2 * x86 exception helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
24 #include "sysemu/sysemu.h"
25 #include "exec/helper-proto.h"
27 void helper_raise_interrupt(CPUX86State
*env
, int intno
, int next_eip_addend
)
29 raise_interrupt(env
, intno
, 1, 0, next_eip_addend
);
32 void helper_raise_exception(CPUX86State
*env
, int exception_index
)
34 raise_exception(env
, exception_index
);
38 * Check nested exceptions and change to double or triple fault if
39 * needed. It should only be called, if this is not an interrupt.
40 * Returns the new exception number.
42 static int check_exception(CPUX86State
*env
, int intno
, int *error_code
,
45 int first_contributory
= env
->old_exception
== 0 ||
46 (env
->old_exception
>= 10 &&
47 env
->old_exception
<= 13);
48 int second_contributory
= intno
== 0 ||
49 (intno
>= 10 && intno
<= 13);
51 qemu_log_mask(CPU_LOG_INT
, "check_exception old: 0x%x new 0x%x\n",
52 env
->old_exception
, intno
);
54 #if !defined(CONFIG_USER_ONLY)
55 if (env
->old_exception
== EXCP08_DBLE
) {
56 if (env
->hflags
& HF_SVMI_MASK
) {
57 cpu_vmexit(env
, SVM_EXIT_SHUTDOWN
, 0, retaddr
); /* does not return */
60 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
62 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
67 if ((first_contributory
&& second_contributory
)
68 || (env
->old_exception
== EXCP0E_PAGE
&&
69 (second_contributory
|| (intno
== EXCP0E_PAGE
)))) {
74 if (second_contributory
|| (intno
== EXCP0E_PAGE
) ||
75 (intno
== EXCP08_DBLE
)) {
76 env
->old_exception
= intno
;
83 * Signal an interruption. It is executed in the main CPU loop.
84 * is_int is TRUE if coming from the int instruction. next_eip is the
85 * env->eip value AFTER the interrupt instruction. It is only relevant if
88 static void QEMU_NORETURN
raise_interrupt2(CPUX86State
*env
, int intno
,
89 int is_int
, int error_code
,
93 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
96 cpu_svm_check_intercept_param(env
, SVM_EXIT_EXCP_BASE
+ intno
,
98 intno
= check_exception(env
, intno
, &error_code
, retaddr
);
100 cpu_svm_check_intercept_param(env
, SVM_EXIT_SWINT
, 0, retaddr
);
103 cs
->exception_index
= intno
;
104 env
->error_code
= error_code
;
105 env
->exception_is_int
= is_int
;
106 env
->exception_next_eip
= env
->eip
+ next_eip_addend
;
107 cpu_loop_exit_restore(cs
, retaddr
);
110 /* shortcuts to generate exceptions */
112 void QEMU_NORETURN
raise_interrupt(CPUX86State
*env
, int intno
, int is_int
,
113 int error_code
, int next_eip_addend
)
115 raise_interrupt2(env
, intno
, is_int
, error_code
, next_eip_addend
, 0);
118 void raise_exception_err(CPUX86State
*env
, int exception_index
,
121 raise_interrupt2(env
, exception_index
, 0, error_code
, 0, 0);
124 void raise_exception_err_ra(CPUX86State
*env
, int exception_index
,
125 int error_code
, uintptr_t retaddr
)
127 raise_interrupt2(env
, exception_index
, 0, error_code
, 0, retaddr
);
130 void raise_exception(CPUX86State
*env
, int exception_index
)
132 raise_interrupt2(env
, exception_index
, 0, 0, 0, 0);
135 void raise_exception_ra(CPUX86State
*env
, int exception_index
, uintptr_t retaddr
)
137 raise_interrupt2(env
, exception_index
, 0, 0, 0, retaddr
);
140 #if defined(CONFIG_USER_ONLY)
141 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
, int size
,
142 int is_write
, int mmu_idx
)
144 X86CPU
*cpu
= X86_CPU(cs
);
145 CPUX86State
*env
= &cpu
->env
;
147 /* user mode only emulation */
150 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
151 env
->error_code
|= PG_ERROR_U_MASK
;
152 cs
->exception_index
= EXCP0E_PAGE
;
153 env
->exception_is_int
= 0;
154 env
->exception_next_eip
= -1;
161 * -1 = cannot handle fault
162 * 0 = nothing more to do
163 * 1 = generate PF fault
165 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
, int size
,
166 int is_write1
, int mmu_idx
)
168 X86CPU
*cpu
= X86_CPU(cs
);
169 CPUX86State
*env
= &cpu
->env
;
172 target_ulong pde_addr
, pte_addr
;
174 int is_dirty
, prot
, page_size
, is_write
, is_user
;
176 uint64_t rsvd_mask
= PG_HI_RSVD_MASK
;
177 uint32_t page_offset
;
180 is_user
= mmu_idx
== MMU_USER_IDX
;
181 #if defined(DEBUG_MMU)
182 printf("MMU fault: addr=%" VADDR_PRIx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
183 addr
, is_write1
, is_user
, env
->eip
);
185 is_write
= is_write1
& 1;
187 a20_mask
= x86_get_a20_mask(env
);
188 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
191 if (!(env
->hflags
& HF_LMA_MASK
)) {
192 /* Without long mode we can only address 32bits in real mode */
196 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
201 if (!(env
->efer
& MSR_EFER_NXE
)) {
202 rsvd_mask
|= PG_NX_MASK
;
205 if (env
->cr
[4] & CR4_PAE_MASK
) {
207 target_ulong pdpe_addr
;
210 if (env
->hflags
& HF_LMA_MASK
) {
211 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
212 uint64_t pml5e_addr
, pml5e
;
213 uint64_t pml4e_addr
, pml4e
;
216 /* test virtual address sign extension */
217 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
218 if (sext
!= 0 && sext
!= -1) {
220 cs
->exception_index
= EXCP0D_GPF
;
225 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
226 (((addr
>> 48) & 0x1ff) << 3)) & a20_mask
;
227 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
228 if (!(pml5e
& PG_PRESENT_MASK
)) {
231 if (pml5e
& (rsvd_mask
| PG_PSE_MASK
)) {
234 if (!(pml5e
& PG_ACCESSED_MASK
)) {
235 pml5e
|= PG_ACCESSED_MASK
;
236 x86_stl_phys_notdirty(cs
, pml5e_addr
, pml5e
);
238 ptep
= pml5e
^ PG_NX_MASK
;
241 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
244 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
245 (((addr
>> 39) & 0x1ff) << 3)) & a20_mask
;
246 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
247 if (!(pml4e
& PG_PRESENT_MASK
)) {
250 if (pml4e
& (rsvd_mask
| PG_PSE_MASK
)) {
253 if (!(pml4e
& PG_ACCESSED_MASK
)) {
254 pml4e
|= PG_ACCESSED_MASK
;
255 x86_stl_phys_notdirty(cs
, pml4e_addr
, pml4e
);
257 ptep
&= pml4e
^ PG_NX_MASK
;
258 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
260 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
261 if (!(pdpe
& PG_PRESENT_MASK
)) {
264 if (pdpe
& rsvd_mask
) {
267 ptep
&= pdpe
^ PG_NX_MASK
;
268 if (!(pdpe
& PG_ACCESSED_MASK
)) {
269 pdpe
|= PG_ACCESSED_MASK
;
270 x86_stl_phys_notdirty(cs
, pdpe_addr
, pdpe
);
272 if (pdpe
& PG_PSE_MASK
) {
274 page_size
= 1024 * 1024 * 1024;
275 pte_addr
= pdpe_addr
;
277 goto do_check_protect
;
282 /* XXX: load them when cr3 is loaded ? */
283 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
285 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
286 if (!(pdpe
& PG_PRESENT_MASK
)) {
289 rsvd_mask
|= PG_HI_USER_MASK
;
290 if (pdpe
& (rsvd_mask
| PG_NX_MASK
)) {
293 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
296 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
298 pde
= x86_ldq_phys(cs
, pde_addr
);
299 if (!(pde
& PG_PRESENT_MASK
)) {
302 if (pde
& rsvd_mask
) {
305 ptep
&= pde
^ PG_NX_MASK
;
306 if (pde
& PG_PSE_MASK
) {
308 page_size
= 2048 * 1024;
311 goto do_check_protect
;
314 if (!(pde
& PG_ACCESSED_MASK
)) {
315 pde
|= PG_ACCESSED_MASK
;
316 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
318 pte_addr
= ((pde
& PG_ADDRESS_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
320 pte
= x86_ldq_phys(cs
, pte_addr
);
321 if (!(pte
& PG_PRESENT_MASK
)) {
324 if (pte
& rsvd_mask
) {
327 /* combine pde and pte nx, user and rw protections */
328 ptep
&= pte
^ PG_NX_MASK
;
333 /* page directory entry */
334 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
336 pde
= x86_ldl_phys(cs
, pde_addr
);
337 if (!(pde
& PG_PRESENT_MASK
)) {
340 ptep
= pde
| PG_NX_MASK
;
342 /* if PSE bit is set, then we use a 4MB page */
343 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
344 page_size
= 4096 * 1024;
347 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
348 * Leave bits 20-13 in place for setting accessed/dirty bits below.
350 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
351 rsvd_mask
= 0x200000;
352 goto do_check_protect_pse36
;
355 if (!(pde
& PG_ACCESSED_MASK
)) {
356 pde
|= PG_ACCESSED_MASK
;
357 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
360 /* page directory entry */
361 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
363 pte
= x86_ldl_phys(cs
, pte_addr
);
364 if (!(pte
& PG_PRESENT_MASK
)) {
367 /* combine pde and pte user and rw protections */
368 ptep
&= pte
| PG_NX_MASK
;
374 rsvd_mask
|= (page_size
- 1) & PG_ADDRESS_MASK
& ~PG_PSE_PAT_MASK
;
375 do_check_protect_pse36
:
376 if (pte
& rsvd_mask
) {
381 /* can the page can be put in the TLB? prot will tell us */
382 if (is_user
&& !(ptep
& PG_USER_MASK
)) {
383 goto do_fault_protect
;
387 if (mmu_idx
!= MMU_KSMAP_IDX
|| !(ptep
& PG_USER_MASK
)) {
389 if ((ptep
& PG_RW_MASK
) || (!is_user
&& !(env
->cr
[0] & CR0_WP_MASK
))) {
393 if (!(ptep
& PG_NX_MASK
) &&
394 (mmu_idx
== MMU_USER_IDX
||
395 !((env
->cr
[4] & CR4_SMEP_MASK
) && (ptep
& PG_USER_MASK
)))) {
398 if ((env
->cr
[4] & CR4_PKE_MASK
) && (env
->hflags
& HF_LMA_MASK
) &&
399 (ptep
& PG_USER_MASK
) && env
->pkru
) {
400 uint32_t pk
= (pte
& PG_PKRU_MASK
) >> PG_PKRU_BIT
;
401 uint32_t pkru_ad
= (env
->pkru
>> pk
* 2) & 1;
402 uint32_t pkru_wd
= (env
->pkru
>> pk
* 2) & 2;
403 uint32_t pkru_prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
406 pkru_prot
&= ~(PAGE_READ
| PAGE_WRITE
);
407 } else if (pkru_wd
&& (is_user
|| env
->cr
[0] & CR0_WP_MASK
)) {
408 pkru_prot
&= ~PAGE_WRITE
;
412 if ((pkru_prot
& (1 << is_write1
)) == 0) {
413 assert(is_write1
!= 2);
414 error_code
|= PG_ERROR_PK_MASK
;
415 goto do_fault_protect
;
419 if ((prot
& (1 << is_write1
)) == 0) {
420 goto do_fault_protect
;
424 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
425 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
426 pte
|= PG_ACCESSED_MASK
;
428 pte
|= PG_DIRTY_MASK
;
430 x86_stl_phys_notdirty(cs
, pte_addr
, pte
);
433 if (!(pte
& PG_DIRTY_MASK
)) {
434 /* only set write access if already dirty... otherwise wait
441 pte
= pte
& a20_mask
;
443 /* align to page_size */
444 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
446 /* Even if 4MB pages, we map only one 4KB page in the cache to
447 avoid filling it too fast */
448 vaddr
= addr
& TARGET_PAGE_MASK
;
449 page_offset
= vaddr
& (page_size
- 1);
450 paddr
= pte
+ page_offset
;
452 assert(prot
& (1 << is_write1
));
453 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, cpu_get_mem_attrs(env
),
454 prot
, mmu_idx
, page_size
);
457 error_code
|= PG_ERROR_RSVD_MASK
;
459 error_code
|= PG_ERROR_P_MASK
;
461 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
463 error_code
|= PG_ERROR_U_MASK
;
464 if (is_write1
== 2 &&
465 (((env
->efer
& MSR_EFER_NXE
) &&
466 (env
->cr
[4] & CR4_PAE_MASK
)) ||
467 (env
->cr
[4] & CR4_SMEP_MASK
)))
468 error_code
|= PG_ERROR_I_D_MASK
;
469 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
470 /* cr2 is not modified in case of exceptions */
472 env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
477 env
->error_code
= error_code
;
478 cs
->exception_index
= EXCP0E_PAGE
;