kvm: Rename kvm_arch_process_irqchip_events to async_events
[qemu.git] / target-i386 / kvm.c
blob0aef810418f2b7b033c65d3bf0d4d4a3897fc6d8
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
68 #endif
69 static int lm_capable_kernel;
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
93 return cpuid;
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
135 break;
137 break;
142 qemu_free(cpuid);
144 return ret;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157 #endif
158 { -1, -1 }
161 static int get_para_features(CPUState *env)
163 int i, features = 0;
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172 #endif
173 return features;
175 #endif /* CONFIG_KVM_PARA */
177 #ifdef KVM_CAP_MCE
178 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
181 int r;
183 r = kvm_check_extension(s, KVM_CAP_MCE);
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188 return -ENOSYS;
191 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
196 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
201 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState *env)
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
220 int r;
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
230 struct kvm_x86_mce_data
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
237 static void kvm_do_inject_x86_mce(void *_data)
239 struct kvm_x86_mce_data *data = _data;
240 int r;
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 if (kvm_mce_in_progress(data->env)) {
246 return;
250 r = kvm_set_mce(data->env, data->mce);
251 if (r < 0) {
252 perror("kvm_set_mce FAILED");
253 if (data->abort_on_error) {
254 abort();
259 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
276 static void kvm_mce_broadcast_rest(CPUState *env)
278 struct kvm_x86_mce mce = {
279 .bank = 1,
280 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
281 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
282 .addr = 0,
283 .misc = 0,
285 CPUState *cenv;
287 /* Broadcast MCA signal for processor version 06H_EH and above */
288 if (cpu_x86_support_mca_broadcast(env)) {
289 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
290 if (cenv == env) {
291 continue;
293 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
298 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
300 struct kvm_x86_mce mce = {
301 .bank = 9,
302 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
303 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
304 | MCI_STATUS_AR | 0x134,
305 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
306 .addr = paddr,
307 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
309 int r;
311 r = kvm_set_mce(env, &mce);
312 if (r < 0) {
313 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
314 abort();
316 kvm_mce_broadcast_rest(env);
319 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
321 struct kvm_x86_mce mce = {
322 .bank = 9,
323 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
324 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
325 | 0xc0,
326 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
327 .addr = paddr,
328 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
330 int r;
332 r = kvm_set_mce(env, &mce);
333 if (r < 0) {
334 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
335 abort();
337 kvm_mce_broadcast_rest(env);
340 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
342 struct kvm_x86_mce mce = {
343 .bank = 9,
344 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
345 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
346 | 0xc0,
347 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
348 .addr = paddr,
349 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
352 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
353 kvm_mce_broadcast_rest(env);
355 #endif /* KVM_CAP_MCE */
357 static void hardware_memory_error(void)
359 fprintf(stderr, "Hardware memory error!\n");
360 exit(1);
363 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
365 #ifdef KVM_CAP_MCE
366 void *vaddr;
367 ram_addr_t ram_addr;
368 target_phys_addr_t paddr;
370 if ((env->mcg_cap & MCG_SER_P) && addr
371 && (code == BUS_MCEERR_AR
372 || code == BUS_MCEERR_AO)) {
373 vaddr = (void *)addr;
374 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
375 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
376 fprintf(stderr, "Hardware memory error for memory used by "
377 "QEMU itself instead of guest system!\n");
378 /* Hope we are lucky for AO MCE */
379 if (code == BUS_MCEERR_AO) {
380 return 0;
381 } else {
382 hardware_memory_error();
386 if (code == BUS_MCEERR_AR) {
387 /* Fake an Intel architectural Data Load SRAR UCR */
388 kvm_mce_inj_srar_dataload(env, paddr);
389 } else {
391 * If there is an MCE excpetion being processed, ignore
392 * this SRAO MCE
394 if (!kvm_mce_in_progress(env)) {
395 /* Fake an Intel architectural Memory scrubbing UCR */
396 kvm_mce_inj_srao_memscrub(env, paddr);
399 } else
400 #endif /* KVM_CAP_MCE */
402 if (code == BUS_MCEERR_AO) {
403 return 0;
404 } else if (code == BUS_MCEERR_AR) {
405 hardware_memory_error();
406 } else {
407 return 1;
410 return 0;
413 int kvm_arch_on_sigbus(int code, void *addr)
415 #ifdef KVM_CAP_MCE
416 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
417 void *vaddr;
418 ram_addr_t ram_addr;
419 target_phys_addr_t paddr;
421 /* Hope we are lucky for AO MCE */
422 vaddr = addr;
423 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
424 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
425 &paddr)) {
426 fprintf(stderr, "Hardware memory error for memory used by "
427 "QEMU itself instead of guest system!: %p\n", addr);
428 return 0;
430 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
431 } else
432 #endif /* KVM_CAP_MCE */
434 if (code == BUS_MCEERR_AO) {
435 return 0;
436 } else if (code == BUS_MCEERR_AR) {
437 hardware_memory_error();
438 } else {
439 return 1;
442 return 0;
445 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
446 uint64_t mcg_status, uint64_t addr, uint64_t misc,
447 int flag)
449 #ifdef KVM_CAP_MCE
450 struct kvm_x86_mce mce = {
451 .bank = bank,
452 .status = status,
453 .mcg_status = mcg_status,
454 .addr = addr,
455 .misc = misc,
458 if (flag & MCE_BROADCAST) {
459 kvm_mce_broadcast_rest(cenv);
462 kvm_inject_x86_mce_on(cenv, &mce, flag);
463 #else /* !KVM_CAP_MCE*/
464 if (flag & ABORT_ON_ERROR) {
465 abort();
467 #endif /* !KVM_CAP_MCE*/
470 static void cpu_update_state(void *opaque, int running, int reason)
472 CPUState *env = opaque;
474 if (running) {
475 env->tsc_valid = false;
479 int kvm_arch_init_vcpu(CPUState *env)
481 struct {
482 struct kvm_cpuid2 cpuid;
483 struct kvm_cpuid_entry2 entries[100];
484 } __attribute__((packed)) cpuid_data;
485 uint32_t limit, i, j, cpuid_i;
486 uint32_t unused;
487 struct kvm_cpuid_entry2 *c;
488 #ifdef CONFIG_KVM_PARA
489 uint32_t signature[3];
490 #endif
492 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
494 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
495 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
496 env->cpuid_ext_features |= i;
498 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
499 0, R_EDX);
500 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
501 0, R_ECX);
502 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
503 0, R_EDX);
506 cpuid_i = 0;
508 #ifdef CONFIG_KVM_PARA
509 /* Paravirtualization CPUIDs */
510 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
511 c = &cpuid_data.entries[cpuid_i++];
512 memset(c, 0, sizeof(*c));
513 c->function = KVM_CPUID_SIGNATURE;
514 c->eax = 0;
515 c->ebx = signature[0];
516 c->ecx = signature[1];
517 c->edx = signature[2];
519 c = &cpuid_data.entries[cpuid_i++];
520 memset(c, 0, sizeof(*c));
521 c->function = KVM_CPUID_FEATURES;
522 c->eax = env->cpuid_kvm_features & get_para_features(env);
523 #endif
525 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
527 for (i = 0; i <= limit; i++) {
528 c = &cpuid_data.entries[cpuid_i++];
530 switch (i) {
531 case 2: {
532 /* Keep reading function 2 till all the input is received */
533 int times;
535 c->function = i;
536 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
537 KVM_CPUID_FLAG_STATE_READ_NEXT;
538 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
539 times = c->eax & 0xff;
541 for (j = 1; j < times; ++j) {
542 c = &cpuid_data.entries[cpuid_i++];
543 c->function = i;
544 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
545 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
547 break;
549 case 4:
550 case 0xb:
551 case 0xd:
552 for (j = 0; ; j++) {
553 c->function = i;
554 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
555 c->index = j;
556 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
558 if (i == 4 && c->eax == 0) {
559 break;
561 if (i == 0xb && !(c->ecx & 0xff00)) {
562 break;
564 if (i == 0xd && c->eax == 0) {
565 break;
567 c = &cpuid_data.entries[cpuid_i++];
569 break;
570 default:
571 c->function = i;
572 c->flags = 0;
573 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
574 break;
577 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
579 for (i = 0x80000000; i <= limit; i++) {
580 c = &cpuid_data.entries[cpuid_i++];
582 c->function = i;
583 c->flags = 0;
584 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
587 cpuid_data.cpuid.nent = cpuid_i;
589 #ifdef KVM_CAP_MCE
590 if (((env->cpuid_version >> 8)&0xF) >= 6
591 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
592 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
593 uint64_t mcg_cap;
594 int banks;
596 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
597 perror("kvm_get_mce_cap_supported FAILED");
598 } else {
599 if (banks > MCE_BANKS_DEF)
600 banks = MCE_BANKS_DEF;
601 mcg_cap &= MCE_CAP_DEF;
602 mcg_cap |= banks;
603 if (kvm_setup_mce(env, &mcg_cap)) {
604 perror("kvm_setup_mce FAILED");
605 } else {
606 env->mcg_cap = mcg_cap;
610 #endif
612 qemu_add_vm_change_state_handler(cpu_update_state, env);
614 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
617 void kvm_arch_reset_vcpu(CPUState *env)
619 env->exception_injected = -1;
620 env->interrupt_injected = -1;
621 env->xcr0 = 1;
622 if (kvm_irqchip_in_kernel()) {
623 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
624 KVM_MP_STATE_UNINITIALIZED;
625 } else {
626 env->mp_state = KVM_MP_STATE_RUNNABLE;
630 static int kvm_get_supported_msrs(KVMState *s)
632 static int kvm_supported_msrs;
633 int ret = 0;
635 /* first time */
636 if (kvm_supported_msrs == 0) {
637 struct kvm_msr_list msr_list, *kvm_msr_list;
639 kvm_supported_msrs = -1;
641 /* Obtain MSR list from KVM. These are the MSRs that we must
642 * save/restore */
643 msr_list.nmsrs = 0;
644 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
645 if (ret < 0 && ret != -E2BIG) {
646 return ret;
648 /* Old kernel modules had a bug and could write beyond the provided
649 memory. Allocate at least a safe amount of 1K. */
650 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
651 msr_list.nmsrs *
652 sizeof(msr_list.indices[0])));
654 kvm_msr_list->nmsrs = msr_list.nmsrs;
655 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
656 if (ret >= 0) {
657 int i;
659 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
660 if (kvm_msr_list->indices[i] == MSR_STAR) {
661 has_msr_star = true;
662 continue;
664 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
665 has_msr_hsave_pa = true;
666 continue;
671 free(kvm_msr_list);
674 return ret;
677 int kvm_arch_init(KVMState *s)
679 uint64_t identity_base = 0xfffbc000;
680 int ret;
681 struct utsname utsname;
683 ret = kvm_get_supported_msrs(s);
684 if (ret < 0) {
685 return ret;
688 uname(&utsname);
689 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
692 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
693 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
694 * Since these must be part of guest physical memory, we need to allocate
695 * them, both by setting their start addresses in the kernel and by
696 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
698 * Older KVM versions may not support setting the identity map base. In
699 * that case we need to stick with the default, i.e. a 256K maximum BIOS
700 * size.
702 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
703 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
704 /* Allows up to 16M BIOSes. */
705 identity_base = 0xfeffc000;
707 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
708 if (ret < 0) {
709 return ret;
712 #endif
713 /* Set TSS base one page after EPT identity map. */
714 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
715 if (ret < 0) {
716 return ret;
719 /* Tell fw_cfg to notify the BIOS to reserve the range. */
720 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
721 if (ret < 0) {
722 fprintf(stderr, "e820_add_entry() table is full\n");
723 return ret;
726 return 0;
729 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = 3;
735 lhs->present = 1;
736 lhs->dpl = 3;
737 lhs->db = 0;
738 lhs->s = 1;
739 lhs->l = 0;
740 lhs->g = 0;
741 lhs->avl = 0;
742 lhs->unusable = 0;
745 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
747 unsigned flags = rhs->flags;
748 lhs->selector = rhs->selector;
749 lhs->base = rhs->base;
750 lhs->limit = rhs->limit;
751 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
752 lhs->present = (flags & DESC_P_MASK) != 0;
753 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
754 lhs->db = (flags >> DESC_B_SHIFT) & 1;
755 lhs->s = (flags & DESC_S_MASK) != 0;
756 lhs->l = (flags >> DESC_L_SHIFT) & 1;
757 lhs->g = (flags & DESC_G_MASK) != 0;
758 lhs->avl = (flags & DESC_AVL_MASK) != 0;
759 lhs->unusable = 0;
762 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
764 lhs->selector = rhs->selector;
765 lhs->base = rhs->base;
766 lhs->limit = rhs->limit;
767 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
768 (rhs->present * DESC_P_MASK) |
769 (rhs->dpl << DESC_DPL_SHIFT) |
770 (rhs->db << DESC_B_SHIFT) |
771 (rhs->s * DESC_S_MASK) |
772 (rhs->l << DESC_L_SHIFT) |
773 (rhs->g * DESC_G_MASK) |
774 (rhs->avl * DESC_AVL_MASK);
777 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
779 if (set) {
780 *kvm_reg = *qemu_reg;
781 } else {
782 *qemu_reg = *kvm_reg;
786 static int kvm_getput_regs(CPUState *env, int set)
788 struct kvm_regs regs;
789 int ret = 0;
791 if (!set) {
792 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
793 if (ret < 0) {
794 return ret;
798 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
799 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
800 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
801 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
802 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
803 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
804 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
805 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
806 #ifdef TARGET_X86_64
807 kvm_getput_reg(&regs.r8, &env->regs[8], set);
808 kvm_getput_reg(&regs.r9, &env->regs[9], set);
809 kvm_getput_reg(&regs.r10, &env->regs[10], set);
810 kvm_getput_reg(&regs.r11, &env->regs[11], set);
811 kvm_getput_reg(&regs.r12, &env->regs[12], set);
812 kvm_getput_reg(&regs.r13, &env->regs[13], set);
813 kvm_getput_reg(&regs.r14, &env->regs[14], set);
814 kvm_getput_reg(&regs.r15, &env->regs[15], set);
815 #endif
817 kvm_getput_reg(&regs.rflags, &env->eflags, set);
818 kvm_getput_reg(&regs.rip, &env->eip, set);
820 if (set) {
821 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
824 return ret;
827 static int kvm_put_fpu(CPUState *env)
829 struct kvm_fpu fpu;
830 int i;
832 memset(&fpu, 0, sizeof fpu);
833 fpu.fsw = env->fpus & ~(7 << 11);
834 fpu.fsw |= (env->fpstt & 7) << 11;
835 fpu.fcw = env->fpuc;
836 for (i = 0; i < 8; ++i) {
837 fpu.ftwx |= (!env->fptags[i]) << i;
839 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
840 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
841 fpu.mxcsr = env->mxcsr;
843 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
846 #ifdef KVM_CAP_XSAVE
847 #define XSAVE_CWD_RIP 2
848 #define XSAVE_CWD_RDP 4
849 #define XSAVE_MXCSR 6
850 #define XSAVE_ST_SPACE 8
851 #define XSAVE_XMM_SPACE 40
852 #define XSAVE_XSTATE_BV 128
853 #define XSAVE_YMMH_SPACE 144
854 #endif
856 static int kvm_put_xsave(CPUState *env)
858 #ifdef KVM_CAP_XSAVE
859 int i, r;
860 struct kvm_xsave* xsave;
861 uint16_t cwd, swd, twd, fop;
863 if (!kvm_has_xsave()) {
864 return kvm_put_fpu(env);
867 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
868 memset(xsave, 0, sizeof(struct kvm_xsave));
869 cwd = swd = twd = fop = 0;
870 swd = env->fpus & ~(7 << 11);
871 swd |= (env->fpstt & 7) << 11;
872 cwd = env->fpuc;
873 for (i = 0; i < 8; ++i) {
874 twd |= (!env->fptags[i]) << i;
876 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
877 xsave->region[1] = (uint32_t)(fop << 16) + twd;
878 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
879 sizeof env->fpregs);
880 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
881 sizeof env->xmm_regs);
882 xsave->region[XSAVE_MXCSR] = env->mxcsr;
883 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
884 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
885 sizeof env->ymmh_regs);
886 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
887 qemu_free(xsave);
888 return r;
889 #else
890 return kvm_put_fpu(env);
891 #endif
894 static int kvm_put_xcrs(CPUState *env)
896 #ifdef KVM_CAP_XCRS
897 struct kvm_xcrs xcrs;
899 if (!kvm_has_xcrs()) {
900 return 0;
903 xcrs.nr_xcrs = 1;
904 xcrs.flags = 0;
905 xcrs.xcrs[0].xcr = 0;
906 xcrs.xcrs[0].value = env->xcr0;
907 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
908 #else
909 return 0;
910 #endif
913 static int kvm_put_sregs(CPUState *env)
915 struct kvm_sregs sregs;
917 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
918 if (env->interrupt_injected >= 0) {
919 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
920 (uint64_t)1 << (env->interrupt_injected % 64);
923 if ((env->eflags & VM_MASK)) {
924 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
925 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
926 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
927 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
928 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
929 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
930 } else {
931 set_seg(&sregs.cs, &env->segs[R_CS]);
932 set_seg(&sregs.ds, &env->segs[R_DS]);
933 set_seg(&sregs.es, &env->segs[R_ES]);
934 set_seg(&sregs.fs, &env->segs[R_FS]);
935 set_seg(&sregs.gs, &env->segs[R_GS]);
936 set_seg(&sregs.ss, &env->segs[R_SS]);
939 set_seg(&sregs.tr, &env->tr);
940 set_seg(&sregs.ldt, &env->ldt);
942 sregs.idt.limit = env->idt.limit;
943 sregs.idt.base = env->idt.base;
944 sregs.gdt.limit = env->gdt.limit;
945 sregs.gdt.base = env->gdt.base;
947 sregs.cr0 = env->cr[0];
948 sregs.cr2 = env->cr[2];
949 sregs.cr3 = env->cr[3];
950 sregs.cr4 = env->cr[4];
952 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
953 sregs.apic_base = cpu_get_apic_base(env->apic_state);
955 sregs.efer = env->efer;
957 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
960 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
961 uint32_t index, uint64_t value)
963 entry->index = index;
964 entry->data = value;
967 static int kvm_put_msrs(CPUState *env, int level)
969 struct {
970 struct kvm_msrs info;
971 struct kvm_msr_entry entries[100];
972 } msr_data;
973 struct kvm_msr_entry *msrs = msr_data.entries;
974 int n = 0;
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
977 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
978 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
979 if (has_msr_star) {
980 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
982 if (has_msr_hsave_pa) {
983 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
985 #ifdef TARGET_X86_64
986 if (lm_capable_kernel) {
987 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
988 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
989 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
990 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
992 #endif
993 if (level == KVM_PUT_FULL_STATE) {
995 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
996 * writeback. Until this is fixed, we only write the offset to SMP
997 * guests after migration, desynchronizing the VCPUs, but avoiding
998 * huge jump-backs that would occur without any writeback at all.
1000 if (smp_cpus == 1 || env->tsc != 0) {
1001 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1005 * The following paravirtual MSRs have side effects on the guest or are
1006 * too heavy for normal writeback. Limit them to reset or full state
1007 * updates.
1009 if (level >= KVM_PUT_RESET_STATE) {
1010 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1011 env->system_time_msr);
1012 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1013 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1014 if (has_msr_async_pf_en) {
1015 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1016 env->async_pf_en_msr);
1018 #endif
1020 #ifdef KVM_CAP_MCE
1021 if (env->mcg_cap) {
1022 int i;
1024 if (level == KVM_PUT_RESET_STATE) {
1025 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1026 } else if (level == KVM_PUT_FULL_STATE) {
1027 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1028 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1029 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1034 #endif
1036 msr_data.info.nmsrs = n;
1038 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1043 static int kvm_get_fpu(CPUState *env)
1045 struct kvm_fpu fpu;
1046 int i, ret;
1048 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1049 if (ret < 0) {
1050 return ret;
1053 env->fpstt = (fpu.fsw >> 11) & 7;
1054 env->fpus = fpu.fsw;
1055 env->fpuc = fpu.fcw;
1056 for (i = 0; i < 8; ++i) {
1057 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1059 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1060 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1061 env->mxcsr = fpu.mxcsr;
1063 return 0;
1066 static int kvm_get_xsave(CPUState *env)
1068 #ifdef KVM_CAP_XSAVE
1069 struct kvm_xsave* xsave;
1070 int ret, i;
1071 uint16_t cwd, swd, twd, fop;
1073 if (!kvm_has_xsave()) {
1074 return kvm_get_fpu(env);
1077 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1078 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1079 if (ret < 0) {
1080 qemu_free(xsave);
1081 return ret;
1084 cwd = (uint16_t)xsave->region[0];
1085 swd = (uint16_t)(xsave->region[0] >> 16);
1086 twd = (uint16_t)xsave->region[1];
1087 fop = (uint16_t)(xsave->region[1] >> 16);
1088 env->fpstt = (swd >> 11) & 7;
1089 env->fpus = swd;
1090 env->fpuc = cwd;
1091 for (i = 0; i < 8; ++i) {
1092 env->fptags[i] = !((twd >> i) & 1);
1094 env->mxcsr = xsave->region[XSAVE_MXCSR];
1095 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1096 sizeof env->fpregs);
1097 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1098 sizeof env->xmm_regs);
1099 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1100 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1101 sizeof env->ymmh_regs);
1102 qemu_free(xsave);
1103 return 0;
1104 #else
1105 return kvm_get_fpu(env);
1106 #endif
1109 static int kvm_get_xcrs(CPUState *env)
1111 #ifdef KVM_CAP_XCRS
1112 int i, ret;
1113 struct kvm_xcrs xcrs;
1115 if (!kvm_has_xcrs()) {
1116 return 0;
1119 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1120 if (ret < 0) {
1121 return ret;
1124 for (i = 0; i < xcrs.nr_xcrs; i++) {
1125 /* Only support xcr0 now */
1126 if (xcrs.xcrs[0].xcr == 0) {
1127 env->xcr0 = xcrs.xcrs[0].value;
1128 break;
1131 return 0;
1132 #else
1133 return 0;
1134 #endif
1137 static int kvm_get_sregs(CPUState *env)
1139 struct kvm_sregs sregs;
1140 uint32_t hflags;
1141 int bit, i, ret;
1143 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1144 if (ret < 0) {
1145 return ret;
1148 /* There can only be one pending IRQ set in the bitmap at a time, so try
1149 to find it and save its number instead (-1 for none). */
1150 env->interrupt_injected = -1;
1151 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1152 if (sregs.interrupt_bitmap[i]) {
1153 bit = ctz64(sregs.interrupt_bitmap[i]);
1154 env->interrupt_injected = i * 64 + bit;
1155 break;
1159 get_seg(&env->segs[R_CS], &sregs.cs);
1160 get_seg(&env->segs[R_DS], &sregs.ds);
1161 get_seg(&env->segs[R_ES], &sregs.es);
1162 get_seg(&env->segs[R_FS], &sregs.fs);
1163 get_seg(&env->segs[R_GS], &sregs.gs);
1164 get_seg(&env->segs[R_SS], &sregs.ss);
1166 get_seg(&env->tr, &sregs.tr);
1167 get_seg(&env->ldt, &sregs.ldt);
1169 env->idt.limit = sregs.idt.limit;
1170 env->idt.base = sregs.idt.base;
1171 env->gdt.limit = sregs.gdt.limit;
1172 env->gdt.base = sregs.gdt.base;
1174 env->cr[0] = sregs.cr0;
1175 env->cr[2] = sregs.cr2;
1176 env->cr[3] = sregs.cr3;
1177 env->cr[4] = sregs.cr4;
1179 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1181 env->efer = sregs.efer;
1182 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1184 #define HFLAG_COPY_MASK \
1185 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1186 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1187 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1188 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1190 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1191 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1192 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1193 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1194 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1195 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1196 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1198 if (env->efer & MSR_EFER_LMA) {
1199 hflags |= HF_LMA_MASK;
1202 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1203 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1204 } else {
1205 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1206 (DESC_B_SHIFT - HF_CS32_SHIFT);
1207 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1208 (DESC_B_SHIFT - HF_SS32_SHIFT);
1209 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1210 !(hflags & HF_CS32_MASK)) {
1211 hflags |= HF_ADDSEG_MASK;
1212 } else {
1213 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1214 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1217 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1219 return 0;
1222 static int kvm_get_msrs(CPUState *env)
1224 struct {
1225 struct kvm_msrs info;
1226 struct kvm_msr_entry entries[100];
1227 } msr_data;
1228 struct kvm_msr_entry *msrs = msr_data.entries;
1229 int ret, i, n;
1231 n = 0;
1232 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1233 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1234 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1235 if (has_msr_star) {
1236 msrs[n++].index = MSR_STAR;
1238 if (has_msr_hsave_pa) {
1239 msrs[n++].index = MSR_VM_HSAVE_PA;
1242 if (!env->tsc_valid) {
1243 msrs[n++].index = MSR_IA32_TSC;
1244 env->tsc_valid = !vm_running;
1247 #ifdef TARGET_X86_64
1248 if (lm_capable_kernel) {
1249 msrs[n++].index = MSR_CSTAR;
1250 msrs[n++].index = MSR_KERNELGSBASE;
1251 msrs[n++].index = MSR_FMASK;
1252 msrs[n++].index = MSR_LSTAR;
1254 #endif
1255 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1256 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1257 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1258 if (has_msr_async_pf_en) {
1259 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1261 #endif
1263 #ifdef KVM_CAP_MCE
1264 if (env->mcg_cap) {
1265 msrs[n++].index = MSR_MCG_STATUS;
1266 msrs[n++].index = MSR_MCG_CTL;
1267 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1268 msrs[n++].index = MSR_MC0_CTL + i;
1271 #endif
1273 msr_data.info.nmsrs = n;
1274 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1275 if (ret < 0) {
1276 return ret;
1279 for (i = 0; i < ret; i++) {
1280 switch (msrs[i].index) {
1281 case MSR_IA32_SYSENTER_CS:
1282 env->sysenter_cs = msrs[i].data;
1283 break;
1284 case MSR_IA32_SYSENTER_ESP:
1285 env->sysenter_esp = msrs[i].data;
1286 break;
1287 case MSR_IA32_SYSENTER_EIP:
1288 env->sysenter_eip = msrs[i].data;
1289 break;
1290 case MSR_STAR:
1291 env->star = msrs[i].data;
1292 break;
1293 #ifdef TARGET_X86_64
1294 case MSR_CSTAR:
1295 env->cstar = msrs[i].data;
1296 break;
1297 case MSR_KERNELGSBASE:
1298 env->kernelgsbase = msrs[i].data;
1299 break;
1300 case MSR_FMASK:
1301 env->fmask = msrs[i].data;
1302 break;
1303 case MSR_LSTAR:
1304 env->lstar = msrs[i].data;
1305 break;
1306 #endif
1307 case MSR_IA32_TSC:
1308 env->tsc = msrs[i].data;
1309 break;
1310 case MSR_VM_HSAVE_PA:
1311 env->vm_hsave = msrs[i].data;
1312 break;
1313 case MSR_KVM_SYSTEM_TIME:
1314 env->system_time_msr = msrs[i].data;
1315 break;
1316 case MSR_KVM_WALL_CLOCK:
1317 env->wall_clock_msr = msrs[i].data;
1318 break;
1319 #ifdef KVM_CAP_MCE
1320 case MSR_MCG_STATUS:
1321 env->mcg_status = msrs[i].data;
1322 break;
1323 case MSR_MCG_CTL:
1324 env->mcg_ctl = msrs[i].data;
1325 break;
1326 #endif
1327 default:
1328 #ifdef KVM_CAP_MCE
1329 if (msrs[i].index >= MSR_MC0_CTL &&
1330 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1331 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1333 #endif
1334 break;
1335 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1336 case MSR_KVM_ASYNC_PF_EN:
1337 env->async_pf_en_msr = msrs[i].data;
1338 break;
1339 #endif
1343 return 0;
1346 static int kvm_put_mp_state(CPUState *env)
1348 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1350 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1353 static int kvm_get_mp_state(CPUState *env)
1355 struct kvm_mp_state mp_state;
1356 int ret;
1358 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1359 if (ret < 0) {
1360 return ret;
1362 env->mp_state = mp_state.mp_state;
1363 if (kvm_irqchip_in_kernel()) {
1364 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1366 return 0;
1369 static int kvm_put_vcpu_events(CPUState *env, int level)
1371 #ifdef KVM_CAP_VCPU_EVENTS
1372 struct kvm_vcpu_events events;
1374 if (!kvm_has_vcpu_events()) {
1375 return 0;
1378 events.exception.injected = (env->exception_injected >= 0);
1379 events.exception.nr = env->exception_injected;
1380 events.exception.has_error_code = env->has_error_code;
1381 events.exception.error_code = env->error_code;
1383 events.interrupt.injected = (env->interrupt_injected >= 0);
1384 events.interrupt.nr = env->interrupt_injected;
1385 events.interrupt.soft = env->soft_interrupt;
1387 events.nmi.injected = env->nmi_injected;
1388 events.nmi.pending = env->nmi_pending;
1389 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1391 events.sipi_vector = env->sipi_vector;
1393 events.flags = 0;
1394 if (level >= KVM_PUT_RESET_STATE) {
1395 events.flags |=
1396 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1399 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1400 #else
1401 return 0;
1402 #endif
1405 static int kvm_get_vcpu_events(CPUState *env)
1407 #ifdef KVM_CAP_VCPU_EVENTS
1408 struct kvm_vcpu_events events;
1409 int ret;
1411 if (!kvm_has_vcpu_events()) {
1412 return 0;
1415 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1416 if (ret < 0) {
1417 return ret;
1419 env->exception_injected =
1420 events.exception.injected ? events.exception.nr : -1;
1421 env->has_error_code = events.exception.has_error_code;
1422 env->error_code = events.exception.error_code;
1424 env->interrupt_injected =
1425 events.interrupt.injected ? events.interrupt.nr : -1;
1426 env->soft_interrupt = events.interrupt.soft;
1428 env->nmi_injected = events.nmi.injected;
1429 env->nmi_pending = events.nmi.pending;
1430 if (events.nmi.masked) {
1431 env->hflags2 |= HF2_NMI_MASK;
1432 } else {
1433 env->hflags2 &= ~HF2_NMI_MASK;
1436 env->sipi_vector = events.sipi_vector;
1437 #endif
1439 return 0;
1442 static int kvm_guest_debug_workarounds(CPUState *env)
1444 int ret = 0;
1445 #ifdef KVM_CAP_SET_GUEST_DEBUG
1446 unsigned long reinject_trap = 0;
1448 if (!kvm_has_vcpu_events()) {
1449 if (env->exception_injected == 1) {
1450 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1451 } else if (env->exception_injected == 3) {
1452 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1454 env->exception_injected = -1;
1458 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1459 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1460 * by updating the debug state once again if single-stepping is on.
1461 * Another reason to call kvm_update_guest_debug here is a pending debug
1462 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1463 * reinject them via SET_GUEST_DEBUG.
1465 if (reinject_trap ||
1466 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1467 ret = kvm_update_guest_debug(env, reinject_trap);
1469 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1470 return ret;
1473 static int kvm_put_debugregs(CPUState *env)
1475 #ifdef KVM_CAP_DEBUGREGS
1476 struct kvm_debugregs dbgregs;
1477 int i;
1479 if (!kvm_has_debugregs()) {
1480 return 0;
1483 for (i = 0; i < 4; i++) {
1484 dbgregs.db[i] = env->dr[i];
1486 dbgregs.dr6 = env->dr[6];
1487 dbgregs.dr7 = env->dr[7];
1488 dbgregs.flags = 0;
1490 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1491 #else
1492 return 0;
1493 #endif
1496 static int kvm_get_debugregs(CPUState *env)
1498 #ifdef KVM_CAP_DEBUGREGS
1499 struct kvm_debugregs dbgregs;
1500 int i, ret;
1502 if (!kvm_has_debugregs()) {
1503 return 0;
1506 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1507 if (ret < 0) {
1508 return ret;
1510 for (i = 0; i < 4; i++) {
1511 env->dr[i] = dbgregs.db[i];
1513 env->dr[4] = env->dr[6] = dbgregs.dr6;
1514 env->dr[5] = env->dr[7] = dbgregs.dr7;
1515 #endif
1517 return 0;
1520 int kvm_arch_put_registers(CPUState *env, int level)
1522 int ret;
1524 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1526 ret = kvm_getput_regs(env, 1);
1527 if (ret < 0) {
1528 return ret;
1530 ret = kvm_put_xsave(env);
1531 if (ret < 0) {
1532 return ret;
1534 ret = kvm_put_xcrs(env);
1535 if (ret < 0) {
1536 return ret;
1538 ret = kvm_put_sregs(env);
1539 if (ret < 0) {
1540 return ret;
1542 ret = kvm_put_msrs(env, level);
1543 if (ret < 0) {
1544 return ret;
1546 if (level >= KVM_PUT_RESET_STATE) {
1547 ret = kvm_put_mp_state(env);
1548 if (ret < 0) {
1549 return ret;
1552 ret = kvm_put_vcpu_events(env, level);
1553 if (ret < 0) {
1554 return ret;
1556 ret = kvm_put_debugregs(env);
1557 if (ret < 0) {
1558 return ret;
1560 /* must be last */
1561 ret = kvm_guest_debug_workarounds(env);
1562 if (ret < 0) {
1563 return ret;
1565 return 0;
1568 int kvm_arch_get_registers(CPUState *env)
1570 int ret;
1572 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1574 ret = kvm_getput_regs(env, 0);
1575 if (ret < 0) {
1576 return ret;
1578 ret = kvm_get_xsave(env);
1579 if (ret < 0) {
1580 return ret;
1582 ret = kvm_get_xcrs(env);
1583 if (ret < 0) {
1584 return ret;
1586 ret = kvm_get_sregs(env);
1587 if (ret < 0) {
1588 return ret;
1590 ret = kvm_get_msrs(env);
1591 if (ret < 0) {
1592 return ret;
1594 ret = kvm_get_mp_state(env);
1595 if (ret < 0) {
1596 return ret;
1598 ret = kvm_get_vcpu_events(env);
1599 if (ret < 0) {
1600 return ret;
1602 ret = kvm_get_debugregs(env);
1603 if (ret < 0) {
1604 return ret;
1606 return 0;
1609 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1611 int ret;
1613 /* Inject NMI */
1614 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1615 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1616 DPRINTF("injected NMI\n");
1617 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1618 if (ret < 0) {
1619 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1620 strerror(-ret));
1624 if (!kvm_irqchip_in_kernel()) {
1625 /* Force the VCPU out of its inner loop to process the INIT request */
1626 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1627 env->exit_request = 1;
1630 /* Try to inject an interrupt if the guest can accept it */
1631 if (run->ready_for_interrupt_injection &&
1632 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1633 (env->eflags & IF_MASK)) {
1634 int irq;
1636 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1637 irq = cpu_get_pic_interrupt(env);
1638 if (irq >= 0) {
1639 struct kvm_interrupt intr;
1641 intr.irq = irq;
1642 DPRINTF("injected interrupt %d\n", irq);
1643 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1644 if (ret < 0) {
1645 fprintf(stderr,
1646 "KVM: injection failed, interrupt lost (%s)\n",
1647 strerror(-ret));
1652 /* If we have an interrupt but the guest is not ready to receive an
1653 * interrupt, request an interrupt window exit. This will
1654 * cause a return to userspace as soon as the guest is ready to
1655 * receive interrupts. */
1656 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1657 run->request_interrupt_window = 1;
1658 } else {
1659 run->request_interrupt_window = 0;
1662 DPRINTF("setting tpr\n");
1663 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1667 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1669 if (run->if_flag) {
1670 env->eflags |= IF_MASK;
1671 } else {
1672 env->eflags &= ~IF_MASK;
1674 cpu_set_apic_tpr(env->apic_state, run->cr8);
1675 cpu_set_apic_base(env->apic_state, run->apic_base);
1678 int kvm_arch_process_async_events(CPUState *env)
1680 if (kvm_irqchip_in_kernel()) {
1681 return 0;
1684 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1685 env->halted = 0;
1687 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1688 kvm_cpu_synchronize_state(env);
1689 do_cpu_init(env);
1691 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1692 kvm_cpu_synchronize_state(env);
1693 do_cpu_sipi(env);
1696 return env->halted;
1699 static int kvm_handle_halt(CPUState *env)
1701 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1702 (env->eflags & IF_MASK)) &&
1703 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1704 env->halted = 1;
1705 return 0;
1708 return 1;
1711 static bool host_supports_vmx(void)
1713 uint32_t ecx, unused;
1715 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1716 return ecx & CPUID_EXT_VMX;
1719 #define VMX_INVALID_GUEST_STATE 0x80000021
1721 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1723 uint64_t code;
1724 int ret = 0;
1726 switch (run->exit_reason) {
1727 case KVM_EXIT_HLT:
1728 DPRINTF("handle_hlt\n");
1729 ret = kvm_handle_halt(env);
1730 break;
1731 case KVM_EXIT_SET_TPR:
1732 ret = 1;
1733 break;
1734 case KVM_EXIT_FAIL_ENTRY:
1735 code = run->fail_entry.hardware_entry_failure_reason;
1736 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1737 code);
1738 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1739 fprintf(stderr,
1740 "\nIf you're runnning a guest on an Intel machine without "
1741 "unrestricted mode\n"
1742 "support, the failure can be most likely due to the guest "
1743 "entering an invalid\n"
1744 "state for Intel VT. For example, the guest maybe running "
1745 "in big real mode\n"
1746 "which is not supported on less recent Intel processors."
1747 "\n\n");
1749 ret = -1;
1750 break;
1751 case KVM_EXIT_EXCEPTION:
1752 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1753 run->ex.exception, run->ex.error_code);
1754 ret = -1;
1755 break;
1756 default:
1757 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1758 ret = -1;
1759 break;
1762 return ret;
1765 #ifdef KVM_CAP_SET_GUEST_DEBUG
1766 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1768 static const uint8_t int3 = 0xcc;
1770 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1771 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1772 return -EINVAL;
1774 return 0;
1777 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1779 uint8_t int3;
1781 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1782 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1783 return -EINVAL;
1785 return 0;
1788 static struct {
1789 target_ulong addr;
1790 int len;
1791 int type;
1792 } hw_breakpoint[4];
1794 static int nb_hw_breakpoint;
1796 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1798 int n;
1800 for (n = 0; n < nb_hw_breakpoint; n++) {
1801 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1802 (hw_breakpoint[n].len == len || len == -1)) {
1803 return n;
1806 return -1;
1809 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1810 target_ulong len, int type)
1812 switch (type) {
1813 case GDB_BREAKPOINT_HW:
1814 len = 1;
1815 break;
1816 case GDB_WATCHPOINT_WRITE:
1817 case GDB_WATCHPOINT_ACCESS:
1818 switch (len) {
1819 case 1:
1820 break;
1821 case 2:
1822 case 4:
1823 case 8:
1824 if (addr & (len - 1)) {
1825 return -EINVAL;
1827 break;
1828 default:
1829 return -EINVAL;
1831 break;
1832 default:
1833 return -ENOSYS;
1836 if (nb_hw_breakpoint == 4) {
1837 return -ENOBUFS;
1839 if (find_hw_breakpoint(addr, len, type) >= 0) {
1840 return -EEXIST;
1842 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1843 hw_breakpoint[nb_hw_breakpoint].len = len;
1844 hw_breakpoint[nb_hw_breakpoint].type = type;
1845 nb_hw_breakpoint++;
1847 return 0;
1850 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1851 target_ulong len, int type)
1853 int n;
1855 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1856 if (n < 0) {
1857 return -ENOENT;
1859 nb_hw_breakpoint--;
1860 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1862 return 0;
1865 void kvm_arch_remove_all_hw_breakpoints(void)
1867 nb_hw_breakpoint = 0;
1870 static CPUWatchpoint hw_watchpoint;
1872 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1874 int handle = 0;
1875 int n;
1877 if (arch_info->exception == 1) {
1878 if (arch_info->dr6 & (1 << 14)) {
1879 if (cpu_single_env->singlestep_enabled) {
1880 handle = 1;
1882 } else {
1883 for (n = 0; n < 4; n++) {
1884 if (arch_info->dr6 & (1 << n)) {
1885 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1886 case 0x0:
1887 handle = 1;
1888 break;
1889 case 0x1:
1890 handle = 1;
1891 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1892 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1893 hw_watchpoint.flags = BP_MEM_WRITE;
1894 break;
1895 case 0x3:
1896 handle = 1;
1897 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1898 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1899 hw_watchpoint.flags = BP_MEM_ACCESS;
1900 break;
1905 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1906 handle = 1;
1908 if (!handle) {
1909 cpu_synchronize_state(cpu_single_env);
1910 assert(cpu_single_env->exception_injected == -1);
1912 cpu_single_env->exception_injected = arch_info->exception;
1913 cpu_single_env->has_error_code = 0;
1916 return handle;
1919 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1921 const uint8_t type_code[] = {
1922 [GDB_BREAKPOINT_HW] = 0x0,
1923 [GDB_WATCHPOINT_WRITE] = 0x1,
1924 [GDB_WATCHPOINT_ACCESS] = 0x3
1926 const uint8_t len_code[] = {
1927 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1929 int n;
1931 if (kvm_sw_breakpoints_active(env)) {
1932 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1934 if (nb_hw_breakpoint > 0) {
1935 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1936 dbg->arch.debugreg[7] = 0x0600;
1937 for (n = 0; n < nb_hw_breakpoint; n++) {
1938 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1939 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1940 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1941 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1945 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1947 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1949 return !(env->cr[0] & CR0_PE_MASK) ||
1950 ((env->segs[R_CS].selector & 3) != 3);