4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
37 /* This check must be after config-host.h is included */
39 #include <sys/eventfd.h>
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #define DPRINTF(fmt, ...) \
59 #define KVM_MSI_HASHTAB_SIZE 256
61 typedef struct KVMSlot
63 target_phys_addr_t start_addr
;
64 ram_addr_t memory_size
;
70 typedef struct kvm_dirty_log KVMDirtyLog
;
78 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
79 bool coalesced_flush_in_progress
;
80 int broken_set_mem_region
;
83 int robust_singlestep
;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl
;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing
*irq_routes
;
98 int nr_allocated_irq_routes
;
99 uint32_t *used_gsi_bitmap
;
100 unsigned int gsi_count
;
101 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
107 bool kvm_kernel_irqchip
;
108 bool kvm_async_interrupts_allowed
;
109 bool kvm_irqfds_allowed
;
110 bool kvm_msi_via_irqfd_allowed
;
111 bool kvm_gsi_routing_allowed
;
113 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
114 KVM_CAP_INFO(USER_MEMORY
),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
119 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
123 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
124 if (s
->slots
[i
].memory_size
== 0) {
129 fprintf(stderr
, "%s: no free slot available\n", __func__
);
133 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
134 target_phys_addr_t start_addr
,
135 target_phys_addr_t end_addr
)
139 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
140 KVMSlot
*mem
= &s
->slots
[i
];
142 if (start_addr
== mem
->start_addr
&&
143 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
152 * Find overlapping slot with lowest start address
154 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
155 target_phys_addr_t start_addr
,
156 target_phys_addr_t end_addr
)
158 KVMSlot
*found
= NULL
;
161 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
162 KVMSlot
*mem
= &s
->slots
[i
];
164 if (mem
->memory_size
== 0 ||
165 (found
&& found
->start_addr
< mem
->start_addr
)) {
169 if (end_addr
> mem
->start_addr
&&
170 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
178 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
179 target_phys_addr_t
*phys_addr
)
183 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
184 KVMSlot
*mem
= &s
->slots
[i
];
186 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
187 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
195 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
197 struct kvm_userspace_memory_region mem
;
199 mem
.slot
= slot
->slot
;
200 mem
.guest_phys_addr
= slot
->start_addr
;
201 mem
.memory_size
= slot
->memory_size
;
202 mem
.userspace_addr
= (unsigned long)slot
->ram
;
203 mem
.flags
= slot
->flags
;
204 if (s
->migration_log
) {
205 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
207 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
210 static void kvm_reset_vcpu(void *opaque
)
212 CPUArchState
*env
= opaque
;
214 kvm_arch_reset_vcpu(env
);
217 int kvm_init_vcpu(CPUArchState
*env
)
219 KVMState
*s
= kvm_state
;
223 DPRINTF("kvm_init_vcpu\n");
225 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
227 DPRINTF("kvm_create_vcpu failed\n");
233 env
->kvm_vcpu_dirty
= 1;
235 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
238 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
242 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
244 if (env
->kvm_run
== MAP_FAILED
) {
246 DPRINTF("mmap'ing vcpu state failed\n");
250 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
251 s
->coalesced_mmio_ring
=
252 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
255 ret
= kvm_arch_init_vcpu(env
);
257 qemu_register_reset(kvm_reset_vcpu
, env
);
258 kvm_arch_reset_vcpu(env
);
265 * dirty pages logging control
268 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
270 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
273 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
275 KVMState
*s
= kvm_state
;
276 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
279 old_flags
= mem
->flags
;
281 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
284 /* If nothing changed effectively, no need to issue ioctl */
285 if (s
->migration_log
) {
286 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
289 if (flags
== old_flags
) {
293 return kvm_set_user_memory_region(s
, mem
);
296 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
297 ram_addr_t size
, bool log_dirty
)
299 KVMState
*s
= kvm_state
;
300 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
303 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
304 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
305 (target_phys_addr_t
)(phys_addr
+ size
- 1));
308 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
311 static void kvm_log_start(MemoryListener
*listener
,
312 MemoryRegionSection
*section
)
316 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
317 section
->size
, true);
323 static void kvm_log_stop(MemoryListener
*listener
,
324 MemoryRegionSection
*section
)
328 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
329 section
->size
, false);
335 static int kvm_set_migration_log(int enable
)
337 KVMState
*s
= kvm_state
;
341 s
->migration_log
= enable
;
343 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
346 if (!mem
->memory_size
) {
349 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
352 err
= kvm_set_user_memory_region(s
, mem
);
360 /* get kvm's dirty pages bitmap and update qemu's */
361 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
362 unsigned long *bitmap
)
365 unsigned long page_number
, c
;
366 target_phys_addr_t addr
, addr1
;
367 unsigned int len
= ((section
->size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
368 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
371 * bitmap-traveling is faster than memory-traveling (for addr...)
372 * especially when most of the memory is not dirty.
374 for (i
= 0; i
< len
; i
++) {
375 if (bitmap
[i
] != 0) {
376 c
= leul_to_cpu(bitmap
[i
]);
380 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
381 addr1
= page_number
* TARGET_PAGE_SIZE
;
382 addr
= section
->offset_within_region
+ addr1
;
383 memory_region_set_dirty(section
->mr
, addr
,
384 TARGET_PAGE_SIZE
* hpratio
);
391 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
394 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395 * This function updates qemu's dirty bitmap using
396 * memory_region_set_dirty(). This means all bits are set
399 * @start_add: start of logged region.
400 * @end_addr: end of logged region.
402 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
404 KVMState
*s
= kvm_state
;
405 unsigned long size
, allocated_size
= 0;
409 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
410 target_phys_addr_t end_addr
= start_addr
+ section
->size
;
412 d
.dirty_bitmap
= NULL
;
413 while (start_addr
< end_addr
) {
414 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
419 /* XXX bad kernel interface alert
420 * For dirty bitmap, kernel allocates array of size aligned to
421 * bits-per-long. But for case when the kernel is 64bits and
422 * the userspace is 32bits, userspace can't align to the same
423 * bits-per-long, since sizeof(long) is different between kernel
424 * and user space. This way, userspace will provide buffer which
425 * may be 4 bytes less than the kernel will use, resulting in
426 * userspace memory corruption (which is not detectable by valgrind
427 * too, in most cases).
428 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429 * a hope that sizeof(long) wont become >8 any time soon.
431 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
432 /*HOST_LONG_BITS*/ 64) / 8;
433 if (!d
.dirty_bitmap
) {
434 d
.dirty_bitmap
= g_malloc(size
);
435 } else if (size
> allocated_size
) {
436 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
438 allocated_size
= size
;
439 memset(d
.dirty_bitmap
, 0, allocated_size
);
443 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
444 DPRINTF("ioctl failed %d\n", errno
);
449 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
450 start_addr
= mem
->start_addr
+ mem
->memory_size
;
452 g_free(d
.dirty_bitmap
);
457 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
460 KVMState
*s
= kvm_state
;
462 if (s
->coalesced_mmio
) {
463 struct kvm_coalesced_mmio_zone zone
;
469 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
475 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
478 KVMState
*s
= kvm_state
;
480 if (s
->coalesced_mmio
) {
481 struct kvm_coalesced_mmio_zone zone
;
487 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
493 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
497 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
505 static int kvm_check_many_ioeventfds(void)
507 /* Userspace can use ioeventfd for io notification. This requires a host
508 * that supports eventfd(2) and an I/O thread; since eventfd does not
509 * support SIGIO it cannot interrupt the vcpu.
511 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
512 * can avoid creating too many ioeventfds.
514 #if defined(CONFIG_EVENTFD)
517 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
518 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
519 if (ioeventfds
[i
] < 0) {
522 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
524 close(ioeventfds
[i
]);
529 /* Decide whether many devices are supported or not */
530 ret
= i
== ARRAY_SIZE(ioeventfds
);
533 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
534 close(ioeventfds
[i
]);
542 static const KVMCapabilityInfo
*
543 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
546 if (!kvm_check_extension(s
, list
->value
)) {
554 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
556 KVMState
*s
= kvm_state
;
559 MemoryRegion
*mr
= section
->mr
;
560 bool log_dirty
= memory_region_is_logging(mr
);
561 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
562 ram_addr_t size
= section
->size
;
566 /* kvm works in page size chunks, but the function may be called
567 with sub-page size and unaligned start address. */
568 delta
= TARGET_PAGE_ALIGN(size
) - size
;
574 size
&= TARGET_PAGE_MASK
;
575 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
579 if (!memory_region_is_ram(mr
)) {
583 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
586 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
591 if (add
&& start_addr
>= mem
->start_addr
&&
592 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
593 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
594 /* The new slot fits into the existing one and comes with
595 * identical parameters - update flags and done. */
596 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
602 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
603 kvm_physical_sync_dirty_bitmap(section
);
606 /* unregister the overlapping slot */
607 mem
->memory_size
= 0;
608 err
= kvm_set_user_memory_region(s
, mem
);
610 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
611 __func__
, strerror(-err
));
615 /* Workaround for older KVM versions: we can't join slots, even not by
616 * unregistering the previous ones and then registering the larger
617 * slot. We have to maintain the existing fragmentation. Sigh.
619 * This workaround assumes that the new slot starts at the same
620 * address as the first existing one. If not or if some overlapping
621 * slot comes around later, we will fail (not seen in practice so far)
622 * - and actually require a recent KVM version. */
623 if (s
->broken_set_mem_region
&&
624 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
625 mem
= kvm_alloc_slot(s
);
626 mem
->memory_size
= old
.memory_size
;
627 mem
->start_addr
= old
.start_addr
;
629 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
631 err
= kvm_set_user_memory_region(s
, mem
);
633 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
638 start_addr
+= old
.memory_size
;
639 ram
+= old
.memory_size
;
640 size
-= old
.memory_size
;
644 /* register prefix slot */
645 if (old
.start_addr
< start_addr
) {
646 mem
= kvm_alloc_slot(s
);
647 mem
->memory_size
= start_addr
- old
.start_addr
;
648 mem
->start_addr
= old
.start_addr
;
650 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
652 err
= kvm_set_user_memory_region(s
, mem
);
654 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
655 __func__
, strerror(-err
));
657 fprintf(stderr
, "%s: This is probably because your kernel's " \
658 "PAGE_SIZE is too big. Please try to use 4k " \
659 "PAGE_SIZE!\n", __func__
);
665 /* register suffix slot */
666 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
667 ram_addr_t size_delta
;
669 mem
= kvm_alloc_slot(s
);
670 mem
->start_addr
= start_addr
+ size
;
671 size_delta
= mem
->start_addr
- old
.start_addr
;
672 mem
->memory_size
= old
.memory_size
- size_delta
;
673 mem
->ram
= old
.ram
+ size_delta
;
674 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
676 err
= kvm_set_user_memory_region(s
, mem
);
678 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
679 __func__
, strerror(-err
));
685 /* in case the KVM bug workaround already "consumed" the new slot */
692 mem
= kvm_alloc_slot(s
);
693 mem
->memory_size
= size
;
694 mem
->start_addr
= start_addr
;
696 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
698 err
= kvm_set_user_memory_region(s
, mem
);
700 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
706 static void kvm_begin(MemoryListener
*listener
)
710 static void kvm_commit(MemoryListener
*listener
)
714 static void kvm_region_add(MemoryListener
*listener
,
715 MemoryRegionSection
*section
)
717 kvm_set_phys_mem(section
, true);
720 static void kvm_region_del(MemoryListener
*listener
,
721 MemoryRegionSection
*section
)
723 kvm_set_phys_mem(section
, false);
726 static void kvm_region_nop(MemoryListener
*listener
,
727 MemoryRegionSection
*section
)
731 static void kvm_log_sync(MemoryListener
*listener
,
732 MemoryRegionSection
*section
)
736 r
= kvm_physical_sync_dirty_bitmap(section
);
742 static void kvm_log_global_start(struct MemoryListener
*listener
)
746 r
= kvm_set_migration_log(1);
750 static void kvm_log_global_stop(struct MemoryListener
*listener
)
754 r
= kvm_set_migration_log(0);
758 static void kvm_log_nop(struct MemoryListener
*listener
)
762 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
763 MemoryRegionSection
*section
,
764 bool match_data
, uint64_t data
,
767 int fd
= event_notifier_get_fd(e
);
770 assert(match_data
&& section
->size
<= 8);
772 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
773 data
, true, section
->size
);
779 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
780 MemoryRegionSection
*section
,
781 bool match_data
, uint64_t data
,
784 int fd
= event_notifier_get_fd(e
);
787 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
788 data
, false, section
->size
);
794 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
795 MemoryRegionSection
*section
,
796 bool match_data
, uint64_t data
,
799 int fd
= event_notifier_get_fd(e
);
802 assert(match_data
&& section
->size
== 2);
804 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
811 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
812 MemoryRegionSection
*section
,
813 bool match_data
, uint64_t data
,
817 int fd
= event_notifier_get_fd(e
);
820 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
827 static MemoryListener kvm_memory_listener
= {
829 .commit
= kvm_commit
,
830 .region_add
= kvm_region_add
,
831 .region_del
= kvm_region_del
,
832 .region_nop
= kvm_region_nop
,
833 .log_start
= kvm_log_start
,
834 .log_stop
= kvm_log_stop
,
835 .log_sync
= kvm_log_sync
,
836 .log_global_start
= kvm_log_global_start
,
837 .log_global_stop
= kvm_log_global_stop
,
838 .eventfd_add
= kvm_mem_ioeventfd_add
,
839 .eventfd_del
= kvm_mem_ioeventfd_del
,
843 static MemoryListener kvm_io_listener
= {
845 .commit
= kvm_commit
,
846 .region_add
= kvm_region_nop
,
847 .region_del
= kvm_region_nop
,
848 .region_nop
= kvm_region_nop
,
849 .log_start
= kvm_region_nop
,
850 .log_stop
= kvm_region_nop
,
851 .log_sync
= kvm_region_nop
,
852 .log_global_start
= kvm_log_nop
,
853 .log_global_stop
= kvm_log_nop
,
854 .eventfd_add
= kvm_io_ioeventfd_add
,
855 .eventfd_del
= kvm_io_ioeventfd_del
,
859 static void kvm_handle_interrupt(CPUArchState
*env
, int mask
)
861 env
->interrupt_request
|= mask
;
863 if (!qemu_cpu_is_self(env
)) {
868 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
870 struct kvm_irq_level event
;
873 assert(kvm_async_interrupts_enabled());
877 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
879 perror("kvm_set_irq");
883 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
886 #ifdef KVM_CAP_IRQ_ROUTING
887 typedef struct KVMMSIRoute
{
888 struct kvm_irq_routing_entry kroute
;
889 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
892 static void set_gsi(KVMState
*s
, unsigned int gsi
)
894 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
897 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
899 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
902 static void kvm_init_irq_routing(KVMState
*s
)
906 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
908 unsigned int gsi_bits
, i
;
910 /* Round up so we can search ints using ffs */
911 gsi_bits
= ALIGN(gsi_count
, 32);
912 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
913 s
->gsi_count
= gsi_count
;
915 /* Mark any over-allocated bits as already in use */
916 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
921 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
922 s
->nr_allocated_irq_routes
= 0;
924 if (!s
->direct_msi
) {
925 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
926 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
930 kvm_arch_init_irq_routing(s
);
933 static void kvm_irqchip_commit_routes(KVMState
*s
)
937 s
->irq_routes
->flags
= 0;
938 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
942 static void kvm_add_routing_entry(KVMState
*s
,
943 struct kvm_irq_routing_entry
*entry
)
945 struct kvm_irq_routing_entry
*new;
948 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
949 n
= s
->nr_allocated_irq_routes
* 2;
953 size
= sizeof(struct kvm_irq_routing
);
954 size
+= n
* sizeof(*new);
955 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
956 s
->nr_allocated_irq_routes
= n
;
958 n
= s
->irq_routes
->nr
++;
959 new = &s
->irq_routes
->entries
[n
];
960 memset(new, 0, sizeof(*new));
961 new->gsi
= entry
->gsi
;
962 new->type
= entry
->type
;
963 new->flags
= entry
->flags
;
966 set_gsi(s
, entry
->gsi
);
968 kvm_irqchip_commit_routes(s
);
971 static int kvm_update_routing_entry(KVMState
*s
,
972 struct kvm_irq_routing_entry
*new_entry
)
974 struct kvm_irq_routing_entry
*entry
;
977 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
978 entry
= &s
->irq_routes
->entries
[n
];
979 if (entry
->gsi
!= new_entry
->gsi
) {
983 entry
->type
= new_entry
->type
;
984 entry
->flags
= new_entry
->flags
;
985 entry
->u
= new_entry
->u
;
987 kvm_irqchip_commit_routes(s
);
995 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
997 struct kvm_irq_routing_entry e
;
999 assert(pin
< s
->gsi_count
);
1002 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1004 e
.u
.irqchip
.irqchip
= irqchip
;
1005 e
.u
.irqchip
.pin
= pin
;
1006 kvm_add_routing_entry(s
, &e
);
1009 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1011 struct kvm_irq_routing_entry
*e
;
1014 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1015 e
= &s
->irq_routes
->entries
[i
];
1016 if (e
->gsi
== virq
) {
1017 s
->irq_routes
->nr
--;
1018 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1023 kvm_irqchip_commit_routes(s
);
1026 static unsigned int kvm_hash_msi(uint32_t data
)
1028 /* This is optimized for IA32 MSI layout. However, no other arch shall
1029 * repeat the mistake of not providing a direct MSI injection API. */
1033 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1035 KVMMSIRoute
*route
, *next
;
1038 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1039 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1040 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1041 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1047 static int kvm_irqchip_get_virq(KVMState
*s
)
1049 uint32_t *word
= s
->used_gsi_bitmap
;
1050 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1055 /* Return the lowest unused GSI in the bitmap */
1056 for (i
= 0; i
< max_words
; i
++) {
1057 bit
= ffs(~word
[i
]);
1062 return bit
- 1 + i
* 32;
1064 if (!s
->direct_msi
&& retry
) {
1066 kvm_flush_dynamic_msi_routes(s
);
1073 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1075 unsigned int hash
= kvm_hash_msi(msg
.data
);
1078 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1079 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1080 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1081 route
->kroute
.u
.msi
.data
== msg
.data
) {
1088 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1093 if (s
->direct_msi
) {
1094 msi
.address_lo
= (uint32_t)msg
.address
;
1095 msi
.address_hi
= msg
.address
>> 32;
1096 msi
.data
= msg
.data
;
1098 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1100 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1103 route
= kvm_lookup_msi_route(s
, msg
);
1107 virq
= kvm_irqchip_get_virq(s
);
1112 route
= g_malloc(sizeof(KVMMSIRoute
));
1113 route
->kroute
.gsi
= virq
;
1114 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1115 route
->kroute
.flags
= 0;
1116 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1117 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1118 route
->kroute
.u
.msi
.data
= msg
.data
;
1120 kvm_add_routing_entry(s
, &route
->kroute
);
1122 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1126 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1128 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1131 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1133 struct kvm_irq_routing_entry kroute
;
1136 if (!kvm_gsi_routing_enabled()) {
1140 virq
= kvm_irqchip_get_virq(s
);
1146 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1148 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1149 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1150 kroute
.u
.msi
.data
= msg
.data
;
1152 kvm_add_routing_entry(s
, &kroute
);
1157 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1159 struct kvm_irq_routing_entry kroute
;
1161 if (!kvm_irqchip_in_kernel()) {
1166 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1168 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1169 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1170 kroute
.u
.msi
.data
= msg
.data
;
1172 return kvm_update_routing_entry(s
, &kroute
);
1175 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1177 struct kvm_irqfd irqfd
= {
1180 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1183 if (!kvm_irqfds_enabled()) {
1187 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1190 #else /* !KVM_CAP_IRQ_ROUTING */
1192 static void kvm_init_irq_routing(KVMState
*s
)
1196 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1200 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1205 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1210 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1214 #endif /* !KVM_CAP_IRQ_ROUTING */
1216 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1218 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, true);
1221 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1223 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, false);
1226 static int kvm_irqchip_create(KVMState
*s
)
1228 QemuOptsList
*list
= qemu_find_opts("machine");
1231 if (QTAILQ_EMPTY(&list
->head
) ||
1232 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
1233 "kernel_irqchip", true) ||
1234 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1238 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1240 fprintf(stderr
, "Create kernel irqchip failed\n");
1244 kvm_kernel_irqchip
= true;
1245 /* If we have an in-kernel IRQ chip then we must have asynchronous
1246 * interrupt delivery (though the reverse is not necessarily true)
1248 kvm_async_interrupts_allowed
= true;
1250 kvm_init_irq_routing(s
);
1255 static int kvm_max_vcpus(KVMState
*s
)
1259 /* Find number of supported CPUs using the recommended
1260 * procedure from the kernel API documentation to cope with
1261 * older kernels that may be missing capabilities.
1263 ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1267 ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1277 static const char upgrade_note
[] =
1278 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1279 "(see http://sourceforge.net/projects/kvm).\n";
1281 const KVMCapabilityInfo
*missing_cap
;
1286 s
= g_malloc0(sizeof(KVMState
));
1289 * On systems where the kernel can support different base page
1290 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1291 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1292 * page size for the system though.
1294 assert(TARGET_PAGE_SIZE
<= getpagesize());
1296 #ifdef KVM_CAP_SET_GUEST_DEBUG
1297 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1299 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1300 s
->slots
[i
].slot
= i
;
1303 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1305 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1310 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1311 if (ret
< KVM_API_VERSION
) {
1315 fprintf(stderr
, "kvm version too old\n");
1319 if (ret
> KVM_API_VERSION
) {
1321 fprintf(stderr
, "kvm version not supported\n");
1325 max_vcpus
= kvm_max_vcpus(s
);
1326 if (smp_cpus
> max_vcpus
) {
1328 fprintf(stderr
, "Number of SMP cpus requested (%d) exceeds max cpus "
1329 "supported by KVM (%d)\n", smp_cpus
, max_vcpus
);
1333 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1336 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1337 "your host kernel command line\n");
1343 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1346 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1350 fprintf(stderr
, "kvm does not support %s\n%s",
1351 missing_cap
->name
, upgrade_note
);
1355 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1357 s
->broken_set_mem_region
= 1;
1358 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1360 s
->broken_set_mem_region
= 0;
1363 #ifdef KVM_CAP_VCPU_EVENTS
1364 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1367 s
->robust_singlestep
=
1368 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1370 #ifdef KVM_CAP_DEBUGREGS
1371 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1374 #ifdef KVM_CAP_XSAVE
1375 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1379 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1382 #ifdef KVM_CAP_PIT_STATE2
1383 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1386 #ifdef KVM_CAP_IRQ_ROUTING
1387 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1390 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1392 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1393 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1394 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1397 ret
= kvm_arch_init(s
);
1402 ret
= kvm_irqchip_create(s
);
1408 memory_listener_register(&kvm_memory_listener
, get_system_memory());
1409 memory_listener_register(&kvm_io_listener
, get_system_io());
1411 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1413 cpu_interrupt_handler
= kvm_handle_interrupt
;
1429 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1433 uint8_t *ptr
= data
;
1435 for (i
= 0; i
< count
; i
++) {
1436 if (direction
== KVM_EXIT_IO_IN
) {
1439 stb_p(ptr
, cpu_inb(port
));
1442 stw_p(ptr
, cpu_inw(port
));
1445 stl_p(ptr
, cpu_inl(port
));
1451 cpu_outb(port
, ldub_p(ptr
));
1454 cpu_outw(port
, lduw_p(ptr
));
1457 cpu_outl(port
, ldl_p(ptr
));
1466 static int kvm_handle_internal_error(CPUArchState
*env
, struct kvm_run
*run
)
1468 fprintf(stderr
, "KVM internal error.");
1469 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1472 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1473 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1474 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1475 i
, (uint64_t)run
->internal
.data
[i
]);
1478 fprintf(stderr
, "\n");
1480 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1481 fprintf(stderr
, "emulation failure\n");
1482 if (!kvm_arch_stop_on_emulation_error(env
)) {
1483 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1484 return EXCP_INTERRUPT
;
1487 /* FIXME: Should trigger a qmp message to let management know
1488 * something went wrong.
1493 void kvm_flush_coalesced_mmio_buffer(void)
1495 KVMState
*s
= kvm_state
;
1497 if (s
->coalesced_flush_in_progress
) {
1501 s
->coalesced_flush_in_progress
= true;
1503 if (s
->coalesced_mmio_ring
) {
1504 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1505 while (ring
->first
!= ring
->last
) {
1506 struct kvm_coalesced_mmio
*ent
;
1508 ent
= &ring
->coalesced_mmio
[ring
->first
];
1510 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1512 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1516 s
->coalesced_flush_in_progress
= false;
1519 static void do_kvm_cpu_synchronize_state(void *_env
)
1521 CPUArchState
*env
= _env
;
1523 if (!env
->kvm_vcpu_dirty
) {
1524 kvm_arch_get_registers(env
);
1525 env
->kvm_vcpu_dirty
= 1;
1529 void kvm_cpu_synchronize_state(CPUArchState
*env
)
1531 if (!env
->kvm_vcpu_dirty
) {
1532 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
1536 void kvm_cpu_synchronize_post_reset(CPUArchState
*env
)
1538 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
1539 env
->kvm_vcpu_dirty
= 0;
1542 void kvm_cpu_synchronize_post_init(CPUArchState
*env
)
1544 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
1545 env
->kvm_vcpu_dirty
= 0;
1548 int kvm_cpu_exec(CPUArchState
*env
)
1550 struct kvm_run
*run
= env
->kvm_run
;
1553 DPRINTF("kvm_cpu_exec()\n");
1555 if (kvm_arch_process_async_events(env
)) {
1556 env
->exit_request
= 0;
1561 if (env
->kvm_vcpu_dirty
) {
1562 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
1563 env
->kvm_vcpu_dirty
= 0;
1566 kvm_arch_pre_run(env
, run
);
1567 if (env
->exit_request
) {
1568 DPRINTF("interrupt exit requested\n");
1570 * KVM requires us to reenter the kernel after IO exits to complete
1571 * instruction emulation. This self-signal will ensure that we
1574 qemu_cpu_kick_self();
1576 qemu_mutex_unlock_iothread();
1578 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
1580 qemu_mutex_lock_iothread();
1581 kvm_arch_post_run(env
, run
);
1584 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1585 DPRINTF("io window exit\n");
1586 ret
= EXCP_INTERRUPT
;
1589 fprintf(stderr
, "error: kvm run failed %s\n",
1590 strerror(-run_ret
));
1594 switch (run
->exit_reason
) {
1596 DPRINTF("handle_io\n");
1597 kvm_handle_io(run
->io
.port
,
1598 (uint8_t *)run
+ run
->io
.data_offset
,
1605 DPRINTF("handle_mmio\n");
1606 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1609 run
->mmio
.is_write
);
1612 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1613 DPRINTF("irq_window_open\n");
1614 ret
= EXCP_INTERRUPT
;
1616 case KVM_EXIT_SHUTDOWN
:
1617 DPRINTF("shutdown\n");
1618 qemu_system_reset_request();
1619 ret
= EXCP_INTERRUPT
;
1621 case KVM_EXIT_UNKNOWN
:
1622 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1623 (uint64_t)run
->hw
.hardware_exit_reason
);
1626 case KVM_EXIT_INTERNAL_ERROR
:
1627 ret
= kvm_handle_internal_error(env
, run
);
1630 DPRINTF("kvm_arch_handle_exit\n");
1631 ret
= kvm_arch_handle_exit(env
, run
);
1637 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1638 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1641 env
->exit_request
= 0;
1645 int kvm_ioctl(KVMState
*s
, int type
, ...)
1652 arg
= va_arg(ap
, void *);
1655 ret
= ioctl(s
->fd
, type
, arg
);
1662 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1669 arg
= va_arg(ap
, void *);
1672 ret
= ioctl(s
->vmfd
, type
, arg
);
1679 int kvm_vcpu_ioctl(CPUArchState
*env
, int type
, ...)
1686 arg
= va_arg(ap
, void *);
1689 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1696 int kvm_has_sync_mmu(void)
1698 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1701 int kvm_has_vcpu_events(void)
1703 return kvm_state
->vcpu_events
;
1706 int kvm_has_robust_singlestep(void)
1708 return kvm_state
->robust_singlestep
;
1711 int kvm_has_debugregs(void)
1713 return kvm_state
->debugregs
;
1716 int kvm_has_xsave(void)
1718 return kvm_state
->xsave
;
1721 int kvm_has_xcrs(void)
1723 return kvm_state
->xcrs
;
1726 int kvm_has_pit_state2(void)
1728 return kvm_state
->pit_state2
;
1731 int kvm_has_many_ioeventfds(void)
1733 if (!kvm_enabled()) {
1736 return kvm_state
->many_ioeventfds
;
1739 int kvm_has_gsi_routing(void)
1741 #ifdef KVM_CAP_IRQ_ROUTING
1742 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1748 int kvm_has_intx_set_mask(void)
1750 return kvm_state
->intx_set_mask
;
1753 void *kvm_vmalloc(ram_addr_t size
)
1758 mem
= kvm_arch_vmalloc(size
);
1763 return qemu_vmalloc(size
);
1766 void kvm_setup_guest_memory(void *start
, size_t size
)
1768 #ifdef CONFIG_VALGRIND_H
1769 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1771 if (!kvm_has_sync_mmu()) {
1772 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1775 perror("qemu_madvise");
1777 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1783 #ifdef KVM_CAP_SET_GUEST_DEBUG
1784 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUArchState
*env
,
1787 struct kvm_sw_breakpoint
*bp
;
1789 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1797 int kvm_sw_breakpoints_active(CPUArchState
*env
)
1799 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1802 struct kvm_set_guest_debug_data
{
1803 struct kvm_guest_debug dbg
;
1808 static void kvm_invoke_set_guest_debug(void *data
)
1810 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1811 CPUArchState
*env
= dbg_data
->env
;
1813 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1816 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1818 struct kvm_set_guest_debug_data data
;
1820 data
.dbg
.control
= reinject_trap
;
1822 if (env
->singlestep_enabled
) {
1823 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1825 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1828 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1832 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1833 target_ulong len
, int type
)
1835 struct kvm_sw_breakpoint
*bp
;
1839 if (type
== GDB_BREAKPOINT_SW
) {
1840 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1846 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1853 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1859 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1862 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1868 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1869 err
= kvm_update_guest_debug(env
, 0);
1877 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1878 target_ulong len
, int type
)
1880 struct kvm_sw_breakpoint
*bp
;
1884 if (type
== GDB_BREAKPOINT_SW
) {
1885 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1890 if (bp
->use_count
> 1) {
1895 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1900 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1903 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1909 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1910 err
= kvm_update_guest_debug(env
, 0);
1918 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1920 struct kvm_sw_breakpoint
*bp
, *next
;
1921 KVMState
*s
= current_env
->kvm_state
;
1924 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1925 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1926 /* Try harder to find a CPU that currently sees the breakpoint. */
1927 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1928 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1934 kvm_arch_remove_all_hw_breakpoints();
1936 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1937 kvm_update_guest_debug(env
, 0);
1941 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1943 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1948 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1949 target_ulong len
, int type
)
1954 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1955 target_ulong len
, int type
)
1960 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1963 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1965 int kvm_set_signal_mask(CPUArchState
*env
, const sigset_t
*sigset
)
1967 struct kvm_signal_mask
*sigmask
;
1971 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1974 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1977 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1978 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1984 int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
, bool assign
,
1988 struct kvm_ioeventfd iofd
;
1990 iofd
.datamatch
= val
;
1993 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1996 if (!kvm_enabled()) {
2001 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2004 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
2013 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
2015 struct kvm_ioeventfd kick
= {
2019 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
2023 if (!kvm_enabled()) {
2027 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2029 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2036 int kvm_on_sigbus_vcpu(CPUArchState
*env
, int code
, void *addr
)
2038 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
2041 int kvm_on_sigbus(int code
, void *addr
)
2043 return kvm_arch_on_sigbus(code
, addr
);