;
1204 /* Make accesses to pages with watchpoints go via the
1205 watchpoint trap routines. */
1206 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1207 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1208 /* Avoid trapping reads of pages with a write breakpoint. */
1209 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1210 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1211 *address
|= TLB_MMIO
;
1219 #endif /* defined(CONFIG_USER_ONLY) */
1221 #if !defined(CONFIG_USER_ONLY)
1223 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1225 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1227 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1228 qemu_anon_ram_alloc
;
1231 * Set a custom physical guest memory alloator.
1232 * Accelerators with unusual needs may need this. Hopefully, we can
1233 * get rid of it eventually.
1235 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1237 phys_mem_alloc
= alloc
;
1240 static uint16_t phys_section_add(PhysPageMap
*map
,
1241 MemoryRegionSection
*section
)
1243 /* The physical section number is ORed with a page-aligned
1244 * pointer to produce the iotlb entries. Thus it should
1245 * never overflow into the page-aligned value.
1247 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1249 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1250 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1251 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1252 map
->sections_nb_alloc
);
1254 map
->sections
[map
->sections_nb
] = *section
;
1255 memory_region_ref(section
->mr
);
1256 return map
->sections_nb
++;
1259 static void phys_section_destroy(MemoryRegion
*mr
)
1261 bool have_sub_page
= mr
->subpage
;
1263 memory_region_unref(mr
);
1265 if (have_sub_page
) {
1266 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1267 object_unref(OBJECT(&subpage
->iomem
));
1272 static void phys_sections_free(PhysPageMap
*map
)
1274 while (map
->sections_nb
> 0) {
1275 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1276 phys_section_destroy(section
->mr
);
1278 g_free(map
->sections
);
1282 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1285 hwaddr base
= section
->offset_within_address_space
1287 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1288 d
->map
.nodes
, d
->map
.sections
);
1289 MemoryRegionSection subsection
= {
1290 .offset_within_address_space
= base
,
1291 .size
= int128_make64(TARGET_PAGE_SIZE
),
1295 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1297 if (!(existing
->mr
->subpage
)) {
1298 subpage
= subpage_init(d
->as
, base
);
1299 subsection
.address_space
= d
->as
;
1300 subsection
.mr
= &subpage
->iomem
;
1301 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1302 phys_section_add(&d
->map
, &subsection
));
1304 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1306 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1307 end
= start
+ int128_get64(section
->size
) - 1;
1308 subpage_register(subpage
, start
, end
,
1309 phys_section_add(&d
->map
, section
));
1313 static void register_multipage(AddressSpaceDispatch
*d
,
1314 MemoryRegionSection
*section
)
1316 hwaddr start_addr
= section
->offset_within_address_space
;
1317 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1318 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1322 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1325 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1327 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1328 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1329 MemoryRegionSection now
= *section
, remain
= *section
;
1330 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1332 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1333 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1334 - now
.offset_within_address_space
;
1336 now
.size
= int128_min(int128_make64(left
), now
.size
);
1337 register_subpage(d
, &now
);
1339 now
.size
= int128_zero();
1341 while (int128_ne(remain
.size
, now
.size
)) {
1342 remain
.size
= int128_sub(remain
.size
, now
.size
);
1343 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1344 remain
.offset_within_region
+= int128_get64(now
.size
);
1346 if (int128_lt(remain
.size
, page_size
)) {
1347 register_subpage(d
, &now
);
1348 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1349 now
.size
= page_size
;
1350 register_subpage(d
, &now
);
1352 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1353 register_multipage(d
, &now
);
1358 void qemu_flush_coalesced_mmio_buffer(void)
1361 kvm_flush_coalesced_mmio_buffer();
1364 void qemu_mutex_lock_ramlist(void)
1366 qemu_mutex_lock(&ram_list
.mutex
);
1369 void qemu_mutex_unlock_ramlist(void)
1371 qemu_mutex_unlock(&ram_list
.mutex
);
1374 void ram_block_dump(Monitor
*mon
)
1380 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1381 "Block Name", "PSize", "Offset", "Used", "Total");
1382 RAMBLOCK_FOREACH(block
) {
1383 psize
= size_to_str(block
->page_size
);
1384 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1385 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1386 (uint64_t)block
->offset
,
1387 (uint64_t)block
->used_length
,
1388 (uint64_t)block
->max_length
);
1396 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1397 * may or may not name the same files / on the same filesystem now as
1398 * when we actually open and map them. Iterate over the file
1399 * descriptors instead, and use qemu_fd_getpagesize().
1401 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1404 long *hpsize_min
= opaque
;
1406 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1407 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1409 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1410 if (hpsize
< *hpsize_min
) {
1411 *hpsize_min
= hpsize
;
1414 *hpsize_min
= getpagesize();
1421 long qemu_getrampagesize(void)
1423 long hpsize
= LONG_MAX
;
1424 long mainrampagesize
;
1425 Object
*memdev_root
;
1428 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1430 mainrampagesize
= getpagesize();
1433 /* it's possible we have memory-backend objects with
1434 * hugepage-backed RAM. these may get mapped into system
1435 * address space via -numa parameters or memory hotplug
1436 * hooks. we want to take these into account, but we
1437 * also want to make sure these supported hugepage
1438 * sizes are applicable across the entire range of memory
1439 * we may boot from, so we take the min across all
1440 * backends, and assume normal pages in cases where a
1441 * backend isn't backed by hugepages.
1443 memdev_root
= object_resolve_path("/objects", NULL
);
1445 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1447 if (hpsize
== LONG_MAX
) {
1448 /* No additional memory regions found ==> Report main RAM page size */
1449 return mainrampagesize
;
1452 /* If NUMA is disabled or the NUMA nodes are not backed with a
1453 * memory-backend, then there is at least one node using "normal" RAM,
1454 * so if its page size is smaller we have got to report that size instead.
1456 if (hpsize
> mainrampagesize
&&
1457 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1460 error_report("Huge page support disabled (n/a for main memory).");
1463 return mainrampagesize
;
1469 long qemu_getrampagesize(void)
1471 return getpagesize();
1476 static int64_t get_file_size(int fd
)
1478 int64_t size
= lseek(fd
, 0, SEEK_END
);
1485 static void *file_ram_alloc(RAMBlock
*block
,
1490 bool unlink_on_error
= false;
1492 char *sanitized_name
;
1494 void *area
= MAP_FAILED
;
1498 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1500 "host lacks kvm mmu notifiers, -mem-path unsupported");
1505 fd
= open(path
, O_RDWR
);
1507 /* @path names an existing file, use it */
1510 if (errno
== ENOENT
) {
1511 /* @path names a file that doesn't exist, create it */
1512 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1514 unlink_on_error
= true;
1517 } else if (errno
== EISDIR
) {
1518 /* @path names a directory, create a file there */
1519 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1520 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1521 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1527 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1529 g_free(sanitized_name
);
1531 fd
= mkstemp(filename
);
1539 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1540 error_setg_errno(errp
, errno
,
1541 "can't open backing store %s for guest RAM",
1546 * Try again on EINTR and EEXIST. The latter happens when
1547 * something else creates the file between our two open().
1551 block
->page_size
= qemu_fd_getpagesize(fd
);
1552 block
->mr
->align
= block
->page_size
;
1553 #if defined(__s390x__)
1554 if (kvm_enabled()) {
1555 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1559 file_size
= get_file_size(fd
);
1561 if (memory
< block
->page_size
) {
1562 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1563 "or larger than page size 0x%zx",
1564 memory
, block
->page_size
);
1568 if (file_size
> 0 && file_size
< memory
) {
1569 error_setg(errp
, "backing store %s size 0x%" PRIx64
1570 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1571 path
, file_size
, memory
);
1575 memory
= ROUND_UP(memory
, block
->page_size
);
1578 * ftruncate is not supported by hugetlbfs in older
1579 * hosts, so don't bother bailing out on errors.
1580 * If anything goes wrong with it under other filesystems,
1583 * Do not truncate the non-empty backend file to avoid corrupting
1584 * the existing data in the file. Disabling shrinking is not
1585 * enough. For example, the current vNVDIMM implementation stores
1586 * the guest NVDIMM labels at the end of the backend file. If the
1587 * backend file is later extended, QEMU will not be able to find
1588 * those labels. Therefore, extending the non-empty backend file
1589 * is disabled as well.
1591 if (!file_size
&& ftruncate(fd
, memory
)) {
1592 perror("ftruncate");
1595 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1596 block
->flags
& RAM_SHARED
);
1597 if (area
== MAP_FAILED
) {
1598 error_setg_errno(errp
, errno
,
1599 "unable to map backing store for guest RAM");
1604 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1605 if (errp
&& *errp
) {
1614 if (area
!= MAP_FAILED
) {
1615 qemu_ram_munmap(area
, memory
);
1617 if (unlink_on_error
) {
1627 /* Called with the ramlist lock held. */
1628 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1630 RAMBlock
*block
, *next_block
;
1631 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1633 assert(size
!= 0); /* it would hand out same offset multiple times */
1635 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1639 RAMBLOCK_FOREACH(block
) {
1640 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1642 end
= block
->offset
+ block
->max_length
;
1644 RAMBLOCK_FOREACH(next_block
) {
1645 if (next_block
->offset
>= end
) {
1646 next
= MIN(next
, next_block
->offset
);
1649 if (next
- end
>= size
&& next
- end
< mingap
) {
1651 mingap
= next
- end
;
1655 if (offset
== RAM_ADDR_MAX
) {
1656 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1664 unsigned long last_ram_page(void)
1667 ram_addr_t last
= 0;
1670 RAMBLOCK_FOREACH(block
) {
1671 last
= MAX(last
, block
->offset
+ block
->max_length
);
1674 return last
>> TARGET_PAGE_BITS
;
1677 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1681 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1682 if (!machine_dump_guest_core(current_machine
)) {
1683 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1685 perror("qemu_madvise");
1686 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1687 "but dump_guest_core=off specified\n");
1692 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1697 bool qemu_ram_is_shared(RAMBlock
*rb
)
1699 return rb
->flags
& RAM_SHARED
;
1702 /* Called with iothread lock held. */
1703 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1708 assert(!new_block
->idstr
[0]);
1711 char *id
= qdev_get_dev_path(dev
);
1713 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1717 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1720 RAMBLOCK_FOREACH(block
) {
1721 if (block
!= new_block
&&
1722 !strcmp(block
->idstr
, new_block
->idstr
)) {
1723 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1731 /* Called with iothread lock held. */
1732 void qemu_ram_unset_idstr(RAMBlock
*block
)
1734 /* FIXME: arch_init.c assumes that this is not called throughout
1735 * migration. Ignore the problem since hot-unplug during migration
1736 * does not work anyway.
1739 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1743 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1745 return rb
->page_size
;
1748 /* Returns the largest size of page in use */
1749 size_t qemu_ram_pagesize_largest(void)
1754 RAMBLOCK_FOREACH(block
) {
1755 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1761 static int memory_try_enable_merging(void *addr
, size_t len
)
1763 if (!machine_mem_merge(current_machine
)) {
1764 /* disabled by the user */
1768 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1771 /* Only legal before guest might have detected the memory size: e.g. on
1772 * incoming migration, or right after reset.
1774 * As memory core doesn't know how is memory accessed, it is up to
1775 * resize callback to update device state and/or add assertions to detect
1776 * misuse, if necessary.
1778 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1782 newsize
= HOST_PAGE_ALIGN(newsize
);
1784 if (block
->used_length
== newsize
) {
1788 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1789 error_setg_errno(errp
, EINVAL
,
1790 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1791 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1792 newsize
, block
->used_length
);
1796 if (block
->max_length
< newsize
) {
1797 error_setg_errno(errp
, EINVAL
,
1798 "Length too large: %s: 0x" RAM_ADDR_FMT
1799 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1800 newsize
, block
->max_length
);
1804 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1805 block
->used_length
= newsize
;
1806 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1808 memory_region_set_size(block
->mr
, newsize
);
1809 if (block
->resized
) {
1810 block
->resized(block
->idstr
, newsize
, block
->host
);
1815 /* Called with ram_list.mutex held */
1816 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1817 ram_addr_t new_ram_size
)
1819 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1820 DIRTY_MEMORY_BLOCK_SIZE
);
1821 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1822 DIRTY_MEMORY_BLOCK_SIZE
);
1825 /* Only need to extend if block count increased */
1826 if (new_num_blocks
<= old_num_blocks
) {
1830 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1831 DirtyMemoryBlocks
*old_blocks
;
1832 DirtyMemoryBlocks
*new_blocks
;
1835 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1836 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1837 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1839 if (old_num_blocks
) {
1840 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1841 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1844 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1845 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1848 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1851 g_free_rcu(old_blocks
, rcu
);
1856 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1859 RAMBlock
*last_block
= NULL
;
1860 ram_addr_t old_ram_size
, new_ram_size
;
1863 old_ram_size
= last_ram_page();
1865 qemu_mutex_lock_ramlist();
1866 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1868 if (!new_block
->host
) {
1869 if (xen_enabled()) {
1870 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1871 new_block
->mr
, &err
);
1873 error_propagate(errp
, err
);
1874 qemu_mutex_unlock_ramlist();
1878 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1879 &new_block
->mr
->align
);
1880 if (!new_block
->host
) {
1881 error_setg_errno(errp
, errno
,
1882 "cannot set up guest memory '%s'",
1883 memory_region_name(new_block
->mr
));
1884 qemu_mutex_unlock_ramlist();
1887 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1891 new_ram_size
= MAX(old_ram_size
,
1892 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1893 if (new_ram_size
> old_ram_size
) {
1894 dirty_memory_extend(old_ram_size
, new_ram_size
);
1896 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1897 * QLIST (which has an RCU-friendly variant) does not have insertion at
1898 * tail, so save the last element in last_block.
1900 RAMBLOCK_FOREACH(block
) {
1902 if (block
->max_length
< new_block
->max_length
) {
1907 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1908 } else if (last_block
) {
1909 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1910 } else { /* list is empty */
1911 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1913 ram_list
.mru_block
= NULL
;
1915 /* Write list before version */
1918 qemu_mutex_unlock_ramlist();
1920 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1921 new_block
->used_length
,
1924 if (new_block
->host
) {
1925 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1926 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1927 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1928 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1929 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1934 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1935 bool share
, const char *mem_path
,
1938 RAMBlock
*new_block
;
1939 Error
*local_err
= NULL
;
1941 if (xen_enabled()) {
1942 error_setg(errp
, "-mem-path not supported with Xen");
1946 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1948 * file_ram_alloc() needs to allocate just like
1949 * phys_mem_alloc, but we haven't bothered to provide
1953 "-mem-path not supported with this accelerator");
1957 size
= HOST_PAGE_ALIGN(size
);
1958 new_block
= g_malloc0(sizeof(*new_block
));
1960 new_block
->used_length
= size
;
1961 new_block
->max_length
= size
;
1962 new_block
->flags
= share
? RAM_SHARED
: 0;
1963 new_block
->host
= file_ram_alloc(new_block
, size
,
1965 if (!new_block
->host
) {
1970 ram_block_add(new_block
, &local_err
);
1973 error_propagate(errp
, local_err
);
1981 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1982 void (*resized
)(const char*,
1985 void *host
, bool resizeable
,
1986 MemoryRegion
*mr
, Error
**errp
)
1988 RAMBlock
*new_block
;
1989 Error
*local_err
= NULL
;
1991 size
= HOST_PAGE_ALIGN(size
);
1992 max_size
= HOST_PAGE_ALIGN(max_size
);
1993 new_block
= g_malloc0(sizeof(*new_block
));
1995 new_block
->resized
= resized
;
1996 new_block
->used_length
= size
;
1997 new_block
->max_length
= max_size
;
1998 assert(max_size
>= size
);
2000 new_block
->page_size
= getpagesize();
2001 new_block
->host
= host
;
2003 new_block
->flags
|= RAM_PREALLOC
;
2006 new_block
->flags
|= RAM_RESIZEABLE
;
2008 ram_block_add(new_block
, &local_err
);
2011 error_propagate(errp
, local_err
);
2017 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2018 MemoryRegion
*mr
, Error
**errp
)
2020 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
2023 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
2025 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
2028 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2029 void (*resized
)(const char*,
2032 MemoryRegion
*mr
, Error
**errp
)
2034 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
2037 static void reclaim_ramblock(RAMBlock
*block
)
2039 if (block
->flags
& RAM_PREALLOC
) {
2041 } else if (xen_enabled()) {
2042 xen_invalidate_map_cache_entry(block
->host
);
2044 } else if (block
->fd
>= 0) {
2045 qemu_ram_munmap(block
->host
, block
->max_length
);
2049 qemu_anon_ram_free(block
->host
, block
->max_length
);
2054 void qemu_ram_free(RAMBlock
*block
)
2061 ram_block_notify_remove(block
->host
, block
->max_length
);
2064 qemu_mutex_lock_ramlist();
2065 QLIST_REMOVE_RCU(block
, next
);
2066 ram_list
.mru_block
= NULL
;
2067 /* Write list before version */
2070 call_rcu(block
, reclaim_ramblock
, rcu
);
2071 qemu_mutex_unlock_ramlist();
2075 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2082 RAMBLOCK_FOREACH(block
) {
2083 offset
= addr
- block
->offset
;
2084 if (offset
< block
->max_length
) {
2085 vaddr
= ramblock_ptr(block
, offset
);
2086 if (block
->flags
& RAM_PREALLOC
) {
2088 } else if (xen_enabled()) {
2092 if (block
->fd
>= 0) {
2093 flags
|= (block
->flags
& RAM_SHARED
?
2094 MAP_SHARED
: MAP_PRIVATE
);
2095 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2096 flags
, block
->fd
, offset
);
2099 * Remap needs to match alloc. Accelerators that
2100 * set phys_mem_alloc never remap. If they did,
2101 * we'd need a remap hook here.
2103 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2105 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2106 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2109 if (area
!= vaddr
) {
2110 fprintf(stderr
, "Could not remap addr: "
2111 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2115 memory_try_enable_merging(vaddr
, length
);
2116 qemu_ram_setup_dump(vaddr
, length
);
2121 #endif /* !_WIN32 */
2123 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2124 * This should not be used for general purpose DMA. Use address_space_map
2125 * or address_space_rw instead. For local memory (e.g. video ram) that the
2126 * device owns, use memory_region_get_ram_ptr.
2128 * Called within RCU critical section.
2130 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2132 RAMBlock
*block
= ram_block
;
2134 if (block
== NULL
) {
2135 block
= qemu_get_ram_block(addr
);
2136 addr
-= block
->offset
;
2139 if (xen_enabled() && block
->host
== NULL
) {
2140 /* We need to check if the requested address is in the RAM
2141 * because we don't want to map the entire memory in QEMU.
2142 * In that case just map until the end of the page.
2144 if (block
->offset
== 0) {
2145 return xen_map_cache(addr
, 0, 0, false);
2148 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2150 return ramblock_ptr(block
, addr
);
2153 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2154 * but takes a size argument.
2156 * Called within RCU critical section.
2158 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2161 RAMBlock
*block
= ram_block
;
2166 if (block
== NULL
) {
2167 block
= qemu_get_ram_block(addr
);
2168 addr
-= block
->offset
;
2170 *size
= MIN(*size
, block
->max_length
- addr
);
2172 if (xen_enabled() && block
->host
== NULL
) {
2173 /* We need to check if the requested address is in the RAM
2174 * because we don't want to map the entire memory in QEMU.
2175 * In that case just map the requested area.
2177 if (block
->offset
== 0) {
2178 return xen_map_cache(addr
, *size
, 1, true);
2181 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, true);
2184 return ramblock_ptr(block
, addr
);
2188 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2191 * ptr: Host pointer to look up
2192 * round_offset: If true round the result offset down to a page boundary
2193 * *ram_addr: set to result ram_addr
2194 * *offset: set to result offset within the RAMBlock
2196 * Returns: RAMBlock (or NULL if not found)
2198 * By the time this function returns, the returned pointer is not protected
2199 * by RCU anymore. If the caller is not within an RCU critical section and
2200 * does not hold the iothread lock, it must have other means of protecting the
2201 * pointer, such as a reference to the region that includes the incoming
2204 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2208 uint8_t *host
= ptr
;
2210 if (xen_enabled()) {
2211 ram_addr_t ram_addr
;
2213 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2214 block
= qemu_get_ram_block(ram_addr
);
2216 *offset
= ram_addr
- block
->offset
;
2223 block
= atomic_rcu_read(&ram_list
.mru_block
);
2224 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2228 RAMBLOCK_FOREACH(block
) {
2229 /* This case append when the block is not mapped. */
2230 if (block
->host
== NULL
) {
2233 if (host
- block
->host
< block
->max_length
) {
2242 *offset
= (host
- block
->host
);
2244 *offset
&= TARGET_PAGE_MASK
;
2251 * Finds the named RAMBlock
2253 * name: The name of RAMBlock to find
2255 * Returns: RAMBlock (or NULL if not found)
2257 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2261 RAMBLOCK_FOREACH(block
) {
2262 if (!strcmp(name
, block
->idstr
)) {
2270 /* Some of the softmmu routines need to translate from a host pointer
2271 (typically a TLB entry) back to a ram offset. */
2272 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2277 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2279 return RAM_ADDR_INVALID
;
2282 return block
->offset
+ offset
;
2285 /* Called within RCU critical section. */
2286 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2287 uint64_t val
, unsigned size
)
2289 bool locked
= false;
2291 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2294 tb_invalidate_phys_page_fast(ram_addr
, size
);
2298 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2301 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2304 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2314 /* Set both VGA and migration bits for simplicity and to remove
2315 * the notdirty callback faster.
2317 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2318 DIRTY_CLIENTS_NOCODE
);
2319 /* we remove the notdirty callback only if the code has been
2321 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2322 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2326 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2327 unsigned size
, bool is_write
)
2332 static const MemoryRegionOps notdirty_mem_ops
= {
2333 .write
= notdirty_mem_write
,
2334 .valid
.accepts
= notdirty_mem_accepts
,
2335 .endianness
= DEVICE_NATIVE_ENDIAN
,
2338 /* Generate a debug exception if a watchpoint has been hit. */
2339 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2341 CPUState
*cpu
= current_cpu
;
2342 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2343 CPUArchState
*env
= cpu
->env_ptr
;
2344 target_ulong pc
, cs_base
;
2349 if (cpu
->watchpoint_hit
) {
2350 /* We re-entered the check after replacing the TB. Now raise
2351 * the debug interrupt so that is will trigger after the
2352 * current instruction. */
2353 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2356 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2357 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2358 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2359 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2360 && (wp
->flags
& flags
)) {
2361 if (flags
== BP_MEM_READ
) {
2362 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2364 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2366 wp
->hitaddr
= vaddr
;
2367 wp
->hitattrs
= attrs
;
2368 if (!cpu
->watchpoint_hit
) {
2369 if (wp
->flags
& BP_CPU
&&
2370 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2371 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2374 cpu
->watchpoint_hit
= wp
;
2376 /* Both tb_lock and iothread_mutex will be reset when
2377 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2378 * back into the cpu_exec main loop.
2381 tb_check_watchpoint(cpu
);
2382 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2383 cpu
->exception_index
= EXCP_DEBUG
;
2386 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2387 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2388 cpu_loop_exit_noexc(cpu
);
2392 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2397 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2398 so these check for a hit then pass through to the normal out-of-line
2400 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2401 unsigned size
, MemTxAttrs attrs
)
2405 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2406 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2408 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2411 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2414 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2417 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2425 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2426 uint64_t val
, unsigned size
,
2430 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2431 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2433 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2436 address_space_stb(as
, addr
, val
, attrs
, &res
);
2439 address_space_stw(as
, addr
, val
, attrs
, &res
);
2442 address_space_stl(as
, addr
, val
, attrs
, &res
);
2449 static const MemoryRegionOps watch_mem_ops
= {
2450 .read_with_attrs
= watch_mem_read
,
2451 .write_with_attrs
= watch_mem_write
,
2452 .endianness
= DEVICE_NATIVE_ENDIAN
,
2455 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2456 unsigned len
, MemTxAttrs attrs
)
2458 subpage_t
*subpage
= opaque
;
2462 #if defined(DEBUG_SUBPAGE)
2463 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2464 subpage
, len
, addr
);
2466 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2473 *data
= ldub_p(buf
);
2476 *data
= lduw_p(buf
);
2489 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2490 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2492 subpage_t
*subpage
= opaque
;
2495 #if defined(DEBUG_SUBPAGE)
2496 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2497 " value %"PRIx64
"\n",
2498 __func__
, subpage
, len
, addr
, value
);
2516 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2520 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2521 unsigned len
, bool is_write
)
2523 subpage_t
*subpage
= opaque
;
2524 #if defined(DEBUG_SUBPAGE)
2525 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2526 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2529 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2533 static const MemoryRegionOps subpage_ops
= {
2534 .read_with_attrs
= subpage_read
,
2535 .write_with_attrs
= subpage_write
,
2536 .impl
.min_access_size
= 1,
2537 .impl
.max_access_size
= 8,
2538 .valid
.min_access_size
= 1,
2539 .valid
.max_access_size
= 8,
2540 .valid
.accepts
= subpage_accepts
,
2541 .endianness
= DEVICE_NATIVE_ENDIAN
,
2544 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2549 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2551 idx
= SUBPAGE_IDX(start
);
2552 eidx
= SUBPAGE_IDX(end
);
2553 #if defined(DEBUG_SUBPAGE)
2554 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2555 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2557 for (; idx
<= eidx
; idx
++) {
2558 mmio
->sub_section
[idx
] = section
;
2564 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2568 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2571 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2572 NULL
, TARGET_PAGE_SIZE
);
2573 mmio
->iomem
.subpage
= true;
2574 #if defined(DEBUG_SUBPAGE)
2575 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2576 mmio
, base
, TARGET_PAGE_SIZE
);
2578 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2583 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2587 MemoryRegionSection section
= {
2588 .address_space
= as
,
2590 .offset_within_address_space
= 0,
2591 .offset_within_region
= 0,
2592 .size
= int128_2_64(),
2595 return phys_section_add(map
, §ion
);
2598 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2600 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2601 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2602 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2603 MemoryRegionSection
*sections
= d
->map
.sections
;
2605 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2608 static void io_mem_init(void)
2610 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2611 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2614 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2615 * which can be called without the iothread mutex.
2617 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2619 memory_region_clear_global_locking(&io_mem_notdirty
);
2621 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2625 static void mem_begin(MemoryListener
*listener
)
2627 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2628 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2631 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2632 assert(n
== PHYS_SECTION_UNASSIGNED
);
2633 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2634 assert(n
== PHYS_SECTION_NOTDIRTY
);
2635 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2636 assert(n
== PHYS_SECTION_ROM
);
2637 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2638 assert(n
== PHYS_SECTION_WATCH
);
2640 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2642 as
->next_dispatch
= d
;
2645 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2647 phys_sections_free(&d
->map
);
2651 static void mem_commit(MemoryListener
*listener
)
2653 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2654 AddressSpaceDispatch
*cur
= as
->dispatch
;
2655 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2657 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2659 atomic_rcu_set(&as
->dispatch
, next
);
2661 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2665 static void tcg_commit(MemoryListener
*listener
)
2667 CPUAddressSpace
*cpuas
;
2668 AddressSpaceDispatch
*d
;
2670 /* since each CPU stores ram addresses in its TLB cache, we must
2671 reset the modified entries */
2672 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2673 cpu_reloading_memory_map();
2674 /* The CPU and TLB are protected by the iothread lock.
2675 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2676 * may have split the RCU critical section.
2678 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2679 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2680 tlb_flush(cpuas
->cpu
);
2683 void address_space_init_dispatch(AddressSpace
*as
)
2685 as
->dispatch
= NULL
;
2686 as
->dispatch_listener
= (MemoryListener
) {
2688 .commit
= mem_commit
,
2689 .region_add
= mem_add
,
2690 .region_nop
= mem_add
,
2693 memory_listener_register(&as
->dispatch_listener
, as
);
2696 void address_space_unregister(AddressSpace
*as
)
2698 memory_listener_unregister(&as
->dispatch_listener
);
2701 void address_space_destroy_dispatch(AddressSpace
*as
)
2703 AddressSpaceDispatch
*d
= as
->dispatch
;
2705 atomic_rcu_set(&as
->dispatch
, NULL
);
2707 call_rcu(d
, address_space_dispatch_free
, rcu
);
2711 static void memory_map_init(void)
2713 system_memory
= g_malloc(sizeof(*system_memory
));
2715 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2716 address_space_init(&address_space_memory
, system_memory
, "memory");
2718 system_io
= g_malloc(sizeof(*system_io
));
2719 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2721 address_space_init(&address_space_io
, system_io
, "I/O");
2724 MemoryRegion
*get_system_memory(void)
2726 return system_memory
;
2729 MemoryRegion
*get_system_io(void)
2734 #endif /* !defined(CONFIG_USER_ONLY) */
2736 /* physical memory access (slow version, mainly for debug) */
2737 #if defined(CONFIG_USER_ONLY)
2738 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2739 uint8_t *buf
, int len
, int is_write
)
2746 page
= addr
& TARGET_PAGE_MASK
;
2747 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2750 flags
= page_get_flags(page
);
2751 if (!(flags
& PAGE_VALID
))
2754 if (!(flags
& PAGE_WRITE
))
2756 /* XXX: this code should not depend on lock_user */
2757 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2760 unlock_user(p
, addr
, l
);
2762 if (!(flags
& PAGE_READ
))
2764 /* XXX: this code should not depend on lock_user */
2765 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2768 unlock_user(p
, addr
, 0);
2779 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2782 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2783 addr
+= memory_region_get_ram_addr(mr
);
2785 /* No early return if dirty_log_mask is or becomes 0, because
2786 * cpu_physical_memory_set_dirty_range will still call
2787 * xen_modified_memory.
2789 if (dirty_log_mask
) {
2791 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2793 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2795 tb_invalidate_phys_range(addr
, addr
+ length
);
2797 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2799 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2802 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2804 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2806 /* Regions are assumed to support 1-4 byte accesses unless
2807 otherwise specified. */
2808 if (access_size_max
== 0) {
2809 access_size_max
= 4;
2812 /* Bound the maximum access by the alignment of the address. */
2813 if (!mr
->ops
->impl
.unaligned
) {
2814 unsigned align_size_max
= addr
& -addr
;
2815 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2816 access_size_max
= align_size_max
;
2820 /* Don't attempt accesses larger than the maximum. */
2821 if (l
> access_size_max
) {
2822 l
= access_size_max
;
2829 static bool prepare_mmio_access(MemoryRegion
*mr
)
2831 bool unlocked
= !qemu_mutex_iothread_locked();
2832 bool release_lock
= false;
2834 if (unlocked
&& mr
->global_locking
) {
2835 qemu_mutex_lock_iothread();
2837 release_lock
= true;
2839 if (mr
->flush_coalesced_mmio
) {
2841 qemu_mutex_lock_iothread();
2843 qemu_flush_coalesced_mmio_buffer();
2845 qemu_mutex_unlock_iothread();
2849 return release_lock
;
2852 /* Called within RCU critical section. */
2853 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2856 int len
, hwaddr addr1
,
2857 hwaddr l
, MemoryRegion
*mr
)
2861 MemTxResult result
= MEMTX_OK
;
2862 bool release_lock
= false;
2865 if (!memory_access_is_direct(mr
, true)) {
2866 release_lock
|= prepare_mmio_access(mr
);
2867 l
= memory_access_size(mr
, l
, addr1
);
2868 /* XXX: could force current_cpu to NULL to avoid
2872 /* 64 bit write access */
2874 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2878 /* 32 bit write access */
2879 val
= (uint32_t)ldl_p(buf
);
2880 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2884 /* 16 bit write access */
2886 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2890 /* 8 bit write access */
2892 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2900 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2901 memcpy(ptr
, buf
, l
);
2902 invalidate_and_set_dirty(mr
, addr1
, l
);
2906 qemu_mutex_unlock_iothread();
2907 release_lock
= false;
2919 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2925 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2926 const uint8_t *buf
, int len
)
2931 MemTxResult result
= MEMTX_OK
;
2936 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2937 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2945 /* Called within RCU critical section. */
2946 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2947 MemTxAttrs attrs
, uint8_t *buf
,
2948 int len
, hwaddr addr1
, hwaddr l
,
2953 MemTxResult result
= MEMTX_OK
;
2954 bool release_lock
= false;
2957 if (!memory_access_is_direct(mr
, false)) {
2959 release_lock
|= prepare_mmio_access(mr
);
2960 l
= memory_access_size(mr
, l
, addr1
);
2963 /* 64 bit read access */
2964 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2969 /* 32 bit read access */
2970 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2975 /* 16 bit read access */
2976 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2981 /* 8 bit read access */
2982 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2991 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2992 memcpy(buf
, ptr
, l
);
2996 qemu_mutex_unlock_iothread();
2997 release_lock
= false;
3009 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3015 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3016 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3021 MemTxResult result
= MEMTX_OK
;
3026 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3027 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
3035 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3036 uint8_t *buf
, int len
, bool is_write
)
3039 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3041 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3045 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3046 int len
, int is_write
)
3048 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3049 buf
, len
, is_write
);
3052 enum write_rom_type
{
3057 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3058 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3068 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3070 if (!(memory_region_is_ram(mr
) ||
3071 memory_region_is_romd(mr
))) {
3072 l
= memory_access_size(mr
, l
, addr1
);
3075 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3078 memcpy(ptr
, buf
, l
);
3079 invalidate_and_set_dirty(mr
, addr1
, l
);
3082 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3093 /* used for ROM loading : can write in RAM and ROM */
3094 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3095 const uint8_t *buf
, int len
)
3097 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3100 void cpu_flush_icache_range(hwaddr start
, int len
)
3103 * This function should do the same thing as an icache flush that was
3104 * triggered from within the guest. For TCG we are always cache coherent,
3105 * so there is no need to flush anything. For KVM / Xen we need to flush
3106 * the host's instruction cache at least.
3108 if (tcg_enabled()) {
3112 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3113 start
, NULL
, len
, FLUSH_CACHE
);
3124 static BounceBuffer bounce
;
3126 typedef struct MapClient
{
3128 QLIST_ENTRY(MapClient
) link
;
3131 QemuMutex map_client_list_lock
;
3132 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3133 = QLIST_HEAD_INITIALIZER(map_client_list
);
3135 static void cpu_unregister_map_client_do(MapClient
*client
)
3137 QLIST_REMOVE(client
, link
);
3141 static void cpu_notify_map_clients_locked(void)
3145 while (!QLIST_EMPTY(&map_client_list
)) {
3146 client
= QLIST_FIRST(&map_client_list
);
3147 qemu_bh_schedule(client
->bh
);
3148 cpu_unregister_map_client_do(client
);
3152 void cpu_register_map_client(QEMUBH
*bh
)
3154 MapClient
*client
= g_malloc(sizeof(*client
));
3156 qemu_mutex_lock(&map_client_list_lock
);
3158 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3159 if (!atomic_read(&bounce
.in_use
)) {
3160 cpu_notify_map_clients_locked();
3162 qemu_mutex_unlock(&map_client_list_lock
);
3165 void cpu_exec_init_all(void)
3167 qemu_mutex_init(&ram_list
.mutex
);
3168 /* The data structures we set up here depend on knowing the page size,
3169 * so no more changes can be made after this point.
3170 * In an ideal world, nothing we did before we had finished the
3171 * machine setup would care about the target page size, and we could
3172 * do this much later, rather than requiring board models to state
3173 * up front what their requirements are.
3175 finalize_target_page_bits();
3178 qemu_mutex_init(&map_client_list_lock
);
3181 void cpu_unregister_map_client(QEMUBH
*bh
)
3185 qemu_mutex_lock(&map_client_list_lock
);
3186 QLIST_FOREACH(client
, &map_client_list
, link
) {
3187 if (client
->bh
== bh
) {
3188 cpu_unregister_map_client_do(client
);
3192 qemu_mutex_unlock(&map_client_list_lock
);
3195 static void cpu_notify_map_clients(void)
3197 qemu_mutex_lock(&map_client_list_lock
);
3198 cpu_notify_map_clients_locked();
3199 qemu_mutex_unlock(&map_client_list_lock
);
3202 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3210 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3211 if (!memory_access_is_direct(mr
, is_write
)) {
3212 l
= memory_access_size(mr
, l
, addr
);
3213 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3227 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3228 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3233 MemoryRegion
*this_mr
;
3239 if (target_len
== 0) {
3244 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3245 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3251 /* Map a physical memory region into a host virtual address.
3252 * May map a subset of the requested range, given by and returned in *plen.
3253 * May return NULL if resources needed to perform the mapping are exhausted.
3254 * Use only for reads OR writes - not for read-modify-write operations.
3255 * Use cpu_register_map_client() to know when retrying the map operation is
3256 * likely to succeed.
3258 void *address_space_map(AddressSpace
*as
,
3274 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3276 if (!memory_access_is_direct(mr
, is_write
)) {
3277 if (atomic_xchg(&bounce
.in_use
, true)) {
3281 /* Avoid unbounded allocations */
3282 l
= MIN(l
, TARGET_PAGE_SIZE
);
3283 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3287 memory_region_ref(mr
);
3290 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3296 return bounce
.buffer
;
3300 memory_region_ref(mr
);
3301 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3302 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3308 /* Unmaps a memory region previously mapped by address_space_map().
3309 * Will also mark the memory as dirty if is_write == 1. access_len gives
3310 * the amount of memory that was actually read or written by the caller.
3312 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3313 int is_write
, hwaddr access_len
)
3315 if (buffer
!= bounce
.buffer
) {
3319 mr
= memory_region_from_host(buffer
, &addr1
);
3322 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3324 if (xen_enabled()) {
3325 xen_invalidate_map_cache_entry(buffer
);
3327 memory_region_unref(mr
);
3331 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3332 bounce
.buffer
, access_len
);
3334 qemu_vfree(bounce
.buffer
);
3335 bounce
.buffer
= NULL
;
3336 memory_region_unref(bounce
.mr
);
3337 atomic_mb_set(&bounce
.in_use
, false);
3338 cpu_notify_map_clients();
3341 void *cpu_physical_memory_map(hwaddr addr
,
3345 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3348 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3349 int is_write
, hwaddr access_len
)
3351 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3354 #define ARG1_DECL AddressSpace *as
3357 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3358 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3359 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3360 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3361 #define RCU_READ_LOCK(...) rcu_read_lock()
3362 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3363 #include "memory_ldst.inc.c"
3365 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3377 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3383 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3388 #define ARG1_DECL MemoryRegionCache *cache
3390 #define SUFFIX _cached
3391 #define TRANSLATE(addr, ...) \
3392 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3393 #define IS_DIRECT(mr, is_write) true
3394 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3395 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3396 #define RCU_READ_LOCK() rcu_read_lock()
3397 #define RCU_READ_UNLOCK() rcu_read_unlock()
3398 #include "memory_ldst.inc.c"
3400 /* virtual memory access for debug (includes writing to ROM) */
3401 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3402 uint8_t *buf
, int len
, int is_write
)
3408 cpu_synchronize_state(cpu
);
3413 page
= addr
& TARGET_PAGE_MASK
;
3414 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3415 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3416 /* if no physical page mapped, return an error */
3417 if (phys_addr
== -1)
3419 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3422 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3424 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3427 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3428 MEMTXATTRS_UNSPECIFIED
,
3439 * Allows code that needs to deal with migration bitmaps etc to still be built
3440 * target independent.
3442 size_t qemu_target_page_size(void)
3444 return TARGET_PAGE_SIZE
;
3447 int qemu_target_page_bits(void)
3449 return TARGET_PAGE_BITS
;
3452 int qemu_target_page_bits_min(void)
3454 return TARGET_PAGE_BITS_MIN
;
3459 * A helper function for the _utterly broken_ virtio device model to find out if
3460 * it's running on a big endian machine. Don't do this at home kids!
3462 bool target_words_bigendian(void);
3463 bool target_words_bigendian(void)
3465 #if defined(TARGET_WORDS_BIGENDIAN)
3472 #ifndef CONFIG_USER_ONLY
3473 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3480 mr
= address_space_translate(&address_space_memory
,
3481 phys_addr
, &phys_addr
, &l
, false);
3483 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3488 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3494 RAMBLOCK_FOREACH(block
) {
3495 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3496 block
->used_length
, opaque
);
3506 * Unmap pages of memory from start to start+length such that
3507 * they a) read as 0, b) Trigger whatever fault mechanism
3508 * the OS provides for postcopy.
3509 * The pages must be unmapped by the end of the function.
3510 * Returns: 0 on success, none-0 on failure
3513 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3517 uint8_t *host_startaddr
= rb
->host
+ start
;
3519 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3520 error_report("ram_block_discard_range: Unaligned start address: %p",
3525 if ((start
+ length
) <= rb
->used_length
) {
3526 uint8_t *host_endaddr
= host_startaddr
+ length
;
3527 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3528 error_report("ram_block_discard_range: Unaligned end address: %p",
3533 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3535 if (rb
->page_size
== qemu_host_page_size
) {
3536 #if defined(CONFIG_MADVISE)
3537 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3540 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3543 /* Huge page case - unfortunately it can't do DONTNEED, but
3544 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3547 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3548 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3554 error_report("ram_block_discard_range: Failed to discard range "
3555 "%s:%" PRIx64
" +%zx (%d)",
3556 rb
->idstr
, start
, length
, ret
);
3559 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3560 "/%zx/" RAM_ADDR_FMT
")",
3561 rb
->idstr
, start
, length
, rb
->used_length
);