update
[qemu.git] / cpu-exec.c
blob58468859dce27b3d1c741f342d9b13392150f534
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
58 #endif
60 env = env1;
62 /* XXX: restore cpu registers saved in host registers */
64 #if !defined(CONFIG_SOFTMMU)
65 if (puc) {
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
69 #endif
70 longjmp(env->jmp_env, 1);
73 /* main execution loop */
75 int cpu_exec(CPUState *env1)
77 int saved_T0, saved_T1, saved_T2;
78 CPUState *saved_env;
79 #ifdef reg_EAX
80 int saved_EAX;
81 #endif
82 #ifdef reg_ECX
83 int saved_ECX;
84 #endif
85 #ifdef reg_EDX
86 int saved_EDX;
87 #endif
88 #ifdef reg_EBX
89 int saved_EBX;
90 #endif
91 #ifdef reg_ESP
92 int saved_ESP;
93 #endif
94 #ifdef reg_EBP
95 int saved_EBP;
96 #endif
97 #ifdef reg_ESI
98 int saved_ESI;
99 #endif
100 #ifdef reg_EDI
101 int saved_EDI;
102 #endif
103 #ifdef __sparc__
104 int saved_i7, tmp_T0;
105 #endif
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 uint8_t *tc_ptr, *cs_base, *pc;
110 unsigned int flags;
112 /* first we save global registers */
113 saved_T0 = T0;
114 saved_T1 = T1;
115 saved_T2 = T2;
116 saved_env = env;
117 env = env1;
118 #ifdef __sparc__
119 /* we also save i7 because longjmp may not restore it */
120 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
121 #endif
123 #if defined(TARGET_I386)
124 #ifdef reg_EAX
125 saved_EAX = EAX;
126 EAX = env->regs[R_EAX];
127 #endif
128 #ifdef reg_ECX
129 saved_ECX = ECX;
130 ECX = env->regs[R_ECX];
131 #endif
132 #ifdef reg_EDX
133 saved_EDX = EDX;
134 EDX = env->regs[R_EDX];
135 #endif
136 #ifdef reg_EBX
137 saved_EBX = EBX;
138 EBX = env->regs[R_EBX];
139 #endif
140 #ifdef reg_ESP
141 saved_ESP = ESP;
142 ESP = env->regs[R_ESP];
143 #endif
144 #ifdef reg_EBP
145 saved_EBP = EBP;
146 EBP = env->regs[R_EBP];
147 #endif
148 #ifdef reg_ESI
149 saved_ESI = ESI;
150 ESI = env->regs[R_ESI];
151 #endif
152 #ifdef reg_EDI
153 saved_EDI = EDI;
154 EDI = env->regs[R_EDI];
155 #endif
157 /* put eflags in CPU temporary format */
158 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
159 DF = 1 - (2 * ((env->eflags >> 10) & 1));
160 CC_OP = CC_OP_EFLAGS;
161 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
162 #elif defined(TARGET_ARM)
164 unsigned int psr;
165 psr = env->cpsr;
166 env->CF = (psr >> 29) & 1;
167 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
168 env->VF = (psr << 3) & 0x80000000;
169 env->cpsr = psr & ~0xf0000000;
171 #elif defined(TARGET_SPARC)
172 #elif defined(TARGET_PPC)
173 #else
174 #error unsupported target CPU
175 #endif
176 env->exception_index = -1;
178 /* prepare setjmp context for exception handling */
179 for(;;) {
180 if (setjmp(env->jmp_env) == 0) {
181 env->current_tb = NULL;
182 /* if an exception is pending, we execute it here */
183 if (env->exception_index >= 0) {
184 if (env->exception_index >= EXCP_INTERRUPT) {
185 /* exit request from the cpu execution loop */
186 ret = env->exception_index;
187 break;
188 } else if (env->user_mode_only) {
189 /* if user mode only, we simulate a fake exception
190 which will be hanlded outside the cpu execution
191 loop */
192 #if defined(TARGET_I386)
193 do_interrupt_user(env->exception_index,
194 env->exception_is_int,
195 env->error_code,
196 env->exception_next_eip);
197 #endif
198 ret = env->exception_index;
199 break;
200 } else {
201 #if defined(TARGET_I386)
202 /* simulate a real cpu exception. On i386, it can
203 trigger new exceptions, but we do not handle
204 double or triple faults yet. */
205 do_interrupt(env->exception_index,
206 env->exception_is_int,
207 env->error_code,
208 env->exception_next_eip, 0);
209 #elif defined(TARGET_PPC)
210 do_interrupt(env);
211 #endif
213 env->exception_index = -1;
215 T0 = 0; /* force lookup of first TB */
216 for(;;) {
217 #ifdef __sparc__
218 /* g1 can be modified by some libc? functions */
219 tmp_T0 = T0;
220 #endif
221 interrupt_request = env->interrupt_request;
222 if (__builtin_expect(interrupt_request, 0)) {
223 #if defined(TARGET_I386)
224 /* if hardware interrupt pending, we execute it */
225 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
226 (env->eflags & IF_MASK) &&
227 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
228 int intno;
229 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
230 intno = cpu_get_pic_interrupt(env);
231 if (loglevel & CPU_LOG_TB_IN_ASM) {
232 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
234 do_interrupt(intno, 0, 0, 0, 1);
235 /* ensure that no TB jump will be modified as
236 the program flow was changed */
237 #ifdef __sparc__
238 tmp_T0 = 0;
239 #else
240 T0 = 0;
241 #endif
243 #elif defined(TARGET_PPC)
244 #if 0
245 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
246 cpu_ppc_reset(env);
248 #endif
249 if (msr_ee != 0) {
250 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
251 /* Raise it */
252 env->exception_index = EXCP_EXTERNAL;
253 env->error_code = 0;
254 do_interrupt(env);
255 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
256 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
257 /* Raise it */
258 env->exception_index = EXCP_DECR;
259 env->error_code = 0;
260 do_interrupt(env);
261 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
264 #endif
265 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
266 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
267 /* ensure that no TB jump will be modified as
268 the program flow was changed */
269 #ifdef __sparc__
270 tmp_T0 = 0;
271 #else
272 T0 = 0;
273 #endif
275 if (interrupt_request & CPU_INTERRUPT_EXIT) {
276 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
277 env->exception_index = EXCP_INTERRUPT;
278 cpu_loop_exit();
281 #ifdef DEBUG_EXEC
282 if (loglevel & CPU_LOG_EXEC) {
283 #if defined(TARGET_I386)
284 /* restore flags in standard format */
285 env->regs[R_EAX] = EAX;
286 env->regs[R_EBX] = EBX;
287 env->regs[R_ECX] = ECX;
288 env->regs[R_EDX] = EDX;
289 env->regs[R_ESI] = ESI;
290 env->regs[R_EDI] = EDI;
291 env->regs[R_EBP] = EBP;
292 env->regs[R_ESP] = ESP;
293 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
294 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
295 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
296 #elif defined(TARGET_ARM)
297 env->cpsr = compute_cpsr();
298 cpu_arm_dump_state(env, logfile, 0);
299 env->cpsr &= ~0xf0000000;
300 #elif defined(TARGET_SPARC)
301 cpu_sparc_dump_state (env, logfile, 0);
302 #elif defined(TARGET_PPC)
303 cpu_ppc_dump_state(env, logfile, 0);
304 #else
305 #error unsupported target CPU
306 #endif
308 #endif
309 /* we record a subset of the CPU state. It will
310 always be the same before a given translated block
311 is executed. */
312 #if defined(TARGET_I386)
313 flags = env->hflags;
314 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
315 cs_base = env->segs[R_CS].base;
316 pc = cs_base + env->eip;
317 #elif defined(TARGET_ARM)
318 flags = 0;
319 cs_base = 0;
320 pc = (uint8_t *)env->regs[15];
321 #elif defined(TARGET_SPARC)
322 flags = 0;
323 cs_base = (uint8_t *)env->npc;
324 pc = (uint8_t *) env->pc;
325 #elif defined(TARGET_PPC)
326 flags = 0;
327 cs_base = 0;
328 pc = (uint8_t *)env->nip;
329 #else
330 #error unsupported CPU
331 #endif
332 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
333 flags);
334 if (!tb) {
335 TranslationBlock **ptb1;
336 unsigned int h;
337 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
340 spin_lock(&tb_lock);
342 tb_invalidated_flag = 0;
344 /* find translated block using physical mappings */
345 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
346 phys_page1 = phys_pc & TARGET_PAGE_MASK;
347 phys_page2 = -1;
348 h = tb_phys_hash_func(phys_pc);
349 ptb1 = &tb_phys_hash[h];
350 for(;;) {
351 tb = *ptb1;
352 if (!tb)
353 goto not_found;
354 if (tb->pc == (unsigned long)pc &&
355 tb->page_addr[0] == phys_page1 &&
356 tb->cs_base == (unsigned long)cs_base &&
357 tb->flags == flags) {
358 /* check next page if needed */
359 if (tb->page_addr[1] != -1) {
360 virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
361 TARGET_PAGE_SIZE;
362 phys_page2 = get_phys_addr_code(env, virt_page2);
363 if (tb->page_addr[1] == phys_page2)
364 goto found;
365 } else {
366 goto found;
369 ptb1 = &tb->phys_hash_next;
371 not_found:
372 /* if no translated code available, then translate it now */
373 tb = tb_alloc((unsigned long)pc);
374 if (!tb) {
375 /* flush must be done */
376 tb_flush(env);
377 /* cannot fail at this point */
378 tb = tb_alloc((unsigned long)pc);
379 /* don't forget to invalidate previous TB info */
380 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
381 T0 = 0;
383 tc_ptr = code_gen_ptr;
384 tb->tc_ptr = tc_ptr;
385 tb->cs_base = (unsigned long)cs_base;
386 tb->flags = flags;
387 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
388 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
390 /* check next page if needed */
391 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
392 phys_page2 = -1;
393 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
394 phys_page2 = get_phys_addr_code(env, virt_page2);
396 tb_link_phys(tb, phys_pc, phys_page2);
398 found:
399 if (tb_invalidated_flag) {
400 /* as some TB could have been invalidated because
401 of memory exceptions while generating the code, we
402 must recompute the hash index here */
403 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
404 while (*ptb != NULL)
405 ptb = &(*ptb)->hash_next;
406 T0 = 0;
408 /* we add the TB in the virtual pc hash table */
409 *ptb = tb;
410 tb->hash_next = NULL;
411 tb_link(tb);
412 spin_unlock(&tb_lock);
414 #ifdef DEBUG_EXEC
415 if (loglevel & CPU_LOG_EXEC) {
416 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
417 (long)tb->tc_ptr, (long)tb->pc,
418 lookup_symbol((void *)tb->pc));
420 #endif
421 #ifdef __sparc__
422 T0 = tmp_T0;
423 #endif
424 /* see if we can patch the calling TB. */
425 if (T0 != 0
426 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
427 && (tb->cflags & CF_CODE_COPY) ==
428 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
429 #endif
431 spin_lock(&tb_lock);
432 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
433 #if defined(USE_CODE_COPY)
434 /* propagates the FP use info */
435 ((TranslationBlock *)(T0 & ~3))->cflags |=
436 (tb->cflags & CF_FP_USED);
437 #endif
438 spin_unlock(&tb_lock);
440 tc_ptr = tb->tc_ptr;
441 env->current_tb = tb;
442 /* execute the generated code */
443 gen_func = (void *)tc_ptr;
444 #if defined(__sparc__)
445 __asm__ __volatile__("call %0\n\t"
446 "mov %%o7,%%i0"
447 : /* no outputs */
448 : "r" (gen_func)
449 : "i0", "i1", "i2", "i3", "i4", "i5");
450 #elif defined(__arm__)
451 asm volatile ("mov pc, %0\n\t"
452 ".global exec_loop\n\t"
453 "exec_loop:\n\t"
454 : /* no outputs */
455 : "r" (gen_func)
456 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
457 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
459 if (!(tb->cflags & CF_CODE_COPY)) {
460 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
461 save_native_fp_state(env);
463 gen_func();
464 } else {
465 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
466 restore_native_fp_state(env);
468 /* we work with native eflags */
469 CC_SRC = cc_table[CC_OP].compute_all();
470 CC_OP = CC_OP_EFLAGS;
471 asm(".globl exec_loop\n"
472 "\n"
473 "debug1:\n"
474 " pushl %%ebp\n"
475 " fs movl %10, %9\n"
476 " fs movl %11, %%eax\n"
477 " andl $0x400, %%eax\n"
478 " fs orl %8, %%eax\n"
479 " pushl %%eax\n"
480 " popf\n"
481 " fs movl %%esp, %12\n"
482 " fs movl %0, %%eax\n"
483 " fs movl %1, %%ecx\n"
484 " fs movl %2, %%edx\n"
485 " fs movl %3, %%ebx\n"
486 " fs movl %4, %%esp\n"
487 " fs movl %5, %%ebp\n"
488 " fs movl %6, %%esi\n"
489 " fs movl %7, %%edi\n"
490 " fs jmp *%9\n"
491 "exec_loop:\n"
492 " fs movl %%esp, %4\n"
493 " fs movl %12, %%esp\n"
494 " fs movl %%eax, %0\n"
495 " fs movl %%ecx, %1\n"
496 " fs movl %%edx, %2\n"
497 " fs movl %%ebx, %3\n"
498 " fs movl %%ebp, %5\n"
499 " fs movl %%esi, %6\n"
500 " fs movl %%edi, %7\n"
501 " pushf\n"
502 " popl %%eax\n"
503 " movl %%eax, %%ecx\n"
504 " andl $0x400, %%ecx\n"
505 " shrl $9, %%ecx\n"
506 " andl $0x8d5, %%eax\n"
507 " fs movl %%eax, %8\n"
508 " movl $1, %%eax\n"
509 " subl %%ecx, %%eax\n"
510 " fs movl %%eax, %11\n"
511 " fs movl %9, %%ebx\n" /* get T0 value */
512 " popl %%ebp\n"
514 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
515 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
516 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
517 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
518 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
519 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
520 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
521 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
522 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
523 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
524 "a" (gen_func),
525 "m" (*(uint8_t *)offsetof(CPUState, df)),
526 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
527 : "%ecx", "%edx"
531 #else
532 gen_func();
533 #endif
534 env->current_tb = NULL;
535 /* reset soft MMU for next block (it can currently
536 only be set by a memory fault) */
537 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
538 if (env->hflags & HF_SOFTMMU_MASK) {
539 env->hflags &= ~HF_SOFTMMU_MASK;
540 /* do not allow linking to another block */
541 T0 = 0;
543 #endif
545 } else {
547 } /* for(;;) */
550 #if defined(TARGET_I386)
551 #if defined(USE_CODE_COPY)
552 if (env->native_fp_regs) {
553 save_native_fp_state(env);
555 #endif
556 /* restore flags in standard format */
557 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
559 /* restore global registers */
560 #ifdef reg_EAX
561 EAX = saved_EAX;
562 #endif
563 #ifdef reg_ECX
564 ECX = saved_ECX;
565 #endif
566 #ifdef reg_EDX
567 EDX = saved_EDX;
568 #endif
569 #ifdef reg_EBX
570 EBX = saved_EBX;
571 #endif
572 #ifdef reg_ESP
573 ESP = saved_ESP;
574 #endif
575 #ifdef reg_EBP
576 EBP = saved_EBP;
577 #endif
578 #ifdef reg_ESI
579 ESI = saved_ESI;
580 #endif
581 #ifdef reg_EDI
582 EDI = saved_EDI;
583 #endif
584 #elif defined(TARGET_ARM)
585 env->cpsr = compute_cpsr();
586 #elif defined(TARGET_SPARC)
587 #elif defined(TARGET_PPC)
588 #else
589 #error unsupported target CPU
590 #endif
591 #ifdef __sparc__
592 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
593 #endif
594 T0 = saved_T0;
595 T1 = saved_T1;
596 T2 = saved_T2;
597 env = saved_env;
598 return ret;
601 /* must only be called from the generated code as an exception can be
602 generated */
603 void tb_invalidate_page_range(target_ulong start, target_ulong end)
605 target_ulong phys_addr;
606 phys_addr = get_phys_addr_code(env, start);
607 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
610 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
612 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
614 CPUX86State *saved_env;
616 saved_env = env;
617 env = s;
618 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
619 selector &= 0xffff;
620 cpu_x86_load_seg_cache(env, seg_reg, selector,
621 (uint8_t *)(selector << 4), 0xffff, 0);
622 } else {
623 load_seg(seg_reg, selector);
625 env = saved_env;
628 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
630 CPUX86State *saved_env;
632 saved_env = env;
633 env = s;
635 helper_fsave(ptr, data32);
637 env = saved_env;
640 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
642 CPUX86State *saved_env;
644 saved_env = env;
645 env = s;
647 helper_frstor(ptr, data32);
649 env = saved_env;
652 #endif /* TARGET_I386 */
654 #if !defined(CONFIG_SOFTMMU)
656 #if defined(TARGET_I386)
658 /* 'pc' is the host PC at which the exception was raised. 'address' is
659 the effective address of the memory exception. 'is_write' is 1 if a
660 write caused the exception and otherwise 0'. 'old_set' is the
661 signal set which should be restored */
662 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
663 int is_write, sigset_t *old_set,
664 void *puc)
666 TranslationBlock *tb;
667 int ret;
669 if (cpu_single_env)
670 env = cpu_single_env; /* XXX: find a correct solution for multithread */
671 #if defined(DEBUG_SIGNAL)
672 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
673 pc, address, is_write, *(unsigned long *)old_set);
674 #endif
675 /* XXX: locking issue */
676 if (is_write && page_unprotect(address, pc, puc)) {
677 return 1;
680 /* see if it is an MMU fault */
681 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
682 ((env->hflags & HF_CPL_MASK) == 3), 0);
683 if (ret < 0)
684 return 0; /* not an MMU fault */
685 if (ret == 0)
686 return 1; /* the MMU fault was handled without causing real CPU fault */
687 /* now we have a real cpu fault */
688 tb = tb_find_pc(pc);
689 if (tb) {
690 /* the PC is inside the translated code. It means that we have
691 a virtual CPU fault */
692 cpu_restore_state(tb, env, pc, puc);
694 if (ret == 1) {
695 #if 0
696 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
697 env->eip, env->cr[2], env->error_code);
698 #endif
699 /* we restore the process signal mask as the sigreturn should
700 do it (XXX: use sigsetjmp) */
701 sigprocmask(SIG_SETMASK, old_set, NULL);
702 raise_exception_err(EXCP0E_PAGE, env->error_code);
703 } else {
704 /* activate soft MMU for this block */
705 env->hflags |= HF_SOFTMMU_MASK;
706 cpu_resume_from_signal(env, puc);
708 /* never comes here */
709 return 1;
712 #elif defined(TARGET_ARM)
713 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
714 int is_write, sigset_t *old_set,
715 void *puc)
717 /* XXX: do more */
718 return 0;
720 #elif defined(TARGET_SPARC)
721 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
722 int is_write, sigset_t *old_set,
723 void *puc)
725 /* XXX: locking issue */
726 if (is_write && page_unprotect(address, pc, puc)) {
727 return 1;
729 return 0;
731 #elif defined (TARGET_PPC)
732 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
733 int is_write, sigset_t *old_set,
734 void *puc)
736 TranslationBlock *tb;
737 int ret;
739 #if 1
740 if (cpu_single_env)
741 env = cpu_single_env; /* XXX: find a correct solution for multithread */
742 #endif
743 #if defined(DEBUG_SIGNAL)
744 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
745 pc, address, is_write, *(unsigned long *)old_set);
746 #endif
747 /* XXX: locking issue */
748 if (is_write && page_unprotect(address, pc, puc)) {
749 return 1;
752 /* see if it is an MMU fault */
753 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
754 if (ret < 0)
755 return 0; /* not an MMU fault */
756 if (ret == 0)
757 return 1; /* the MMU fault was handled without causing real CPU fault */
759 /* now we have a real cpu fault */
760 tb = tb_find_pc(pc);
761 if (tb) {
762 /* the PC is inside the translated code. It means that we have
763 a virtual CPU fault */
764 cpu_restore_state(tb, env, pc, puc);
766 if (ret == 1) {
767 #if 0
768 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
769 env->nip, env->error_code, tb);
770 #endif
771 /* we restore the process signal mask as the sigreturn should
772 do it (XXX: use sigsetjmp) */
773 sigprocmask(SIG_SETMASK, old_set, NULL);
774 do_raise_exception_err(env->exception_index, env->error_code);
775 } else {
776 /* activate soft MMU for this block */
777 cpu_resume_from_signal(env, puc);
779 /* never comes here */
780 return 1;
782 #else
783 #error unsupported target CPU
784 #endif
786 #if defined(__i386__)
788 #if defined(USE_CODE_COPY)
789 static void cpu_send_trap(unsigned long pc, int trap,
790 struct ucontext *uc)
792 TranslationBlock *tb;
794 if (cpu_single_env)
795 env = cpu_single_env; /* XXX: find a correct solution for multithread */
796 /* now we have a real cpu fault */
797 tb = tb_find_pc(pc);
798 if (tb) {
799 /* the PC is inside the translated code. It means that we have
800 a virtual CPU fault */
801 cpu_restore_state(tb, env, pc, uc);
803 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
804 raise_exception_err(trap, env->error_code);
806 #endif
808 int cpu_signal_handler(int host_signum, struct siginfo *info,
809 void *puc)
811 struct ucontext *uc = puc;
812 unsigned long pc;
813 int trapno;
815 #ifndef REG_EIP
816 /* for glibc 2.1 */
817 #define REG_EIP EIP
818 #define REG_ERR ERR
819 #define REG_TRAPNO TRAPNO
820 #endif
821 pc = uc->uc_mcontext.gregs[REG_EIP];
822 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
823 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
824 if (trapno == 0x00 || trapno == 0x05) {
825 /* send division by zero or bound exception */
826 cpu_send_trap(pc, trapno, uc);
827 return 1;
828 } else
829 #endif
830 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
831 trapno == 0xe ?
832 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
833 &uc->uc_sigmask, puc);
836 #elif defined(__x86_64__)
838 int cpu_signal_handler(int host_signum, struct siginfo *info,
839 void *puc)
841 struct ucontext *uc = puc;
842 unsigned long pc;
844 pc = uc->uc_mcontext.gregs[REG_RIP];
845 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
846 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
847 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
848 &uc->uc_sigmask, puc);
851 #elif defined(__powerpc)
853 int cpu_signal_handler(int host_signum, struct siginfo *info,
854 void *puc)
856 struct ucontext *uc = puc;
857 struct pt_regs *regs = uc->uc_mcontext.regs;
858 unsigned long pc;
859 int is_write;
861 pc = regs->nip;
862 is_write = 0;
863 #if 0
864 /* ppc 4xx case */
865 if (regs->dsisr & 0x00800000)
866 is_write = 1;
867 #else
868 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
869 is_write = 1;
870 #endif
871 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
872 is_write, &uc->uc_sigmask, puc);
875 #elif defined(__alpha__)
877 int cpu_signal_handler(int host_signum, struct siginfo *info,
878 void *puc)
880 struct ucontext *uc = puc;
881 uint32_t *pc = uc->uc_mcontext.sc_pc;
882 uint32_t insn = *pc;
883 int is_write = 0;
885 /* XXX: need kernel patch to get write flag faster */
886 switch (insn >> 26) {
887 case 0x0d: // stw
888 case 0x0e: // stb
889 case 0x0f: // stq_u
890 case 0x24: // stf
891 case 0x25: // stg
892 case 0x26: // sts
893 case 0x27: // stt
894 case 0x2c: // stl
895 case 0x2d: // stq
896 case 0x2e: // stl_c
897 case 0x2f: // stq_c
898 is_write = 1;
901 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
902 is_write, &uc->uc_sigmask, puc);
904 #elif defined(__sparc__)
906 int cpu_signal_handler(int host_signum, struct siginfo *info,
907 void *puc)
909 uint32_t *regs = (uint32_t *)(info + 1);
910 void *sigmask = (regs + 20);
911 unsigned long pc;
912 int is_write;
913 uint32_t insn;
915 /* XXX: is there a standard glibc define ? */
916 pc = regs[1];
917 /* XXX: need kernel patch to get write flag faster */
918 is_write = 0;
919 insn = *(uint32_t *)pc;
920 if ((insn >> 30) == 3) {
921 switch((insn >> 19) & 0x3f) {
922 case 0x05: // stb
923 case 0x06: // sth
924 case 0x04: // st
925 case 0x07: // std
926 case 0x24: // stf
927 case 0x27: // stdf
928 case 0x25: // stfsr
929 is_write = 1;
930 break;
933 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
934 is_write, sigmask, NULL);
937 #elif defined(__arm__)
939 int cpu_signal_handler(int host_signum, struct siginfo *info,
940 void *puc)
942 struct ucontext *uc = puc;
943 unsigned long pc;
944 int is_write;
946 pc = uc->uc_mcontext.gregs[R15];
947 /* XXX: compute is_write */
948 is_write = 0;
949 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
950 is_write,
951 &uc->uc_sigmask);
954 #elif defined(__mc68000)
956 int cpu_signal_handler(int host_signum, struct siginfo *info,
957 void *puc)
959 struct ucontext *uc = puc;
960 unsigned long pc;
961 int is_write;
963 pc = uc->uc_mcontext.gregs[16];
964 /* XXX: compute is_write */
965 is_write = 0;
966 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
967 is_write,
968 &uc->uc_sigmask, puc);
971 #else
973 #error host CPU specific signal handler needed
975 #endif
977 #endif /* !defined(CONFIG_SOFTMMU) */