target-mips: fix MADD and MSUB/MSUBU instructions
[qemu.git] / hw / mips_malta.c
blob853ec2b8dcc141fcc3120f45026bea6f415d5eae
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
40 #include "mips-bios.h"
42 //#define DEBUG_BOARD_INIT
44 #ifdef TARGET_MIPS64
45 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
46 #else
47 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
48 #endif
50 #define ENVP_ADDR (int32_t)0x80002000
51 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
53 #define ENVP_NB_ENTRIES 16
54 #define ENVP_ENTRY_SIZE 256
56 #define MAX_IDE_BUS 2
58 typedef struct {
59 uint32_t leds;
60 uint32_t brk;
61 uint32_t gpout;
62 uint32_t i2cin;
63 uint32_t i2coe;
64 uint32_t i2cout;
65 uint32_t i2csel;
66 CharDriverState *display;
67 char display_text[9];
68 SerialState *uart;
69 } MaltaFPGAState;
71 static PITState *pit;
73 static struct _loaderparams {
74 int ram_size;
75 const char *kernel_filename;
76 const char *kernel_cmdline;
77 const char *initrd_filename;
78 } loaderparams;
80 /* Malta FPGA */
81 static void malta_fpga_update_display(void *opaque)
83 char leds_text[9];
84 int i;
85 MaltaFPGAState *s = opaque;
87 for (i = 7 ; i >= 0 ; i--) {
88 if (s->leds & (1 << i))
89 leds_text[i] = '#';
90 else
91 leds_text[i] = ' ';
93 leds_text[8] = '\0';
95 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
100 * EEPROM 24C01 / 24C02 emulation.
102 * Emulation for serial EEPROMs:
103 * 24C01 - 1024 bit (128 x 8)
104 * 24C02 - 2048 bit (256 x 8)
106 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
109 //~ #define DEBUG
111 #if defined(DEBUG)
112 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113 #else
114 # define logout(fmt, ...) ((void)0)
115 #endif
117 struct _eeprom24c0x_t {
118 uint8_t tick;
119 uint8_t address;
120 uint8_t command;
121 uint8_t ack;
122 uint8_t scl;
123 uint8_t sda;
124 uint8_t data;
125 //~ uint16_t size;
126 uint8_t contents[256];
129 typedef struct _eeprom24c0x_t eeprom24c0x_t;
131 static eeprom24c0x_t eeprom = {
132 contents: {
133 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
152 static uint8_t eeprom24c0x_read(void)
154 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156 return eeprom.sda;
159 static void eeprom24c0x_write(int scl, int sda)
161 if (eeprom.scl && scl && (eeprom.sda != sda)) {
162 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164 if (!sda) {
165 eeprom.tick = 1;
166 eeprom.command = 0;
168 } else if (eeprom.tick == 0 && !eeprom.ack) {
169 /* Waiting for start. */
170 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172 } else if (!eeprom.scl && scl) {
173 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175 if (eeprom.ack) {
176 logout("\ti2c ack bit = 0\n");
177 sda = 0;
178 eeprom.ack = 0;
179 } else if (eeprom.sda == sda) {
180 uint8_t bit = (sda != 0);
181 logout("\ti2c bit = %d\n", bit);
182 if (eeprom.tick < 9) {
183 eeprom.command <<= 1;
184 eeprom.command += bit;
185 eeprom.tick++;
186 if (eeprom.tick == 9) {
187 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188 eeprom.ack = 1;
190 } else if (eeprom.tick < 17) {
191 if (eeprom.command & 1) {
192 sda = ((eeprom.data & 0x80) != 0);
194 eeprom.address <<= 1;
195 eeprom.address += bit;
196 eeprom.tick++;
197 eeprom.data <<= 1;
198 if (eeprom.tick == 17) {
199 eeprom.data = eeprom.contents[eeprom.address];
200 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201 eeprom.ack = 1;
202 eeprom.tick = 0;
204 } else if (eeprom.tick >= 17) {
205 sda = 0;
207 } else {
208 logout("\tsda changed with raising scl\n");
210 } else {
211 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
213 eeprom.scl = scl;
214 eeprom.sda = sda;
217 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
219 MaltaFPGAState *s = opaque;
220 uint32_t val = 0;
221 uint32_t saddr;
223 saddr = (addr & 0xfffff);
225 switch (saddr) {
227 /* SWITCH Register */
228 case 0x00200:
229 val = 0x00000000; /* All switches closed */
230 break;
232 /* STATUS Register */
233 case 0x00208:
234 #ifdef TARGET_WORDS_BIGENDIAN
235 val = 0x00000012;
236 #else
237 val = 0x00000010;
238 #endif
239 break;
241 /* JMPRS Register */
242 case 0x00210:
243 val = 0x00;
244 break;
246 /* LEDBAR Register */
247 case 0x00408:
248 val = s->leds;
249 break;
251 /* BRKRES Register */
252 case 0x00508:
253 val = s->brk;
254 break;
256 /* UART Registers are handled directly by the serial device */
258 /* GPOUT Register */
259 case 0x00a00:
260 val = s->gpout;
261 break;
263 /* XXX: implement a real I2C controller */
265 /* GPINP Register */
266 case 0x00a08:
267 /* IN = OUT until a real I2C control is implemented */
268 if (s->i2csel)
269 val = s->i2cout;
270 else
271 val = 0x00;
272 break;
274 /* I2CINP Register */
275 case 0x00b00:
276 val = ((s->i2cin & ~1) | eeprom24c0x_read());
277 break;
279 /* I2COE Register */
280 case 0x00b08:
281 val = s->i2coe;
282 break;
284 /* I2COUT Register */
285 case 0x00b10:
286 val = s->i2cout;
287 break;
289 /* I2CSEL Register */
290 case 0x00b18:
291 val = s->i2csel;
292 break;
294 default:
295 #if 0
296 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297 addr);
298 #endif
299 break;
301 return val;
304 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305 uint32_t val)
307 MaltaFPGAState *s = opaque;
308 uint32_t saddr;
310 saddr = (addr & 0xfffff);
312 switch (saddr) {
314 /* SWITCH Register */
315 case 0x00200:
316 break;
318 /* JMPRS Register */
319 case 0x00210:
320 break;
322 /* LEDBAR Register */
323 /* XXX: implement a 8-LED array */
324 case 0x00408:
325 s->leds = val & 0xff;
326 break;
328 /* ASCIIWORD Register */
329 case 0x00410:
330 snprintf(s->display_text, 9, "%08X", val);
331 malta_fpga_update_display(s);
332 break;
334 /* ASCIIPOS0 to ASCIIPOS7 Registers */
335 case 0x00418:
336 case 0x00420:
337 case 0x00428:
338 case 0x00430:
339 case 0x00438:
340 case 0x00440:
341 case 0x00448:
342 case 0x00450:
343 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344 malta_fpga_update_display(s);
345 break;
347 /* SOFTRES Register */
348 case 0x00500:
349 if (val == 0x42)
350 qemu_system_reset_request ();
351 break;
353 /* BRKRES Register */
354 case 0x00508:
355 s->brk = val & 0xff;
356 break;
358 /* UART Registers are handled directly by the serial device */
360 /* GPOUT Register */
361 case 0x00a00:
362 s->gpout = val & 0xff;
363 break;
365 /* I2COE Register */
366 case 0x00b08:
367 s->i2coe = val & 0x03;
368 break;
370 /* I2COUT Register */
371 case 0x00b10:
372 eeprom24c0x_write(val & 0x02, val & 0x01);
373 s->i2cout = val;
374 break;
376 /* I2CSEL Register */
377 case 0x00b18:
378 s->i2csel = val & 0x01;
379 break;
381 default:
382 #if 0
383 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384 addr);
385 #endif
386 break;
390 static CPUReadMemoryFunc *malta_fpga_read[] = {
391 malta_fpga_readl,
392 malta_fpga_readl,
393 malta_fpga_readl
396 static CPUWriteMemoryFunc *malta_fpga_write[] = {
397 malta_fpga_writel,
398 malta_fpga_writel,
399 malta_fpga_writel
402 static void malta_fpga_reset(void *opaque)
404 MaltaFPGAState *s = opaque;
406 s->leds = 0x00;
407 s->brk = 0x0a;
408 s->gpout = 0x00;
409 s->i2cin = 0x3;
410 s->i2coe = 0x0;
411 s->i2cout = 0x3;
412 s->i2csel = 0x1;
414 s->display_text[8] = '\0';
415 snprintf(s->display_text, 9, " ");
418 static void malta_fpga_led_init(CharDriverState *chr)
420 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421 qemu_chr_printf(chr, "+--------+\r\n");
422 qemu_chr_printf(chr, "+ +\r\n");
423 qemu_chr_printf(chr, "+--------+\r\n");
424 qemu_chr_printf(chr, "\n");
425 qemu_chr_printf(chr, "Malta ASCII\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
431 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 MaltaFPGAState *s;
434 int malta;
436 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
438 malta = cpu_register_io_memory(malta_fpga_read,
439 malta_fpga_write, s);
441 cpu_register_physical_memory(base, 0x900, malta);
442 /* 0xa00 is less than a page, so will still get the right offsets. */
443 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
445 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
447 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
449 malta_fpga_reset(s);
450 qemu_register_reset(malta_fpga_reset, s);
452 return s;
455 /* Audio support */
456 #ifdef HAS_AUDIO
457 static void audio_init (PCIBus *pci_bus)
459 struct soundhw *c;
460 int audio_enabled = 0;
462 for (c = soundhw; !audio_enabled && c->name; ++c) {
463 audio_enabled = c->enabled;
466 if (audio_enabled) {
467 for (c = soundhw; c->name; ++c) {
468 if (c->enabled) {
469 c->init.init_pci(pci_bus);
474 #endif
476 /* Network support */
477 static void network_init(void)
479 int i;
481 for(i = 0; i < nb_nics; i++) {
482 NICInfo *nd = &nd_table[i];
483 const char *default_devaddr = NULL;
485 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
486 /* The malta board has a PCNet card using PCI SLOT 11 */
487 default_devaddr = "0b";
489 pci_nic_init(nd, "pcnet", default_devaddr);
493 /* ROM and pseudo bootloader
495 The following code implements a very very simple bootloader. It first
496 loads the registers a0 to a3 to the values expected by the OS, and
497 then jump at the kernel address.
499 The bootloader should pass the locations of the kernel arguments and
500 environment variables tables. Those tables contain the 32-bit address
501 of NULL terminated strings. The environment variables table should be
502 terminated by a NULL address.
504 For a simpler implementation, the number of kernel arguments is fixed
505 to two (the name of the kernel and the command line), and the two
506 tables are actually the same one.
508 The registers a0 to a3 should contain the following values:
509 a0 - number of kernel arguments
510 a1 - 32-bit address of the kernel arguments table
511 a2 - 32-bit address of the environment variables table
512 a3 - RAM size in bytes
515 static void write_bootloader (CPUState *env, uint8_t *base,
516 int64_t kernel_entry)
518 uint32_t *p;
520 /* Small bootloader */
521 p = (uint32_t *)base;
522 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
523 stl_raw(p++, 0x00000000); /* nop */
525 /* YAMON service vector */
526 stl_raw(base + 0x500, 0xbfc00580); /* start: */
527 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
528 stl_raw(base + 0x520, 0xbfc00580); /* start: */
529 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
530 stl_raw(base + 0x534, 0xbfc00808); /* print: */
531 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
532 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
533 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
534 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
535 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
536 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
537 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
538 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
541 /* Second part of the bootloader */
542 p = (uint32_t *) (base + 0x580);
543 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
544 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
545 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
546 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
547 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
548 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
549 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
550 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
551 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
553 /* Load BAR registers as done by YAMON */
554 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
556 #ifdef TARGET_WORDS_BIGENDIAN
557 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
558 #else
559 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
560 #endif
561 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
563 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
565 #ifdef TARGET_WORDS_BIGENDIAN
566 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
567 #else
568 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
569 #endif
570 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
571 #ifdef TARGET_WORDS_BIGENDIAN
572 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
573 #else
574 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
575 #endif
576 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
578 #ifdef TARGET_WORDS_BIGENDIAN
579 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
580 #else
581 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
582 #endif
583 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
584 #ifdef TARGET_WORDS_BIGENDIAN
585 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
586 #else
587 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
588 #endif
589 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
591 #ifdef TARGET_WORDS_BIGENDIAN
592 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
593 #else
594 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
595 #endif
596 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
597 #ifdef TARGET_WORDS_BIGENDIAN
598 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
599 #else
600 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
601 #endif
602 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
604 /* Jump to kernel code */
605 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
606 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
607 stl_raw(p++, 0x03e00008); /* jr ra */
608 stl_raw(p++, 0x00000000); /* nop */
610 /* YAMON subroutines */
611 p = (uint32_t *) (base + 0x800);
612 stl_raw(p++, 0x03e00008); /* jr ra */
613 stl_raw(p++, 0x24020000); /* li v0,0 */
614 /* 808 YAMON print */
615 stl_raw(p++, 0x03e06821); /* move t5,ra */
616 stl_raw(p++, 0x00805821); /* move t3,a0 */
617 stl_raw(p++, 0x00a05021); /* move t2,a1 */
618 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
619 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
620 stl_raw(p++, 0x10800005); /* beqz a0,834 */
621 stl_raw(p++, 0x00000000); /* nop */
622 stl_raw(p++, 0x0ff0021c); /* jal 870 */
623 stl_raw(p++, 0x00000000); /* nop */
624 stl_raw(p++, 0x08000205); /* j 814 */
625 stl_raw(p++, 0x00000000); /* nop */
626 stl_raw(p++, 0x01a00008); /* jr t5 */
627 stl_raw(p++, 0x01602021); /* move a0,t3 */
628 /* 0x83c YAMON print_count */
629 stl_raw(p++, 0x03e06821); /* move t5,ra */
630 stl_raw(p++, 0x00805821); /* move t3,a0 */
631 stl_raw(p++, 0x00a05021); /* move t2,a1 */
632 stl_raw(p++, 0x00c06021); /* move t4,a2 */
633 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
634 stl_raw(p++, 0x0ff0021c); /* jal 870 */
635 stl_raw(p++, 0x00000000); /* nop */
636 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
637 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
638 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
639 stl_raw(p++, 0x00000000); /* nop */
640 stl_raw(p++, 0x01a00008); /* jr t5 */
641 stl_raw(p++, 0x01602021); /* move a0,t3 */
642 /* 0x870 */
643 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
644 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
645 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
646 stl_raw(p++, 0x00000000); /* nop */
647 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
648 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
649 stl_raw(p++, 0x00000000); /* nop */
650 stl_raw(p++, 0x03e00008); /* jr ra */
651 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
655 static void prom_set(int index, const char *string, ...)
657 char buf[ENVP_ENTRY_SIZE];
658 target_phys_addr_t p;
659 va_list ap;
660 int32_t table_addr;
662 if (index >= ENVP_NB_ENTRIES)
663 return;
665 p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
667 if (string == NULL) {
668 stl_phys(p, 0);
669 return;
672 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
673 + index * ENVP_ENTRY_SIZE;
674 stl_phys(p, table_addr);
676 va_start(ap, string);
677 vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
678 va_end(ap);
679 pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
682 /* Kernel */
683 static int64_t load_kernel (CPUState *env)
685 int64_t kernel_entry, kernel_low, kernel_high;
686 int index = 0;
687 long initrd_size;
688 ram_addr_t initrd_offset;
690 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
691 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
692 (uint64_t *)&kernel_high) < 0) {
693 fprintf(stderr, "qemu: could not load kernel '%s'\n",
694 loaderparams.kernel_filename);
695 exit(1);
698 /* load initrd */
699 initrd_size = 0;
700 initrd_offset = 0;
701 if (loaderparams.initrd_filename) {
702 initrd_size = get_image_size (loaderparams.initrd_filename);
703 if (initrd_size > 0) {
704 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
705 if (initrd_offset + initrd_size > ram_size) {
706 fprintf(stderr,
707 "qemu: memory too small for initial ram disk '%s'\n",
708 loaderparams.initrd_filename);
709 exit(1);
711 initrd_size = load_image_targphys(loaderparams.initrd_filename,
712 initrd_offset,
713 ram_size - initrd_offset);
715 if (initrd_size == (target_ulong) -1) {
716 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
717 loaderparams.initrd_filename);
718 exit(1);
722 /* Store command line. */
723 prom_set(index++, loaderparams.kernel_filename);
724 if (initrd_size > 0)
725 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
726 PHYS_TO_VIRT(initrd_offset), initrd_size,
727 loaderparams.kernel_cmdline);
728 else
729 prom_set(index++, loaderparams.kernel_cmdline);
731 /* Setup minimum environment variables */
732 prom_set(index++, "memsize");
733 prom_set(index++, "%i", loaderparams.ram_size);
734 prom_set(index++, "modetty0");
735 prom_set(index++, "38400n8r");
736 prom_set(index++, NULL);
738 return kernel_entry;
741 static void main_cpu_reset(void *opaque)
743 CPUState *env = opaque;
744 cpu_reset(env);
746 /* The bootload does not need to be rewritten as it is located in a
747 read only location. The kernel location and the arguments table
748 location does not change. */
749 if (loaderparams.kernel_filename) {
750 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
751 load_kernel (env);
755 static
756 void mips_malta_init (ram_addr_t ram_size,
757 const char *boot_device,
758 const char *kernel_filename, const char *kernel_cmdline,
759 const char *initrd_filename, const char *cpu_model)
761 char *filename;
762 ram_addr_t ram_offset;
763 ram_addr_t bios_offset;
764 target_long bios_size;
765 int64_t kernel_entry;
766 PCIBus *pci_bus;
767 CPUState *env;
768 RTCState *rtc_state;
769 fdctrl_t *floppy_controller;
770 MaltaFPGAState *malta_fpga;
771 qemu_irq *i8259;
772 int piix4_devfn;
773 uint8_t *eeprom_buf;
774 i2c_bus *smbus;
775 int i;
776 int index;
777 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
778 BlockDriverState *fd[MAX_FD];
779 int fl_idx = 0;
780 int fl_sectors = 0;
782 /* init CPUs */
783 if (cpu_model == NULL) {
784 #ifdef TARGET_MIPS64
785 cpu_model = "20Kc";
786 #else
787 cpu_model = "24Kf";
788 #endif
790 env = cpu_init(cpu_model);
791 if (!env) {
792 fprintf(stderr, "Unable to find CPU definition\n");
793 exit(1);
795 qemu_register_reset(main_cpu_reset, env);
797 /* allocate RAM */
798 if (ram_size > (256 << 20)) {
799 fprintf(stderr,
800 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
801 ((unsigned int)ram_size / (1 << 20)));
802 exit(1);
804 ram_offset = qemu_ram_alloc(ram_size);
805 bios_offset = qemu_ram_alloc(BIOS_SIZE);
808 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
810 /* Map the bios at two physical locations, as on the real board. */
811 cpu_register_physical_memory(0x1e000000LL,
812 BIOS_SIZE, bios_offset | IO_MEM_ROM);
813 cpu_register_physical_memory(0x1fc00000LL,
814 BIOS_SIZE, bios_offset | IO_MEM_ROM);
816 /* FPGA */
817 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
819 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
820 if (kernel_filename) {
821 /* Write a small bootloader to the flash location. */
822 loaderparams.ram_size = ram_size;
823 loaderparams.kernel_filename = kernel_filename;
824 loaderparams.kernel_cmdline = kernel_cmdline;
825 loaderparams.initrd_filename = initrd_filename;
826 kernel_entry = load_kernel(env);
827 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
828 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
829 } else {
830 index = drive_get_index(IF_PFLASH, 0, fl_idx);
831 if (index != -1) {
832 /* Load firmware from flash. */
833 bios_size = 0x400000;
834 fl_sectors = bios_size >> 16;
835 #ifdef DEBUG_BOARD_INIT
836 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
837 "offset %08lx addr %08llx '%s' %x\n",
838 fl_idx, bios_size, bios_offset, 0x1e000000LL,
839 bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
840 #endif
841 pflash_cfi01_register(0x1e000000LL, bios_offset,
842 drives_table[index].bdrv, 65536, fl_sectors,
843 4, 0x0000, 0x0000, 0x0000, 0x0000);
844 fl_idx++;
845 } else {
846 /* Load a BIOS image. */
847 if (bios_name == NULL)
848 bios_name = BIOS_FILENAME;
849 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
850 if (filename) {
851 bios_size = load_image_targphys(filename, 0x1fc00000LL,
852 BIOS_SIZE);
853 qemu_free(filename);
854 } else {
855 bios_size = -1;
857 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
858 fprintf(stderr,
859 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
860 bios_name);
861 exit(1);
864 /* In little endian mode the 32bit words in the bios are swapped,
865 a neat trick which allows bi-endian firmware. */
866 #ifndef TARGET_WORDS_BIGENDIAN
868 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
869 uint32_t *end = addr + bios_size;
870 while (addr < end) {
871 bswap32s(addr);
874 #endif
877 /* Board ID = 0x420 (Malta Board with CoreLV)
878 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
879 map to the board ID. */
880 stl_phys(0x1fc00010LL, 0x00000420);
882 /* Init internal devices */
883 cpu_mips_irq_init_cpu(env);
884 cpu_mips_clock_init(env);
886 /* Interrupt controller */
887 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
888 i8259 = i8259_init(env->irq[2]);
890 /* Northbridge */
891 pci_bus = pci_gt64120_init(i8259);
893 /* Southbridge */
895 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
896 fprintf(stderr, "qemu: too many IDE bus\n");
897 exit(1);
900 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
901 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
902 if (index != -1)
903 hd[i] = drives_table[index].bdrv;
904 else
905 hd[i] = NULL;
908 piix4_devfn = piix4_init(pci_bus, 80);
909 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
910 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
911 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
912 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
913 for (i = 0; i < 8; i++) {
914 /* TODO: Populate SPD eeprom data. */
915 DeviceState *eeprom;
916 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
917 qdev_set_prop_int(eeprom, "address", 0x50 + i);
918 qdev_set_prop_ptr(eeprom, "data", eeprom_buf + (i * 256));
919 qdev_init(eeprom);
921 pit = pit_init(0x40, i8259[0]);
922 DMA_init(0);
924 /* Super I/O */
925 i8042_init(i8259[1], i8259[12], 0x60);
926 rtc_state = rtc_init(0x70, i8259[8], 2000);
927 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
928 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
929 if (parallel_hds[0])
930 parallel_init(0x378, i8259[7], parallel_hds[0]);
931 for(i = 0; i < MAX_FD; i++) {
932 index = drive_get_index(IF_FLOPPY, 0, i);
933 if (index != -1)
934 fd[i] = drives_table[index].bdrv;
935 else
936 fd[i] = NULL;
938 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
940 /* Sound card */
941 #ifdef HAS_AUDIO
942 audio_init(pci_bus);
943 #endif
945 /* Network card */
946 network_init();
948 /* Optional PCI video card */
949 if (cirrus_vga_enabled) {
950 pci_cirrus_vga_init(pci_bus);
951 } else if (vmsvga_enabled) {
952 pci_vmsvga_init(pci_bus);
953 } else if (std_vga_enabled) {
954 pci_vga_init(pci_bus, 0, 0);
958 static QEMUMachine mips_malta_machine = {
959 .name = "malta",
960 .desc = "MIPS Malta Core LV",
961 .init = mips_malta_init,
962 .is_default = 1,
965 static void mips_malta_machine_init(void)
967 qemu_register_machine(&mips_malta_machine);
970 machine_init(mips_malta_machine_init);