Monitor: Convert do_memory_save() to cmd_new_ret()
[qemu.git] / exec.c
blob8389c54e7f44518340a11e6a7314ba3028e9ec3a
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
195 /* log support */
196 #ifdef WIN32
197 static const char *logfilename = "qemu.log";
198 #else
199 static const char *logfilename = "/tmp/qemu.log";
200 #endif
201 FILE *logfile;
202 int loglevel;
203 static int log_append = 0;
205 /* statistics */
206 static int tlb_flush_count;
207 static int tb_flush_count;
208 static int tb_phys_invalidate_count;
210 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
211 typedef struct subpage_t {
212 target_phys_addr_t base;
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
215 void *opaque[TARGET_PAGE_SIZE][2][4];
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217 } subpage_t;
219 #ifdef _WIN32
220 static void map_exec(void *addr, long size)
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
227 #else
228 static void map_exec(void *addr, long size)
230 unsigned long start, end, page_size;
232 page_size = getpagesize();
233 start = (unsigned long)addr;
234 start &= ~(page_size - 1);
236 end = (unsigned long)addr + size;
237 end += page_size - 1;
238 end &= ~(page_size - 1);
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
243 #endif
245 static void page_init(void)
247 /* NOTE: we can always suppose that qemu_host_page_size >=
248 TARGET_PAGE_SIZE */
249 #ifdef _WIN32
251 SYSTEM_INFO system_info;
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
256 #else
257 qemu_real_host_page_size = getpagesize();
258 #endif
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
270 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
276 mmap_lock();
277 last_brk = (unsigned long)sbrk(0);
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
287 page_set_flags(startaddr & TARGET_PAGE_MASK,
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
291 } while (!feof(f));
292 fclose(f);
294 mmap_unlock();
296 #endif
299 static inline PageDesc **page_l1_map(target_ulong index)
301 #if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
305 return NULL;
306 #endif
307 return &l1_map[index >> L2_BITS];
310 static inline PageDesc *page_find_alloc(target_ulong index)
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
320 #if defined(CONFIG_USER_ONLY)
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
325 *lp = p;
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
332 #else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335 #endif
337 return p + (index & (L2_SIZE - 1));
340 static inline PageDesc *page_find(target_ulong index)
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
347 p = *lp;
348 if (!p) {
349 return NULL;
351 return p + (index & (L2_SIZE - 1));
354 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
356 void **lp, **p;
357 PhysPageDesc *pd;
359 p = (void **)l1_phys_map;
360 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
362 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364 #endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
375 #endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
377 pd = *lp;
378 if (!pd) {
379 int i;
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
385 for (i = 0; i < L2_SIZE; i++) {
386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
393 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
395 return phys_page_find_alloc(index, 0);
398 #if !defined(CONFIG_USER_ONLY)
399 static void tlb_protect_code(ram_addr_t ram_addr);
400 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
401 target_ulong vaddr);
402 #define mmap_lock() do { } while(0)
403 #define mmap_unlock() do { } while(0)
404 #endif
406 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
408 #if defined(CONFIG_USER_ONLY)
409 /* Currently it is not recommended to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411 #define USE_STATIC_CODE_GEN_BUFFER
412 #endif
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416 #endif
418 static void code_gen_alloc(unsigned long tb_size)
420 #ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424 #else
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
427 #if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430 #else
431 /* XXX: needs adjustments */
432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
433 #endif
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439 #if defined(__linux__)
441 int flags;
442 void *start = NULL;
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445 #if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
450 #elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
456 #elif defined(__arm__)
457 /* Map the buffer below 32M, so we can use direct calls and branches */
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
462 #endif
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
471 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476 #if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484 #endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
493 #else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496 #endif
497 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
505 /* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508 void cpu_exec_init_all(unsigned long tb_size)
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
513 page_init();
514 #if !defined(CONFIG_USER_ONLY)
515 io_mem_init();
516 #endif
519 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
521 static void cpu_common_pre_save(void *opaque)
523 CPUState *env = opaque;
525 cpu_synchronize_state(env);
528 static int cpu_common_pre_load(void *opaque)
530 CPUState *env = opaque;
532 cpu_synchronize_state(env);
533 return 0;
536 static int cpu_common_post_load(void *opaque, int version_id)
538 CPUState *env = opaque;
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
543 tlb_flush(env, 1);
545 return 0;
548 static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
562 #endif
564 CPUState *qemu_get_cpu(int cpu)
566 CPUState *env = first_cpu;
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
574 return env;
577 void cpu_exec_init(CPUState *env)
579 CPUState **penv;
580 int cpu_index;
582 #if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584 #endif
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
589 penv = &(*penv)->next_cpu;
590 cpu_index++;
592 env->cpu_index = cpu_index;
593 env->numa_node = 0;
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
596 *penv = env;
597 #if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599 #endif
600 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604 #endif
607 static inline void invalidate_page_bitmap(PageDesc *p)
609 if (p->code_bitmap) {
610 qemu_free(p->code_bitmap);
611 p->code_bitmap = NULL;
613 p->code_write_count = 0;
616 /* set to NULL all the 'first_tb' fields in all PageDescs */
617 static void page_flush_tb(void)
619 int i, j;
620 PageDesc *p;
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
634 /* flush all the translation blocks */
635 /* XXX: tb_flush is currently not thread safe */
636 void tb_flush(CPUState *env1)
638 CPUState *env;
639 #if defined(DEBUG_FLUSH)
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
644 #endif
645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
648 nb_tbs = 0;
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
655 page_flush_tb();
657 code_gen_ptr = code_gen_buffer;
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
660 tb_flush_count++;
663 #ifdef DEBUG_TB_CHECK
665 static void tb_invalidate_check(target_ulong address)
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
676 address, (long)tb->pc, tb->size);
682 /* verify that all the pages have correct rights for code */
683 static void tb_page_check(void)
685 TranslationBlock *tb;
686 int i, flags1, flags2;
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
694 (long)tb->pc, tb->size, flags1, flags2);
700 #endif
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
719 TranslationBlock *tb1;
720 unsigned int n1;
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
730 ptb = &tb1->page_next[n1];
734 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
758 tb->jmp_next[n] = NULL;
762 /* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764 static inline void tb_reset_jump(TranslationBlock *tb, int n)
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
769 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
771 CPUState *env;
772 PageDesc *p;
773 unsigned int h, n1;
774 target_phys_addr_t phys_pc;
775 TranslationBlock *tb1, *tb2;
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
780 tb_remove(&tb_phys_hash[h], tb,
781 offsetof(TranslationBlock, phys_hash_next));
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
795 tb_invalidated_flag = 1;
797 /* remove the TB from the hash list */
798 h = tb_jmp_cache_hash_func(tb->pc);
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
822 tb_phys_invalidate_count++;
825 static inline void set_bits(uint8_t *tab, int start, int len)
827 int end, mask, end1;
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
852 static void build_page_bitmap(PageDesc *p)
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
880 TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
895 tb = tb_alloc(pc);
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
904 cpu_gen_code(env, tb, &code_gen_size);
905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
907 /* check next page if needed */
908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
909 phys_page2 = -1;
910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
911 phys_page2 = get_phys_addr_code(env, virt_page2);
913 tb_link_phys(tb, phys_pc, phys_page2);
914 return tb;
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
923 int is_cpu_write_access)
925 TranslationBlock *tb, *tb_next, *saved_tb;
926 CPUState *env = cpu_single_env;
927 target_ulong tb_start, tb_end;
928 PageDesc *p;
929 int n;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
939 p = page_find(start >> TARGET_PAGE_BITS);
940 if (!p)
941 return;
942 if (!p->code_bitmap &&
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
945 /* build code bitmap */
946 build_page_bitmap(p);
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
966 if (!(tb_end <= start || tb_start >= end)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
971 if (env->mem_io_pc) {
972 /* now we have a real cpu fault */
973 current_tb = tb_find_pc(env->mem_io_pc);
976 if (current_tb == tb &&
977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
984 current_tb_modified = 1;
985 cpu_restore_state(current_tb, env,
986 env->mem_io_pc, NULL);
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
998 tb_phys_invalidate(tb, -1);
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1005 tb = tb_next;
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
1011 if (is_cpu_write_access) {
1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1015 #endif
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
1021 env->current_tb = NULL;
1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1023 cpu_resume_from_signal(env, NULL);
1025 #endif
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1031 PageDesc *p;
1032 int offset, b;
1033 #if 0
1034 if (1) {
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1040 #endif
1041 p = page_find(start >> TARGET_PAGE_BITS);
1042 if (!p)
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
1051 tb_invalidate_phys_page_range(start, start + len, 1);
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1057 unsigned long pc, void *puc)
1059 TranslationBlock *tb;
1060 PageDesc *p;
1061 int n;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock *current_tb = NULL;
1064 CPUState *env = cpu_single_env;
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
1069 #endif
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
1073 if (!p)
1074 return;
1075 tb = p->first_tb;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1080 #endif
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1102 p->first_tb = NULL;
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, puc);
1112 #endif
1114 #endif
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock *tb,
1118 unsigned int n, target_ulong page_addr)
1120 PageDesc *p;
1121 TranslationBlock *last_first_tb;
1123 tb->page_addr[n] = page_addr;
1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
1130 #if defined(TARGET_HAS_SMC) || 1
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p->flags & PAGE_WRITE) {
1134 target_ulong addr;
1135 PageDesc *p2;
1136 int prot;
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr &= qemu_host_page_mask;
1141 prot = 0;
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1152 mprotect(g2h(page_addr), qemu_host_page_size,
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1156 page_addr);
1157 #endif
1159 #else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
1164 tlb_protect_code(page_addr);
1166 #endif
1168 #endif /* TARGET_HAS_SMC */
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock *tb_alloc(target_ulong pc)
1175 TranslationBlock *tb;
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1179 return NULL;
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
1182 tb->cflags = 0;
1183 return tb;
1186 void tb_free(TranslationBlock *tb)
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock *tb,
1200 target_ulong phys_pc, target_ulong phys_page2)
1202 unsigned int h;
1203 TranslationBlock **ptb;
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
1214 /* add in the page list */
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
1231 #ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233 #endif
1234 mmap_unlock();
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1265 return &tbs[m_max];
1268 static void tb_reset_jump_recursive(TranslationBlock *tb);
1270 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next);
1309 static void tb_reset_jump_recursive(TranslationBlock *tb)
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1318 target_phys_addr_t addr;
1319 target_ulong pd;
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1333 #endif
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
1339 target_ulong len_mask = ~(len - 1);
1340 CPUWatchpoint *wp;
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1348 wp = qemu_malloc(sizeof(*wp));
1350 wp->vaddr = addr;
1351 wp->len_mask = len_mask;
1352 wp->flags = flags;
1354 /* keep all GDB-injected watchpoints in front */
1355 if (flags & BP_GDB)
1356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1360 tlb_flush_page(env, addr);
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
1371 target_ulong len_mask = ~(len - 1);
1372 CPUWatchpoint *wp;
1374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1375 if (addr == wp->vaddr && len_mask == wp->len_mask
1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1377 cpu_watchpoint_remove_by_ref(env, wp);
1378 return 0;
1381 return -ENOENT;
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1389 tlb_flush_page(env, watchpoint->vaddr);
1391 qemu_free(watchpoint);
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1397 CPUWatchpoint *wp, *next;
1399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1412 bp = qemu_malloc(sizeof(*bp));
1414 bp->pc = pc;
1415 bp->flags = flags;
1417 /* keep all GDB-injected breakpoints in front */
1418 if (flags & BP_GDB)
1419 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1423 breakpoint_invalidate(env, pc);
1425 if (breakpoint)
1426 *breakpoint = bp;
1427 return 0;
1428 #else
1429 return -ENOSYS;
1430 #endif
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1436 #if defined(TARGET_HAS_ICE)
1437 CPUBreakpoint *bp;
1439 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1445 return -ENOENT;
1446 #else
1447 return -ENOSYS;
1448 #endif
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1454 #if defined(TARGET_HAS_ICE)
1455 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1457 breakpoint_invalidate(env, breakpoint->pc);
1459 qemu_free(breakpoint);
1460 #endif
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint *bp, *next;
1469 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
1473 #endif
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState *env, int enabled)
1480 #if defined(TARGET_HAS_ICE)
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
1486 /* must flush all the translated code to avoid inconsistencies */
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1491 #endif
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags)
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
1499 logfile = fopen(logfilename, log_append ? "a" : "w");
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 static char logfile_buf[4096];
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1510 #elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
1512 setvbuf(logfile, NULL, _IOLBF, 0);
1513 #endif
1514 log_append = 1;
1516 if (!loglevel && logfile) {
1517 fclose(logfile);
1518 logfile = NULL;
1522 void cpu_set_log_filename(const char *filename)
1524 logfilename = strdup(filename);
1525 if (logfile) {
1526 fclose(logfile);
1527 logfile = NULL;
1529 cpu_set_log(loglevel);
1532 static void cpu_unlink_tb(CPUState *env)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538 TranslationBlock *tb;
1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1541 spin_lock(&interrupt_lock);
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1549 spin_unlock(&interrupt_lock);
1552 /* mask must never be zero, except for A20 change call */
1553 void cpu_interrupt(CPUState *env, int mask)
1555 int old_mask;
1557 old_mask = env->interrupt_request;
1558 env->interrupt_request |= mask;
1560 #ifndef CONFIG_USER_ONLY
1562 * If called from iothread context, wake the target cpu in
1563 * case its halted.
1565 if (!qemu_cpu_self(env)) {
1566 qemu_cpu_kick(env);
1567 return;
1569 #endif
1571 if (use_icount) {
1572 env->icount_decr.u16.high = 0xffff;
1573 #ifndef CONFIG_USER_ONLY
1574 if (!can_do_io(env)
1575 && (mask & ~old_mask) != 0) {
1576 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 #endif
1579 } else {
1580 cpu_unlink_tb(env);
1584 void cpu_reset_interrupt(CPUState *env, int mask)
1586 env->interrupt_request &= ~mask;
1589 void cpu_exit(CPUState *env)
1591 env->exit_request = 1;
1592 cpu_unlink_tb(env);
1595 const CPULogItem cpu_log_items[] = {
1596 { CPU_LOG_TB_OUT_ASM, "out_asm",
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM, "in_asm",
1599 "show target assembly code for each compiled TB" },
1600 { CPU_LOG_TB_OP, "op",
1601 "show micro ops for each compiled TB" },
1602 { CPU_LOG_TB_OP_OPT, "op_opt",
1603 "show micro ops "
1604 #ifdef TARGET_I386
1605 "before eflags optimization and "
1606 #endif
1607 "after liveness analysis" },
1608 { CPU_LOG_INT, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC, "exec",
1611 "show trace before each executed TB (lots of logs)" },
1612 { CPU_LOG_TB_CPU, "cpu",
1613 "show CPU state before block translation" },
1614 #ifdef TARGET_I386
1615 { CPU_LOG_PCALL, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
1617 { CPU_LOG_RESET, "cpu_reset",
1618 "show CPU state before CPU resets" },
1619 #endif
1620 #ifdef DEBUG_IOPORT
1621 { CPU_LOG_IOPORT, "ioport",
1622 "show all i/o ports accesses" },
1623 #endif
1624 { 0, NULL, NULL },
1627 #ifndef CONFIG_USER_ONLY
1628 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1629 = QLIST_HEAD_INITIALIZER(memory_client_list);
1631 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1632 ram_addr_t size,
1633 ram_addr_t phys_offset)
1635 CPUPhysMemoryClient *client;
1636 QLIST_FOREACH(client, &memory_client_list, list) {
1637 client->set_memory(client, start_addr, size, phys_offset);
1641 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1642 target_phys_addr_t end)
1644 CPUPhysMemoryClient *client;
1645 QLIST_FOREACH(client, &memory_client_list, list) {
1646 int r = client->sync_dirty_bitmap(client, start, end);
1647 if (r < 0)
1648 return r;
1650 return 0;
1653 static int cpu_notify_migration_log(int enable)
1655 CPUPhysMemoryClient *client;
1656 QLIST_FOREACH(client, &memory_client_list, list) {
1657 int r = client->migration_log(client, enable);
1658 if (r < 0)
1659 return r;
1661 return 0;
1664 static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1665 CPUPhysMemoryClient *client)
1667 PhysPageDesc *pd;
1668 int l1, l2;
1670 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1671 pd = phys_map[l1];
1672 if (!pd) {
1673 continue;
1675 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1676 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1677 continue;
1679 client->set_memory(client, pd[l2].region_offset,
1680 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1685 static void phys_page_for_each(CPUPhysMemoryClient *client)
1687 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
1689 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1690 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1691 #endif
1692 void **phys_map = (void **)l1_phys_map;
1693 int l1;
1694 if (!l1_phys_map) {
1695 return;
1697 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1698 if (phys_map[l1]) {
1699 phys_page_for_each_in_l1_map(phys_map[l1], client);
1702 #else
1703 if (!l1_phys_map) {
1704 return;
1706 phys_page_for_each_in_l1_map(l1_phys_map, client);
1707 #endif
1710 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1712 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1713 phys_page_for_each(client);
1716 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1718 QLIST_REMOVE(client, list);
1720 #endif
1722 static int cmp1(const char *s1, int n, const char *s2)
1724 if (strlen(s2) != n)
1725 return 0;
1726 return memcmp(s1, s2, n) == 0;
1729 /* takes a comma separated list of log masks. Return 0 if error. */
1730 int cpu_str_to_log_mask(const char *str)
1732 const CPULogItem *item;
1733 int mask;
1734 const char *p, *p1;
1736 p = str;
1737 mask = 0;
1738 for(;;) {
1739 p1 = strchr(p, ',');
1740 if (!p1)
1741 p1 = p + strlen(p);
1742 if(cmp1(p,p1-p,"all")) {
1743 for(item = cpu_log_items; item->mask != 0; item++) {
1744 mask |= item->mask;
1746 } else {
1747 for(item = cpu_log_items; item->mask != 0; item++) {
1748 if (cmp1(p, p1 - p, item->name))
1749 goto found;
1751 return 0;
1753 found:
1754 mask |= item->mask;
1755 if (*p1 != ',')
1756 break;
1757 p = p1 + 1;
1759 return mask;
1762 void cpu_abort(CPUState *env, const char *fmt, ...)
1764 va_list ap;
1765 va_list ap2;
1767 va_start(ap, fmt);
1768 va_copy(ap2, ap);
1769 fprintf(stderr, "qemu: fatal: ");
1770 vfprintf(stderr, fmt, ap);
1771 fprintf(stderr, "\n");
1772 #ifdef TARGET_I386
1773 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1774 #else
1775 cpu_dump_state(env, stderr, fprintf, 0);
1776 #endif
1777 if (qemu_log_enabled()) {
1778 qemu_log("qemu: fatal: ");
1779 qemu_log_vprintf(fmt, ap2);
1780 qemu_log("\n");
1781 #ifdef TARGET_I386
1782 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1783 #else
1784 log_cpu_state(env, 0);
1785 #endif
1786 qemu_log_flush();
1787 qemu_log_close();
1789 va_end(ap2);
1790 va_end(ap);
1791 #if defined(CONFIG_USER_ONLY)
1793 struct sigaction act;
1794 sigfillset(&act.sa_mask);
1795 act.sa_handler = SIG_DFL;
1796 sigaction(SIGABRT, &act, NULL);
1798 #endif
1799 abort();
1802 CPUState *cpu_copy(CPUState *env)
1804 CPUState *new_env = cpu_init(env->cpu_model_str);
1805 CPUState *next_cpu = new_env->next_cpu;
1806 int cpu_index = new_env->cpu_index;
1807 #if defined(TARGET_HAS_ICE)
1808 CPUBreakpoint *bp;
1809 CPUWatchpoint *wp;
1810 #endif
1812 memcpy(new_env, env, sizeof(CPUState));
1814 /* Preserve chaining and index. */
1815 new_env->next_cpu = next_cpu;
1816 new_env->cpu_index = cpu_index;
1818 /* Clone all break/watchpoints.
1819 Note: Once we support ptrace with hw-debug register access, make sure
1820 BP_CPU break/watchpoints are handled correctly on clone. */
1821 QTAILQ_INIT(&env->breakpoints);
1822 QTAILQ_INIT(&env->watchpoints);
1823 #if defined(TARGET_HAS_ICE)
1824 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1825 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1827 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1828 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1829 wp->flags, NULL);
1831 #endif
1833 return new_env;
1836 #if !defined(CONFIG_USER_ONLY)
1838 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1840 unsigned int i;
1842 /* Discard jump cache entries for any tb which might potentially
1843 overlap the flushed page. */
1844 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1845 memset (&env->tb_jmp_cache[i], 0,
1846 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1848 i = tb_jmp_cache_hash_page(addr);
1849 memset (&env->tb_jmp_cache[i], 0,
1850 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1853 static CPUTLBEntry s_cputlb_empty_entry = {
1854 .addr_read = -1,
1855 .addr_write = -1,
1856 .addr_code = -1,
1857 .addend = -1,
1860 /* NOTE: if flush_global is true, also flush global entries (not
1861 implemented yet) */
1862 void tlb_flush(CPUState *env, int flush_global)
1864 int i;
1866 #if defined(DEBUG_TLB)
1867 printf("tlb_flush:\n");
1868 #endif
1869 /* must reset current TB so that interrupts cannot modify the
1870 links while we are modifying them */
1871 env->current_tb = NULL;
1873 for(i = 0; i < CPU_TLB_SIZE; i++) {
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1876 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1880 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1882 tlb_flush_count++;
1885 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1887 if (addr == (tlb_entry->addr_read &
1888 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1889 addr == (tlb_entry->addr_write &
1890 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1891 addr == (tlb_entry->addr_code &
1892 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1893 *tlb_entry = s_cputlb_empty_entry;
1897 void tlb_flush_page(CPUState *env, target_ulong addr)
1899 int i;
1900 int mmu_idx;
1902 #if defined(DEBUG_TLB)
1903 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1904 #endif
1905 /* must reset current TB so that interrupts cannot modify the
1906 links while we are modifying them */
1907 env->current_tb = NULL;
1909 addr &= TARGET_PAGE_MASK;
1910 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1911 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1912 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1914 tlb_flush_jmp_cache(env, addr);
1917 /* update the TLBs so that writes to code in the virtual page 'addr'
1918 can be detected */
1919 static void tlb_protect_code(ram_addr_t ram_addr)
1921 cpu_physical_memory_reset_dirty(ram_addr,
1922 ram_addr + TARGET_PAGE_SIZE,
1923 CODE_DIRTY_FLAG);
1926 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1927 tested for self modifying code */
1928 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1929 target_ulong vaddr)
1931 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1934 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1935 unsigned long start, unsigned long length)
1937 unsigned long addr;
1938 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1939 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1940 if ((addr - start) < length) {
1941 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1946 /* Note: start and end must be within the same ram block. */
1947 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1948 int dirty_flags)
1950 CPUState *env;
1951 unsigned long length, start1;
1952 int i, mask, len;
1953 uint8_t *p;
1955 start &= TARGET_PAGE_MASK;
1956 end = TARGET_PAGE_ALIGN(end);
1958 length = end - start;
1959 if (length == 0)
1960 return;
1961 len = length >> TARGET_PAGE_BITS;
1962 mask = ~dirty_flags;
1963 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1964 for(i = 0; i < len; i++)
1965 p[i] &= mask;
1967 /* we modify the TLB cache so that the dirty bit will be set again
1968 when accessing the range */
1969 start1 = (unsigned long)qemu_get_ram_ptr(start);
1970 /* Chek that we don't span multiple blocks - this breaks the
1971 address comparisons below. */
1972 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1973 != (end - 1) - start) {
1974 abort();
1977 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1978 int mmu_idx;
1979 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1980 for(i = 0; i < CPU_TLB_SIZE; i++)
1981 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1982 start1, length);
1987 int cpu_physical_memory_set_dirty_tracking(int enable)
1989 int ret = 0;
1990 in_migration = enable;
1991 ret = cpu_notify_migration_log(!!enable);
1992 return ret;
1995 int cpu_physical_memory_get_dirty_tracking(void)
1997 return in_migration;
2000 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2001 target_phys_addr_t end_addr)
2003 int ret;
2005 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2006 return ret;
2009 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2011 ram_addr_t ram_addr;
2012 void *p;
2014 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2015 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2016 + tlb_entry->addend);
2017 ram_addr = qemu_ram_addr_from_host(p);
2018 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2019 tlb_entry->addr_write |= TLB_NOTDIRTY;
2024 /* update the TLB according to the current state of the dirty bits */
2025 void cpu_tlb_update_dirty(CPUState *env)
2027 int i;
2028 int mmu_idx;
2029 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2030 for(i = 0; i < CPU_TLB_SIZE; i++)
2031 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2035 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2037 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2038 tlb_entry->addr_write = vaddr;
2041 /* update the TLB corresponding to virtual page vaddr
2042 so that it is no longer dirty */
2043 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2045 int i;
2046 int mmu_idx;
2048 vaddr &= TARGET_PAGE_MASK;
2049 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2051 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2054 /* add a new TLB entry. At most one entry for a given virtual address
2055 is permitted. Return 0 if OK or 2 if the page could not be mapped
2056 (can only happen in non SOFTMMU mode for I/O pages or pages
2057 conflicting with the host address space). */
2058 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2059 target_phys_addr_t paddr, int prot,
2060 int mmu_idx, int is_softmmu)
2062 PhysPageDesc *p;
2063 unsigned long pd;
2064 unsigned int index;
2065 target_ulong address;
2066 target_ulong code_address;
2067 target_phys_addr_t addend;
2068 int ret;
2069 CPUTLBEntry *te;
2070 CPUWatchpoint *wp;
2071 target_phys_addr_t iotlb;
2073 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2074 if (!p) {
2075 pd = IO_MEM_UNASSIGNED;
2076 } else {
2077 pd = p->phys_offset;
2079 #if defined(DEBUG_TLB)
2080 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2081 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2082 #endif
2084 ret = 0;
2085 address = vaddr;
2086 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2087 /* IO memory case (romd handled later) */
2088 address |= TLB_MMIO;
2090 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2091 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2092 /* Normal RAM. */
2093 iotlb = pd & TARGET_PAGE_MASK;
2094 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2095 iotlb |= IO_MEM_NOTDIRTY;
2096 else
2097 iotlb |= IO_MEM_ROM;
2098 } else {
2099 /* IO handlers are currently passed a physical address.
2100 It would be nice to pass an offset from the base address
2101 of that region. This would avoid having to special case RAM,
2102 and avoid full address decoding in every device.
2103 We can't use the high bits of pd for this because
2104 IO_MEM_ROMD uses these as a ram address. */
2105 iotlb = (pd & ~TARGET_PAGE_MASK);
2106 if (p) {
2107 iotlb += p->region_offset;
2108 } else {
2109 iotlb += paddr;
2113 code_address = address;
2114 /* Make accesses to pages with watchpoints go via the
2115 watchpoint trap routines. */
2116 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2117 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2118 iotlb = io_mem_watch + paddr;
2119 /* TODO: The memory case can be optimized by not trapping
2120 reads of pages with a write breakpoint. */
2121 address |= TLB_MMIO;
2125 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2126 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2127 te = &env->tlb_table[mmu_idx][index];
2128 te->addend = addend - vaddr;
2129 if (prot & PAGE_READ) {
2130 te->addr_read = address;
2131 } else {
2132 te->addr_read = -1;
2135 if (prot & PAGE_EXEC) {
2136 te->addr_code = code_address;
2137 } else {
2138 te->addr_code = -1;
2140 if (prot & PAGE_WRITE) {
2141 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2142 (pd & IO_MEM_ROMD)) {
2143 /* Write access calls the I/O callback. */
2144 te->addr_write = address | TLB_MMIO;
2145 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2146 !cpu_physical_memory_is_dirty(pd)) {
2147 te->addr_write = address | TLB_NOTDIRTY;
2148 } else {
2149 te->addr_write = address;
2151 } else {
2152 te->addr_write = -1;
2154 return ret;
2157 #else
2159 void tlb_flush(CPUState *env, int flush_global)
2163 void tlb_flush_page(CPUState *env, target_ulong addr)
2167 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2168 target_phys_addr_t paddr, int prot,
2169 int mmu_idx, int is_softmmu)
2171 return 0;
2175 * Walks guest process memory "regions" one by one
2176 * and calls callback function 'fn' for each region.
2178 int walk_memory_regions(void *priv,
2179 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2181 unsigned long start, end;
2182 PageDesc *p = NULL;
2183 int i, j, prot, prot1;
2184 int rc = 0;
2186 start = end = -1;
2187 prot = 0;
2189 for (i = 0; i <= L1_SIZE; i++) {
2190 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2191 for (j = 0; j < L2_SIZE; j++) {
2192 prot1 = (p == NULL) ? 0 : p[j].flags;
2194 * "region" is one continuous chunk of memory
2195 * that has same protection flags set.
2197 if (prot1 != prot) {
2198 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2199 if (start != -1) {
2200 rc = (*fn)(priv, start, end, prot);
2201 /* callback can stop iteration by returning != 0 */
2202 if (rc != 0)
2203 return (rc);
2205 if (prot1 != 0)
2206 start = end;
2207 else
2208 start = -1;
2209 prot = prot1;
2211 if (p == NULL)
2212 break;
2215 return (rc);
2218 static int dump_region(void *priv, unsigned long start,
2219 unsigned long end, unsigned long prot)
2221 FILE *f = (FILE *)priv;
2223 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2224 start, end, end - start,
2225 ((prot & PAGE_READ) ? 'r' : '-'),
2226 ((prot & PAGE_WRITE) ? 'w' : '-'),
2227 ((prot & PAGE_EXEC) ? 'x' : '-'));
2229 return (0);
2232 /* dump memory mappings */
2233 void page_dump(FILE *f)
2235 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2236 "start", "end", "size", "prot");
2237 walk_memory_regions(f, dump_region);
2240 int page_get_flags(target_ulong address)
2242 PageDesc *p;
2244 p = page_find(address >> TARGET_PAGE_BITS);
2245 if (!p)
2246 return 0;
2247 return p->flags;
2250 /* modify the flags of a page and invalidate the code if
2251 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2252 depending on PAGE_WRITE */
2253 void page_set_flags(target_ulong start, target_ulong end, int flags)
2255 PageDesc *p;
2256 target_ulong addr;
2258 /* mmap_lock should already be held. */
2259 start = start & TARGET_PAGE_MASK;
2260 end = TARGET_PAGE_ALIGN(end);
2261 if (flags & PAGE_WRITE)
2262 flags |= PAGE_WRITE_ORG;
2263 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2264 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2265 /* We may be called for host regions that are outside guest
2266 address space. */
2267 if (!p)
2268 return;
2269 /* if the write protection is set, then we invalidate the code
2270 inside */
2271 if (!(p->flags & PAGE_WRITE) &&
2272 (flags & PAGE_WRITE) &&
2273 p->first_tb) {
2274 tb_invalidate_phys_page(addr, 0, NULL);
2276 p->flags = flags;
2280 int page_check_range(target_ulong start, target_ulong len, int flags)
2282 PageDesc *p;
2283 target_ulong end;
2284 target_ulong addr;
2286 if (start + len < start)
2287 /* we've wrapped around */
2288 return -1;
2290 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2291 start = start & TARGET_PAGE_MASK;
2293 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2294 p = page_find(addr >> TARGET_PAGE_BITS);
2295 if( !p )
2296 return -1;
2297 if( !(p->flags & PAGE_VALID) )
2298 return -1;
2300 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2301 return -1;
2302 if (flags & PAGE_WRITE) {
2303 if (!(p->flags & PAGE_WRITE_ORG))
2304 return -1;
2305 /* unprotect the page if it was put read-only because it
2306 contains translated code */
2307 if (!(p->flags & PAGE_WRITE)) {
2308 if (!page_unprotect(addr, 0, NULL))
2309 return -1;
2311 return 0;
2314 return 0;
2317 /* called from signal handler: invalidate the code and unprotect the
2318 page. Return TRUE if the fault was successfully handled. */
2319 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2321 unsigned int page_index, prot, pindex;
2322 PageDesc *p, *p1;
2323 target_ulong host_start, host_end, addr;
2325 /* Technically this isn't safe inside a signal handler. However we
2326 know this only ever happens in a synchronous SEGV handler, so in
2327 practice it seems to be ok. */
2328 mmap_lock();
2330 host_start = address & qemu_host_page_mask;
2331 page_index = host_start >> TARGET_PAGE_BITS;
2332 p1 = page_find(page_index);
2333 if (!p1) {
2334 mmap_unlock();
2335 return 0;
2337 host_end = host_start + qemu_host_page_size;
2338 p = p1;
2339 prot = 0;
2340 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2341 prot |= p->flags;
2342 p++;
2344 /* if the page was really writable, then we change its
2345 protection back to writable */
2346 if (prot & PAGE_WRITE_ORG) {
2347 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2348 if (!(p1[pindex].flags & PAGE_WRITE)) {
2349 mprotect((void *)g2h(host_start), qemu_host_page_size,
2350 (prot & PAGE_BITS) | PAGE_WRITE);
2351 p1[pindex].flags |= PAGE_WRITE;
2352 /* and since the content will be modified, we must invalidate
2353 the corresponding translated code. */
2354 tb_invalidate_phys_page(address, pc, puc);
2355 #ifdef DEBUG_TB_CHECK
2356 tb_invalidate_check(address);
2357 #endif
2358 mmap_unlock();
2359 return 1;
2362 mmap_unlock();
2363 return 0;
2366 static inline void tlb_set_dirty(CPUState *env,
2367 unsigned long addr, target_ulong vaddr)
2370 #endif /* defined(CONFIG_USER_ONLY) */
2372 #if !defined(CONFIG_USER_ONLY)
2374 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2375 ram_addr_t memory, ram_addr_t region_offset);
2376 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2377 ram_addr_t orig_memory, ram_addr_t region_offset);
2378 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2379 need_subpage) \
2380 do { \
2381 if (addr > start_addr) \
2382 start_addr2 = 0; \
2383 else { \
2384 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2385 if (start_addr2 > 0) \
2386 need_subpage = 1; \
2389 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2390 end_addr2 = TARGET_PAGE_SIZE - 1; \
2391 else { \
2392 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2393 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2394 need_subpage = 1; \
2396 } while (0)
2398 /* register physical memory.
2399 For RAM, 'size' must be a multiple of the target page size.
2400 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2401 io memory page. The address used when calling the IO function is
2402 the offset from the start of the region, plus region_offset. Both
2403 start_addr and region_offset are rounded down to a page boundary
2404 before calculating this offset. This should not be a problem unless
2405 the low bits of start_addr and region_offset differ. */
2406 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2407 ram_addr_t size,
2408 ram_addr_t phys_offset,
2409 ram_addr_t region_offset)
2411 target_phys_addr_t addr, end_addr;
2412 PhysPageDesc *p;
2413 CPUState *env;
2414 ram_addr_t orig_size = size;
2415 void *subpage;
2417 cpu_notify_set_memory(start_addr, size, phys_offset);
2419 if (phys_offset == IO_MEM_UNASSIGNED) {
2420 region_offset = start_addr;
2422 region_offset &= TARGET_PAGE_MASK;
2423 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2424 end_addr = start_addr + (target_phys_addr_t)size;
2425 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2426 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2427 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2428 ram_addr_t orig_memory = p->phys_offset;
2429 target_phys_addr_t start_addr2, end_addr2;
2430 int need_subpage = 0;
2432 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2433 need_subpage);
2434 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2435 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2436 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2437 &p->phys_offset, orig_memory,
2438 p->region_offset);
2439 } else {
2440 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2441 >> IO_MEM_SHIFT];
2443 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2444 region_offset);
2445 p->region_offset = 0;
2446 } else {
2447 p->phys_offset = phys_offset;
2448 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2449 (phys_offset & IO_MEM_ROMD))
2450 phys_offset += TARGET_PAGE_SIZE;
2452 } else {
2453 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2454 p->phys_offset = phys_offset;
2455 p->region_offset = region_offset;
2456 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2457 (phys_offset & IO_MEM_ROMD)) {
2458 phys_offset += TARGET_PAGE_SIZE;
2459 } else {
2460 target_phys_addr_t start_addr2, end_addr2;
2461 int need_subpage = 0;
2463 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2464 end_addr2, need_subpage);
2466 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2467 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2468 &p->phys_offset, IO_MEM_UNASSIGNED,
2469 addr & TARGET_PAGE_MASK);
2470 subpage_register(subpage, start_addr2, end_addr2,
2471 phys_offset, region_offset);
2472 p->region_offset = 0;
2476 region_offset += TARGET_PAGE_SIZE;
2479 /* since each CPU stores ram addresses in its TLB cache, we must
2480 reset the modified entries */
2481 /* XXX: slow ! */
2482 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2483 tlb_flush(env, 1);
2487 /* XXX: temporary until new memory mapping API */
2488 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2490 PhysPageDesc *p;
2492 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2493 if (!p)
2494 return IO_MEM_UNASSIGNED;
2495 return p->phys_offset;
2498 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2500 if (kvm_enabled())
2501 kvm_coalesce_mmio_region(addr, size);
2504 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2506 if (kvm_enabled())
2507 kvm_uncoalesce_mmio_region(addr, size);
2510 void qemu_flush_coalesced_mmio_buffer(void)
2512 if (kvm_enabled())
2513 kvm_flush_coalesced_mmio_buffer();
2516 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2518 RAMBlock *new_block;
2520 size = TARGET_PAGE_ALIGN(size);
2521 new_block = qemu_malloc(sizeof(*new_block));
2523 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2524 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2525 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2526 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2527 #else
2528 new_block->host = qemu_vmalloc(size);
2529 #endif
2530 #ifdef MADV_MERGEABLE
2531 madvise(new_block->host, size, MADV_MERGEABLE);
2532 #endif
2533 new_block->offset = last_ram_offset;
2534 new_block->length = size;
2536 new_block->next = ram_blocks;
2537 ram_blocks = new_block;
2539 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2540 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2541 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2542 0xff, size >> TARGET_PAGE_BITS);
2544 last_ram_offset += size;
2546 if (kvm_enabled())
2547 kvm_setup_guest_memory(new_block->host, size);
2549 return new_block->offset;
2552 void qemu_ram_free(ram_addr_t addr)
2554 /* TODO: implement this. */
2557 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2558 With the exception of the softmmu code in this file, this should
2559 only be used for local memory (e.g. video ram) that the device owns,
2560 and knows it isn't going to access beyond the end of the block.
2562 It should not be used for general purpose DMA.
2563 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2565 void *qemu_get_ram_ptr(ram_addr_t addr)
2567 RAMBlock *prev;
2568 RAMBlock **prevp;
2569 RAMBlock *block;
2571 prev = NULL;
2572 prevp = &ram_blocks;
2573 block = ram_blocks;
2574 while (block && (block->offset > addr
2575 || block->offset + block->length <= addr)) {
2576 if (prev)
2577 prevp = &prev->next;
2578 prev = block;
2579 block = block->next;
2581 if (!block) {
2582 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2583 abort();
2585 /* Move this entry to to start of the list. */
2586 if (prev) {
2587 prev->next = block->next;
2588 block->next = *prevp;
2589 *prevp = block;
2591 return block->host + (addr - block->offset);
2594 /* Some of the softmmu routines need to translate from a host pointer
2595 (typically a TLB entry) back to a ram offset. */
2596 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2598 RAMBlock *prev;
2599 RAMBlock *block;
2600 uint8_t *host = ptr;
2602 prev = NULL;
2603 block = ram_blocks;
2604 while (block && (block->host > host
2605 || block->host + block->length <= host)) {
2606 prev = block;
2607 block = block->next;
2609 if (!block) {
2610 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2611 abort();
2613 return block->offset + (host - block->host);
2616 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2618 #ifdef DEBUG_UNASSIGNED
2619 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2620 #endif
2621 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2622 do_unassigned_access(addr, 0, 0, 0, 1);
2623 #endif
2624 return 0;
2627 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2629 #ifdef DEBUG_UNASSIGNED
2630 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2631 #endif
2632 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2633 do_unassigned_access(addr, 0, 0, 0, 2);
2634 #endif
2635 return 0;
2638 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2640 #ifdef DEBUG_UNASSIGNED
2641 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2642 #endif
2643 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2644 do_unassigned_access(addr, 0, 0, 0, 4);
2645 #endif
2646 return 0;
2649 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2651 #ifdef DEBUG_UNASSIGNED
2652 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2653 #endif
2654 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2655 do_unassigned_access(addr, 1, 0, 0, 1);
2656 #endif
2659 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2661 #ifdef DEBUG_UNASSIGNED
2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2663 #endif
2664 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2665 do_unassigned_access(addr, 1, 0, 0, 2);
2666 #endif
2669 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2671 #ifdef DEBUG_UNASSIGNED
2672 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2673 #endif
2674 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2675 do_unassigned_access(addr, 1, 0, 0, 4);
2676 #endif
2679 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2680 unassigned_mem_readb,
2681 unassigned_mem_readw,
2682 unassigned_mem_readl,
2685 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2686 unassigned_mem_writeb,
2687 unassigned_mem_writew,
2688 unassigned_mem_writel,
2691 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2692 uint32_t val)
2694 int dirty_flags;
2695 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2696 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2697 #if !defined(CONFIG_USER_ONLY)
2698 tb_invalidate_phys_page_fast(ram_addr, 1);
2699 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2700 #endif
2702 stb_p(qemu_get_ram_ptr(ram_addr), val);
2703 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2704 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2705 /* we remove the notdirty callback only if the code has been
2706 flushed */
2707 if (dirty_flags == 0xff)
2708 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2711 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2712 uint32_t val)
2714 int dirty_flags;
2715 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2716 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2717 #if !defined(CONFIG_USER_ONLY)
2718 tb_invalidate_phys_page_fast(ram_addr, 2);
2719 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2720 #endif
2722 stw_p(qemu_get_ram_ptr(ram_addr), val);
2723 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2724 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2725 /* we remove the notdirty callback only if the code has been
2726 flushed */
2727 if (dirty_flags == 0xff)
2728 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2731 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2732 uint32_t val)
2734 int dirty_flags;
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2736 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2737 #if !defined(CONFIG_USER_ONLY)
2738 tb_invalidate_phys_page_fast(ram_addr, 4);
2739 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2740 #endif
2742 stl_p(qemu_get_ram_ptr(ram_addr), val);
2743 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2744 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2745 /* we remove the notdirty callback only if the code has been
2746 flushed */
2747 if (dirty_flags == 0xff)
2748 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2751 static CPUReadMemoryFunc * const error_mem_read[3] = {
2752 NULL, /* never used */
2753 NULL, /* never used */
2754 NULL, /* never used */
2757 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2758 notdirty_mem_writeb,
2759 notdirty_mem_writew,
2760 notdirty_mem_writel,
2763 /* Generate a debug exception if a watchpoint has been hit. */
2764 static void check_watchpoint(int offset, int len_mask, int flags)
2766 CPUState *env = cpu_single_env;
2767 target_ulong pc, cs_base;
2768 TranslationBlock *tb;
2769 target_ulong vaddr;
2770 CPUWatchpoint *wp;
2771 int cpu_flags;
2773 if (env->watchpoint_hit) {
2774 /* We re-entered the check after replacing the TB. Now raise
2775 * the debug interrupt so that is will trigger after the
2776 * current instruction. */
2777 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2778 return;
2780 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2781 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2782 if ((vaddr == (wp->vaddr & len_mask) ||
2783 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2784 wp->flags |= BP_WATCHPOINT_HIT;
2785 if (!env->watchpoint_hit) {
2786 env->watchpoint_hit = wp;
2787 tb = tb_find_pc(env->mem_io_pc);
2788 if (!tb) {
2789 cpu_abort(env, "check_watchpoint: could not find TB for "
2790 "pc=%p", (void *)env->mem_io_pc);
2792 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2793 tb_phys_invalidate(tb, -1);
2794 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2795 env->exception_index = EXCP_DEBUG;
2796 } else {
2797 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2798 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2800 cpu_resume_from_signal(env, NULL);
2802 } else {
2803 wp->flags &= ~BP_WATCHPOINT_HIT;
2808 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2809 so these check for a hit then pass through to the normal out-of-line
2810 phys routines. */
2811 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2813 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2814 return ldub_phys(addr);
2817 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2819 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2820 return lduw_phys(addr);
2823 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2825 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2826 return ldl_phys(addr);
2829 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2830 uint32_t val)
2832 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2833 stb_phys(addr, val);
2836 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2837 uint32_t val)
2839 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2840 stw_phys(addr, val);
2843 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2844 uint32_t val)
2846 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2847 stl_phys(addr, val);
2850 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2851 watch_mem_readb,
2852 watch_mem_readw,
2853 watch_mem_readl,
2856 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2857 watch_mem_writeb,
2858 watch_mem_writew,
2859 watch_mem_writel,
2862 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2863 unsigned int len)
2865 uint32_t ret;
2866 unsigned int idx;
2868 idx = SUBPAGE_IDX(addr);
2869 #if defined(DEBUG_SUBPAGE)
2870 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2871 mmio, len, addr, idx);
2872 #endif
2873 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2874 addr + mmio->region_offset[idx][0][len]);
2876 return ret;
2879 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2880 uint32_t value, unsigned int len)
2882 unsigned int idx;
2884 idx = SUBPAGE_IDX(addr);
2885 #if defined(DEBUG_SUBPAGE)
2886 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2887 mmio, len, addr, idx, value);
2888 #endif
2889 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2890 addr + mmio->region_offset[idx][1][len],
2891 value);
2894 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2898 #endif
2900 return subpage_readlen(opaque, addr, 0);
2903 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2904 uint32_t value)
2906 #if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2908 #endif
2909 subpage_writelen(opaque, addr, value, 0);
2912 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2916 #endif
2918 return subpage_readlen(opaque, addr, 1);
2921 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2922 uint32_t value)
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2926 #endif
2927 subpage_writelen(opaque, addr, value, 1);
2930 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2932 #if defined(DEBUG_SUBPAGE)
2933 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2934 #endif
2936 return subpage_readlen(opaque, addr, 2);
2939 static void subpage_writel (void *opaque,
2940 target_phys_addr_t addr, uint32_t value)
2942 #if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2944 #endif
2945 subpage_writelen(opaque, addr, value, 2);
2948 static CPUReadMemoryFunc * const subpage_read[] = {
2949 &subpage_readb,
2950 &subpage_readw,
2951 &subpage_readl,
2954 static CPUWriteMemoryFunc * const subpage_write[] = {
2955 &subpage_writeb,
2956 &subpage_writew,
2957 &subpage_writel,
2960 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2961 ram_addr_t memory, ram_addr_t region_offset)
2963 int idx, eidx;
2964 unsigned int i;
2966 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2967 return -1;
2968 idx = SUBPAGE_IDX(start);
2969 eidx = SUBPAGE_IDX(end);
2970 #if defined(DEBUG_SUBPAGE)
2971 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2972 mmio, start, end, idx, eidx, memory);
2973 #endif
2974 memory >>= IO_MEM_SHIFT;
2975 for (; idx <= eidx; idx++) {
2976 for (i = 0; i < 4; i++) {
2977 if (io_mem_read[memory][i]) {
2978 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2979 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2980 mmio->region_offset[idx][0][i] = region_offset;
2982 if (io_mem_write[memory][i]) {
2983 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2984 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2985 mmio->region_offset[idx][1][i] = region_offset;
2990 return 0;
2993 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2994 ram_addr_t orig_memory, ram_addr_t region_offset)
2996 subpage_t *mmio;
2997 int subpage_memory;
2999 mmio = qemu_mallocz(sizeof(subpage_t));
3001 mmio->base = base;
3002 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3003 #if defined(DEBUG_SUBPAGE)
3004 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3005 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3006 #endif
3007 *phys = subpage_memory | IO_MEM_SUBPAGE;
3008 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3009 region_offset);
3011 return mmio;
3014 static int get_free_io_mem_idx(void)
3016 int i;
3018 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3019 if (!io_mem_used[i]) {
3020 io_mem_used[i] = 1;
3021 return i;
3023 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3024 return -1;
3027 /* mem_read and mem_write are arrays of functions containing the
3028 function to access byte (index 0), word (index 1) and dword (index
3029 2). Functions can be omitted with a NULL function pointer.
3030 If io_index is non zero, the corresponding io zone is
3031 modified. If it is zero, a new io zone is allocated. The return
3032 value can be used with cpu_register_physical_memory(). (-1) is
3033 returned if error. */
3034 static int cpu_register_io_memory_fixed(int io_index,
3035 CPUReadMemoryFunc * const *mem_read,
3036 CPUWriteMemoryFunc * const *mem_write,
3037 void *opaque)
3039 int i, subwidth = 0;
3041 if (io_index <= 0) {
3042 io_index = get_free_io_mem_idx();
3043 if (io_index == -1)
3044 return io_index;
3045 } else {
3046 io_index >>= IO_MEM_SHIFT;
3047 if (io_index >= IO_MEM_NB_ENTRIES)
3048 return -1;
3051 for(i = 0;i < 3; i++) {
3052 if (!mem_read[i] || !mem_write[i])
3053 subwidth = IO_MEM_SUBWIDTH;
3054 io_mem_read[io_index][i] = mem_read[i];
3055 io_mem_write[io_index][i] = mem_write[i];
3057 io_mem_opaque[io_index] = opaque;
3058 return (io_index << IO_MEM_SHIFT) | subwidth;
3061 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3062 CPUWriteMemoryFunc * const *mem_write,
3063 void *opaque)
3065 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3068 void cpu_unregister_io_memory(int io_table_address)
3070 int i;
3071 int io_index = io_table_address >> IO_MEM_SHIFT;
3073 for (i=0;i < 3; i++) {
3074 io_mem_read[io_index][i] = unassigned_mem_read[i];
3075 io_mem_write[io_index][i] = unassigned_mem_write[i];
3077 io_mem_opaque[io_index] = NULL;
3078 io_mem_used[io_index] = 0;
3081 static void io_mem_init(void)
3083 int i;
3085 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3086 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3087 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3088 for (i=0; i<5; i++)
3089 io_mem_used[i] = 1;
3091 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3092 watch_mem_write, NULL);
3095 #endif /* !defined(CONFIG_USER_ONLY) */
3097 /* physical memory access (slow version, mainly for debug) */
3098 #if defined(CONFIG_USER_ONLY)
3099 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3100 int len, int is_write)
3102 int l, flags;
3103 target_ulong page;
3104 void * p;
3106 while (len > 0) {
3107 page = addr & TARGET_PAGE_MASK;
3108 l = (page + TARGET_PAGE_SIZE) - addr;
3109 if (l > len)
3110 l = len;
3111 flags = page_get_flags(page);
3112 if (!(flags & PAGE_VALID))
3113 return;
3114 if (is_write) {
3115 if (!(flags & PAGE_WRITE))
3116 return;
3117 /* XXX: this code should not depend on lock_user */
3118 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3119 /* FIXME - should this return an error rather than just fail? */
3120 return;
3121 memcpy(p, buf, l);
3122 unlock_user(p, addr, l);
3123 } else {
3124 if (!(flags & PAGE_READ))
3125 return;
3126 /* XXX: this code should not depend on lock_user */
3127 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3128 /* FIXME - should this return an error rather than just fail? */
3129 return;
3130 memcpy(buf, p, l);
3131 unlock_user(p, addr, 0);
3133 len -= l;
3134 buf += l;
3135 addr += l;
3139 #else
3140 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3141 int len, int is_write)
3143 int l, io_index;
3144 uint8_t *ptr;
3145 uint32_t val;
3146 target_phys_addr_t page;
3147 unsigned long pd;
3148 PhysPageDesc *p;
3150 while (len > 0) {
3151 page = addr & TARGET_PAGE_MASK;
3152 l = (page + TARGET_PAGE_SIZE) - addr;
3153 if (l > len)
3154 l = len;
3155 p = phys_page_find(page >> TARGET_PAGE_BITS);
3156 if (!p) {
3157 pd = IO_MEM_UNASSIGNED;
3158 } else {
3159 pd = p->phys_offset;
3162 if (is_write) {
3163 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3164 target_phys_addr_t addr1 = addr;
3165 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3166 if (p)
3167 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3168 /* XXX: could force cpu_single_env to NULL to avoid
3169 potential bugs */
3170 if (l >= 4 && ((addr1 & 3) == 0)) {
3171 /* 32 bit write access */
3172 val = ldl_p(buf);
3173 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3174 l = 4;
3175 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3176 /* 16 bit write access */
3177 val = lduw_p(buf);
3178 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3179 l = 2;
3180 } else {
3181 /* 8 bit write access */
3182 val = ldub_p(buf);
3183 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3184 l = 1;
3186 } else {
3187 unsigned long addr1;
3188 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3189 /* RAM case */
3190 ptr = qemu_get_ram_ptr(addr1);
3191 memcpy(ptr, buf, l);
3192 if (!cpu_physical_memory_is_dirty(addr1)) {
3193 /* invalidate code */
3194 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3195 /* set dirty bit */
3196 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3197 (0xff & ~CODE_DIRTY_FLAG);
3200 } else {
3201 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3202 !(pd & IO_MEM_ROMD)) {
3203 target_phys_addr_t addr1 = addr;
3204 /* I/O case */
3205 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3206 if (p)
3207 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3208 if (l >= 4 && ((addr1 & 3) == 0)) {
3209 /* 32 bit read access */
3210 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3211 stl_p(buf, val);
3212 l = 4;
3213 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3214 /* 16 bit read access */
3215 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3216 stw_p(buf, val);
3217 l = 2;
3218 } else {
3219 /* 8 bit read access */
3220 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3221 stb_p(buf, val);
3222 l = 1;
3224 } else {
3225 /* RAM case */
3226 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3227 (addr & ~TARGET_PAGE_MASK);
3228 memcpy(buf, ptr, l);
3231 len -= l;
3232 buf += l;
3233 addr += l;
3237 /* used for ROM loading : can write in RAM and ROM */
3238 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3239 const uint8_t *buf, int len)
3241 int l;
3242 uint8_t *ptr;
3243 target_phys_addr_t page;
3244 unsigned long pd;
3245 PhysPageDesc *p;
3247 while (len > 0) {
3248 page = addr & TARGET_PAGE_MASK;
3249 l = (page + TARGET_PAGE_SIZE) - addr;
3250 if (l > len)
3251 l = len;
3252 p = phys_page_find(page >> TARGET_PAGE_BITS);
3253 if (!p) {
3254 pd = IO_MEM_UNASSIGNED;
3255 } else {
3256 pd = p->phys_offset;
3259 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3260 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3261 !(pd & IO_MEM_ROMD)) {
3262 /* do nothing */
3263 } else {
3264 unsigned long addr1;
3265 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3266 /* ROM/RAM case */
3267 ptr = qemu_get_ram_ptr(addr1);
3268 memcpy(ptr, buf, l);
3270 len -= l;
3271 buf += l;
3272 addr += l;
3276 typedef struct {
3277 void *buffer;
3278 target_phys_addr_t addr;
3279 target_phys_addr_t len;
3280 } BounceBuffer;
3282 static BounceBuffer bounce;
3284 typedef struct MapClient {
3285 void *opaque;
3286 void (*callback)(void *opaque);
3287 QLIST_ENTRY(MapClient) link;
3288 } MapClient;
3290 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3291 = QLIST_HEAD_INITIALIZER(map_client_list);
3293 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3295 MapClient *client = qemu_malloc(sizeof(*client));
3297 client->opaque = opaque;
3298 client->callback = callback;
3299 QLIST_INSERT_HEAD(&map_client_list, client, link);
3300 return client;
3303 void cpu_unregister_map_client(void *_client)
3305 MapClient *client = (MapClient *)_client;
3307 QLIST_REMOVE(client, link);
3308 qemu_free(client);
3311 static void cpu_notify_map_clients(void)
3313 MapClient *client;
3315 while (!QLIST_EMPTY(&map_client_list)) {
3316 client = QLIST_FIRST(&map_client_list);
3317 client->callback(client->opaque);
3318 cpu_unregister_map_client(client);
3322 /* Map a physical memory region into a host virtual address.
3323 * May map a subset of the requested range, given by and returned in *plen.
3324 * May return NULL if resources needed to perform the mapping are exhausted.
3325 * Use only for reads OR writes - not for read-modify-write operations.
3326 * Use cpu_register_map_client() to know when retrying the map operation is
3327 * likely to succeed.
3329 void *cpu_physical_memory_map(target_phys_addr_t addr,
3330 target_phys_addr_t *plen,
3331 int is_write)
3333 target_phys_addr_t len = *plen;
3334 target_phys_addr_t done = 0;
3335 int l;
3336 uint8_t *ret = NULL;
3337 uint8_t *ptr;
3338 target_phys_addr_t page;
3339 unsigned long pd;
3340 PhysPageDesc *p;
3341 unsigned long addr1;
3343 while (len > 0) {
3344 page = addr & TARGET_PAGE_MASK;
3345 l = (page + TARGET_PAGE_SIZE) - addr;
3346 if (l > len)
3347 l = len;
3348 p = phys_page_find(page >> TARGET_PAGE_BITS);
3349 if (!p) {
3350 pd = IO_MEM_UNASSIGNED;
3351 } else {
3352 pd = p->phys_offset;
3355 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3356 if (done || bounce.buffer) {
3357 break;
3359 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3360 bounce.addr = addr;
3361 bounce.len = l;
3362 if (!is_write) {
3363 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3365 ptr = bounce.buffer;
3366 } else {
3367 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3368 ptr = qemu_get_ram_ptr(addr1);
3370 if (!done) {
3371 ret = ptr;
3372 } else if (ret + done != ptr) {
3373 break;
3376 len -= l;
3377 addr += l;
3378 done += l;
3380 *plen = done;
3381 return ret;
3384 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3385 * Will also mark the memory as dirty if is_write == 1. access_len gives
3386 * the amount of memory that was actually read or written by the caller.
3388 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3389 int is_write, target_phys_addr_t access_len)
3391 if (buffer != bounce.buffer) {
3392 if (is_write) {
3393 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3394 while (access_len) {
3395 unsigned l;
3396 l = TARGET_PAGE_SIZE;
3397 if (l > access_len)
3398 l = access_len;
3399 if (!cpu_physical_memory_is_dirty(addr1)) {
3400 /* invalidate code */
3401 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3402 /* set dirty bit */
3403 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3404 (0xff & ~CODE_DIRTY_FLAG);
3406 addr1 += l;
3407 access_len -= l;
3410 return;
3412 if (is_write) {
3413 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3415 qemu_vfree(bounce.buffer);
3416 bounce.buffer = NULL;
3417 cpu_notify_map_clients();
3420 /* warning: addr must be aligned */
3421 uint32_t ldl_phys(target_phys_addr_t addr)
3423 int io_index;
3424 uint8_t *ptr;
3425 uint32_t val;
3426 unsigned long pd;
3427 PhysPageDesc *p;
3429 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3430 if (!p) {
3431 pd = IO_MEM_UNASSIGNED;
3432 } else {
3433 pd = p->phys_offset;
3436 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3437 !(pd & IO_MEM_ROMD)) {
3438 /* I/O case */
3439 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3440 if (p)
3441 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3442 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3443 } else {
3444 /* RAM case */
3445 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3446 (addr & ~TARGET_PAGE_MASK);
3447 val = ldl_p(ptr);
3449 return val;
3452 /* warning: addr must be aligned */
3453 uint64_t ldq_phys(target_phys_addr_t addr)
3455 int io_index;
3456 uint8_t *ptr;
3457 uint64_t val;
3458 unsigned long pd;
3459 PhysPageDesc *p;
3461 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3462 if (!p) {
3463 pd = IO_MEM_UNASSIGNED;
3464 } else {
3465 pd = p->phys_offset;
3468 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3469 !(pd & IO_MEM_ROMD)) {
3470 /* I/O case */
3471 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3472 if (p)
3473 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3474 #ifdef TARGET_WORDS_BIGENDIAN
3475 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3476 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3477 #else
3478 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3479 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3480 #endif
3481 } else {
3482 /* RAM case */
3483 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3484 (addr & ~TARGET_PAGE_MASK);
3485 val = ldq_p(ptr);
3487 return val;
3490 /* XXX: optimize */
3491 uint32_t ldub_phys(target_phys_addr_t addr)
3493 uint8_t val;
3494 cpu_physical_memory_read(addr, &val, 1);
3495 return val;
3498 /* XXX: optimize */
3499 uint32_t lduw_phys(target_phys_addr_t addr)
3501 uint16_t val;
3502 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3503 return tswap16(val);
3506 /* warning: addr must be aligned. The ram page is not masked as dirty
3507 and the code inside is not invalidated. It is useful if the dirty
3508 bits are used to track modified PTEs */
3509 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3511 int io_index;
3512 uint8_t *ptr;
3513 unsigned long pd;
3514 PhysPageDesc *p;
3516 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3517 if (!p) {
3518 pd = IO_MEM_UNASSIGNED;
3519 } else {
3520 pd = p->phys_offset;
3523 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3524 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3525 if (p)
3526 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528 } else {
3529 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3530 ptr = qemu_get_ram_ptr(addr1);
3531 stl_p(ptr, val);
3533 if (unlikely(in_migration)) {
3534 if (!cpu_physical_memory_is_dirty(addr1)) {
3535 /* invalidate code */
3536 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3537 /* set dirty bit */
3538 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3539 (0xff & ~CODE_DIRTY_FLAG);
3545 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3547 int io_index;
3548 uint8_t *ptr;
3549 unsigned long pd;
3550 PhysPageDesc *p;
3552 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3553 if (!p) {
3554 pd = IO_MEM_UNASSIGNED;
3555 } else {
3556 pd = p->phys_offset;
3559 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3560 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3561 if (p)
3562 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3563 #ifdef TARGET_WORDS_BIGENDIAN
3564 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3565 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3566 #else
3567 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3568 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3569 #endif
3570 } else {
3571 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3572 (addr & ~TARGET_PAGE_MASK);
3573 stq_p(ptr, val);
3577 /* warning: addr must be aligned */
3578 void stl_phys(target_phys_addr_t addr, uint32_t val)
3580 int io_index;
3581 uint8_t *ptr;
3582 unsigned long pd;
3583 PhysPageDesc *p;
3585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3586 if (!p) {
3587 pd = IO_MEM_UNASSIGNED;
3588 } else {
3589 pd = p->phys_offset;
3592 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3593 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3594 if (p)
3595 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3596 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3597 } else {
3598 unsigned long addr1;
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3600 /* RAM case */
3601 ptr = qemu_get_ram_ptr(addr1);
3602 stl_p(ptr, val);
3603 if (!cpu_physical_memory_is_dirty(addr1)) {
3604 /* invalidate code */
3605 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3606 /* set dirty bit */
3607 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3608 (0xff & ~CODE_DIRTY_FLAG);
3613 /* XXX: optimize */
3614 void stb_phys(target_phys_addr_t addr, uint32_t val)
3616 uint8_t v = val;
3617 cpu_physical_memory_write(addr, &v, 1);
3620 /* XXX: optimize */
3621 void stw_phys(target_phys_addr_t addr, uint32_t val)
3623 uint16_t v = tswap16(val);
3624 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3627 /* XXX: optimize */
3628 void stq_phys(target_phys_addr_t addr, uint64_t val)
3630 val = tswap64(val);
3631 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3634 #endif
3636 /* virtual memory access for debug (includes writing to ROM) */
3637 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3638 uint8_t *buf, int len, int is_write)
3640 int l;
3641 target_phys_addr_t phys_addr;
3642 target_ulong page;
3644 while (len > 0) {
3645 page = addr & TARGET_PAGE_MASK;
3646 phys_addr = cpu_get_phys_page_debug(env, page);
3647 /* if no physical page mapped, return an error */
3648 if (phys_addr == -1)
3649 return -1;
3650 l = (page + TARGET_PAGE_SIZE) - addr;
3651 if (l > len)
3652 l = len;
3653 phys_addr += (addr & ~TARGET_PAGE_MASK);
3654 #if !defined(CONFIG_USER_ONLY)
3655 if (is_write)
3656 cpu_physical_memory_write_rom(phys_addr, buf, l);
3657 else
3658 #endif
3659 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3660 len -= l;
3661 buf += l;
3662 addr += l;
3664 return 0;
3667 /* in deterministic execution mode, instructions doing device I/Os
3668 must be at the end of the TB */
3669 void cpu_io_recompile(CPUState *env, void *retaddr)
3671 TranslationBlock *tb;
3672 uint32_t n, cflags;
3673 target_ulong pc, cs_base;
3674 uint64_t flags;
3676 tb = tb_find_pc((unsigned long)retaddr);
3677 if (!tb) {
3678 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3679 retaddr);
3681 n = env->icount_decr.u16.low + tb->icount;
3682 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3683 /* Calculate how many instructions had been executed before the fault
3684 occurred. */
3685 n = n - env->icount_decr.u16.low;
3686 /* Generate a new TB ending on the I/O insn. */
3687 n++;
3688 /* On MIPS and SH, delay slot instructions can only be restarted if
3689 they were already the first instruction in the TB. If this is not
3690 the first instruction in a TB then re-execute the preceding
3691 branch. */
3692 #if defined(TARGET_MIPS)
3693 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3694 env->active_tc.PC -= 4;
3695 env->icount_decr.u16.low++;
3696 env->hflags &= ~MIPS_HFLAG_BMASK;
3698 #elif defined(TARGET_SH4)
3699 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3700 && n > 1) {
3701 env->pc -= 2;
3702 env->icount_decr.u16.low++;
3703 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3705 #endif
3706 /* This should never happen. */
3707 if (n > CF_COUNT_MASK)
3708 cpu_abort(env, "TB too big during recompile");
3710 cflags = n | CF_LAST_IO;
3711 pc = tb->pc;
3712 cs_base = tb->cs_base;
3713 flags = tb->flags;
3714 tb_phys_invalidate(tb, -1);
3715 /* FIXME: In theory this could raise an exception. In practice
3716 we have already translated the block once so it's probably ok. */
3717 tb_gen_code(env, pc, cs_base, flags, cflags);
3718 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3719 the first in the TB) then we end up generating a whole new TB and
3720 repeating the fault, which is horribly inefficient.
3721 Better would be to execute just this insn uncached, or generate a
3722 second new TB. */
3723 cpu_resume_from_signal(env, NULL);
3726 void dump_exec_info(FILE *f,
3727 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3729 int i, target_code_size, max_target_code_size;
3730 int direct_jmp_count, direct_jmp2_count, cross_page;
3731 TranslationBlock *tb;
3733 target_code_size = 0;
3734 max_target_code_size = 0;
3735 cross_page = 0;
3736 direct_jmp_count = 0;
3737 direct_jmp2_count = 0;
3738 for(i = 0; i < nb_tbs; i++) {
3739 tb = &tbs[i];
3740 target_code_size += tb->size;
3741 if (tb->size > max_target_code_size)
3742 max_target_code_size = tb->size;
3743 if (tb->page_addr[1] != -1)
3744 cross_page++;
3745 if (tb->tb_next_offset[0] != 0xffff) {
3746 direct_jmp_count++;
3747 if (tb->tb_next_offset[1] != 0xffff) {
3748 direct_jmp2_count++;
3752 /* XXX: avoid using doubles ? */
3753 cpu_fprintf(f, "Translation buffer state:\n");
3754 cpu_fprintf(f, "gen code size %ld/%ld\n",
3755 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3756 cpu_fprintf(f, "TB count %d/%d\n",
3757 nb_tbs, code_gen_max_blocks);
3758 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3759 nb_tbs ? target_code_size / nb_tbs : 0,
3760 max_target_code_size);
3761 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3762 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3763 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3764 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3765 cross_page,
3766 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3767 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3768 direct_jmp_count,
3769 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3770 direct_jmp2_count,
3771 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3772 cpu_fprintf(f, "\nStatistics:\n");
3773 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3774 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3775 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3776 tcg_dump_info(f, cpu_fprintf);
3779 #if !defined(CONFIG_USER_ONLY)
3781 #define MMUSUFFIX _cmmu
3782 #define GETPC() NULL
3783 #define env cpu_single_env
3784 #define SOFTMMU_CODE_ACCESS
3786 #define SHIFT 0
3787 #include "softmmu_template.h"
3789 #define SHIFT 1
3790 #include "softmmu_template.h"
3792 #define SHIFT 2
3793 #include "softmmu_template.h"
3795 #define SHIFT 3
3796 #include "softmmu_template.h"
3798 #undef env
3800 #endif