virtio-9p: Remove statement without effect (fix warning from cppcheck)
[qemu.git] / cpu-exec.c
blob6ddd8dd1aeed45d8a4496f9131892a0dedc42dc1
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
28 #undef env
29 #define env cpu_single_env
30 #endif
32 int tb_invalidated_flag;
34 //#define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState *env)
38 return cpu_has_work(env);
41 void cpu_loop_exit(void)
43 env->current_tb = NULL;
44 longjmp(env->jmp_env, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState *env1, void *puc)
53 env = env1;
55 /* XXX: restore cpu registers saved in host registers */
57 env->exception_index = -1;
58 longjmp(env->jmp_env, 1);
60 #endif
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
66 unsigned long next_tb;
67 TranslationBlock *tb;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles > CF_COUNT_MASK)
72 max_cycles = CF_COUNT_MASK;
74 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
75 max_cycles);
76 env->current_tb = tb;
77 /* execute the generated code */
78 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
79 env->current_tb = NULL;
81 if ((next_tb & 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env, tb);
86 tb_phys_invalidate(tb, -1);
87 tb_free(tb);
90 static TranslationBlock *tb_find_slow(target_ulong pc,
91 target_ulong cs_base,
92 uint64_t flags)
94 TranslationBlock *tb, **ptb1;
95 unsigned int h;
96 tb_page_addr_t phys_pc, phys_page1, phys_page2;
97 target_ulong virt_page2;
99 tb_invalidated_flag = 0;
101 /* find translated block using physical mappings */
102 phys_pc = get_page_addr_code(env, pc);
103 phys_page1 = phys_pc & TARGET_PAGE_MASK;
104 phys_page2 = -1;
105 h = tb_phys_hash_func(phys_pc);
106 ptb1 = &tb_phys_hash[h];
107 for(;;) {
108 tb = *ptb1;
109 if (!tb)
110 goto not_found;
111 if (tb->pc == pc &&
112 tb->page_addr[0] == phys_page1 &&
113 tb->cs_base == cs_base &&
114 tb->flags == flags) {
115 /* check next page if needed */
116 if (tb->page_addr[1] != -1) {
117 virt_page2 = (pc & TARGET_PAGE_MASK) +
118 TARGET_PAGE_SIZE;
119 phys_page2 = get_page_addr_code(env, virt_page2);
120 if (tb->page_addr[1] == phys_page2)
121 goto found;
122 } else {
123 goto found;
126 ptb1 = &tb->phys_hash_next;
128 not_found:
129 /* if no translated code available, then translate it now */
130 tb = tb_gen_code(env, pc, cs_base, flags, 0);
132 found:
133 /* Move the last found TB to the head of the list */
134 if (likely(*ptb1)) {
135 *ptb1 = tb->phys_hash_next;
136 tb->phys_hash_next = tb_phys_hash[h];
137 tb_phys_hash[h] = tb;
139 /* we add the TB in the virtual pc hash table */
140 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
141 return tb;
144 static inline TranslationBlock *tb_find_fast(void)
146 TranslationBlock *tb;
147 target_ulong cs_base, pc;
148 int flags;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
152 is executed. */
153 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
154 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
155 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
156 tb->flags != flags)) {
157 tb = tb_find_slow(pc, cs_base, flags);
159 return tb;
162 static CPUDebugExcpHandler *debug_excp_handler;
164 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
166 CPUDebugExcpHandler *old_handler = debug_excp_handler;
168 debug_excp_handler = handler;
169 return old_handler;
172 static void cpu_handle_debug_exception(CPUState *env)
174 CPUWatchpoint *wp;
176 if (!env->watchpoint_hit) {
177 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
178 wp->flags &= ~BP_WATCHPOINT_HIT;
181 if (debug_excp_handler) {
182 debug_excp_handler(env);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request;
190 int cpu_exec(CPUState *env1)
192 volatile host_reg_t saved_env_reg;
193 int ret, interrupt_request;
194 TranslationBlock *tb;
195 uint8_t *tc_ptr;
196 unsigned long next_tb;
198 if (env1->halted) {
199 if (!cpu_has_work(env1)) {
200 return EXCP_HALTED;
203 env1->halted = 0;
206 cpu_single_env = env1;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
210 use it. */
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
212 saved_env_reg = (host_reg_t) env;
213 barrier();
214 env = env1;
216 if (unlikely(exit_request)) {
217 env->exit_request = 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
223 DF = 1 - (2 * ((env->eflags >> 10) & 1));
224 CC_OP = CC_OP_EFLAGS;
225 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env->cc_op = CC_OP_FLAGS;
229 env->cc_dest = env->sr & 0xf;
230 env->cc_x = (env->sr >> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_S390X)
241 /* XXXXX */
242 #else
243 #error unsupported target CPU
244 #endif
245 env->exception_index = -1;
247 /* prepare setjmp context for exception handling */
248 for(;;) {
249 if (setjmp(env->jmp_env) == 0) {
250 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
251 #undef env
252 env = cpu_single_env;
253 #define env cpu_single_env
254 #endif
255 /* if an exception is pending, we execute it here */
256 if (env->exception_index >= 0) {
257 if (env->exception_index >= EXCP_INTERRUPT) {
258 /* exit request from the cpu execution loop */
259 ret = env->exception_index;
260 if (ret == EXCP_DEBUG) {
261 cpu_handle_debug_exception(env);
263 break;
264 } else {
265 #if defined(CONFIG_USER_ONLY)
266 /* if user mode only, we simulate a fake exception
267 which will be handled outside the cpu execution
268 loop */
269 #if defined(TARGET_I386)
270 do_interrupt_user(env->exception_index,
271 env->exception_is_int,
272 env->error_code,
273 env->exception_next_eip);
274 /* successfully delivered */
275 env->old_exception = -1;
276 #endif
277 ret = env->exception_index;
278 break;
279 #else
280 #if defined(TARGET_I386)
281 /* simulate a real cpu exception. On i386, it can
282 trigger new exceptions, but we do not handle
283 double or triple faults yet. */
284 do_interrupt(env->exception_index,
285 env->exception_is_int,
286 env->error_code,
287 env->exception_next_eip, 0);
288 /* successfully delivered */
289 env->old_exception = -1;
290 #elif defined(TARGET_PPC)
291 do_interrupt(env);
292 #elif defined(TARGET_LM32)
293 do_interrupt(env);
294 #elif defined(TARGET_MICROBLAZE)
295 do_interrupt(env);
296 #elif defined(TARGET_MIPS)
297 do_interrupt(env);
298 #elif defined(TARGET_SPARC)
299 do_interrupt(env);
300 #elif defined(TARGET_ARM)
301 do_interrupt(env);
302 #elif defined(TARGET_UNICORE32)
303 do_interrupt(env);
304 #elif defined(TARGET_SH4)
305 do_interrupt(env);
306 #elif defined(TARGET_ALPHA)
307 do_interrupt(env);
308 #elif defined(TARGET_CRIS)
309 do_interrupt(env);
310 #elif defined(TARGET_M68K)
311 do_interrupt(0);
312 #elif defined(TARGET_S390X)
313 do_interrupt(env);
314 #endif
315 env->exception_index = -1;
316 #endif
320 next_tb = 0; /* force lookup of first TB */
321 for(;;) {
322 interrupt_request = env->interrupt_request;
323 if (unlikely(interrupt_request)) {
324 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
328 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
329 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
330 env->exception_index = EXCP_DEBUG;
331 cpu_loop_exit();
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
336 if (interrupt_request & CPU_INTERRUPT_HALT) {
337 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
338 env->halted = 1;
339 env->exception_index = EXCP_HLT;
340 cpu_loop_exit();
342 #endif
343 #if defined(TARGET_I386)
344 if (interrupt_request & CPU_INTERRUPT_INIT) {
345 svm_check_intercept(SVM_EXIT_INIT);
346 do_cpu_init(env);
347 env->exception_index = EXCP_HALTED;
348 cpu_loop_exit();
349 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
350 do_cpu_sipi(env);
351 } else if (env->hflags2 & HF2_GIF_MASK) {
352 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
353 !(env->hflags & HF_SMM_MASK)) {
354 svm_check_intercept(SVM_EXIT_SMI);
355 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
356 do_smm_enter();
357 next_tb = 0;
358 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
359 !(env->hflags2 & HF2_NMI_MASK)) {
360 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
361 env->hflags2 |= HF2_NMI_MASK;
362 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
363 next_tb = 0;
364 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
365 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
366 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
367 next_tb = 0;
368 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
369 (((env->hflags2 & HF2_VINTR_MASK) &&
370 (env->hflags2 & HF2_HIF_MASK)) ||
371 (!(env->hflags2 & HF2_VINTR_MASK) &&
372 (env->eflags & IF_MASK &&
373 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
374 int intno;
375 svm_check_intercept(SVM_EXIT_INTR);
376 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
377 intno = cpu_get_pic_interrupt(env);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
380 #undef env
381 env = cpu_single_env;
382 #define env cpu_single_env
383 #endif
384 do_interrupt(intno, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
387 next_tb = 0;
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
390 (env->eflags & IF_MASK) &&
391 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
392 int intno;
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR);
395 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
397 do_interrupt(intno, 0, 0, 0, 1);
398 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
399 next_tb = 0;
400 #endif
403 #elif defined(TARGET_PPC)
404 #if 0
405 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
406 cpu_reset(env);
408 #endif
409 if (interrupt_request & CPU_INTERRUPT_HARD) {
410 ppc_hw_interrupt(env);
411 if (env->pending_interrupts == 0)
412 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
413 next_tb = 0;
415 #elif defined(TARGET_LM32)
416 if ((interrupt_request & CPU_INTERRUPT_HARD)
417 && (env->ie & IE_IE)) {
418 env->exception_index = EXCP_IRQ;
419 do_interrupt(env);
420 next_tb = 0;
422 #elif defined(TARGET_MICROBLAZE)
423 if ((interrupt_request & CPU_INTERRUPT_HARD)
424 && (env->sregs[SR_MSR] & MSR_IE)
425 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
426 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
427 env->exception_index = EXCP_IRQ;
428 do_interrupt(env);
429 next_tb = 0;
431 #elif defined(TARGET_MIPS)
432 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
433 cpu_mips_hw_interrupts_pending(env)) {
434 /* Raise it */
435 env->exception_index = EXCP_EXT_INTERRUPT;
436 env->error_code = 0;
437 do_interrupt(env);
438 next_tb = 0;
440 #elif defined(TARGET_SPARC)
441 if (interrupt_request & CPU_INTERRUPT_HARD) {
442 if (cpu_interrupts_enabled(env) &&
443 env->interrupt_index > 0) {
444 int pil = env->interrupt_index & 0xf;
445 int type = env->interrupt_index & 0xf0;
447 if (((type == TT_EXTINT) &&
448 cpu_pil_allowed(env, pil)) ||
449 type != TT_EXTINT) {
450 env->exception_index = env->interrupt_index;
451 do_interrupt(env);
452 next_tb = 0;
456 #elif defined(TARGET_ARM)
457 if (interrupt_request & CPU_INTERRUPT_FIQ
458 && !(env->uncached_cpsr & CPSR_F)) {
459 env->exception_index = EXCP_FIQ;
460 do_interrupt(env);
461 next_tb = 0;
463 /* ARMv7-M interrupt return works by loading a magic value
464 into the PC. On real hardware the load causes the
465 return to occur. The qemu implementation performs the
466 jump normally, then does the exception return when the
467 CPU tries to execute code at the magic address.
468 This will cause the magic PC value to be pushed to
469 the stack if an interrupt occurred at the wrong time.
470 We avoid this by disabling interrupts when
471 pc contains a magic address. */
472 if (interrupt_request & CPU_INTERRUPT_HARD
473 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
474 || !(env->uncached_cpsr & CPSR_I))) {
475 env->exception_index = EXCP_IRQ;
476 do_interrupt(env);
477 next_tb = 0;
479 #elif defined(TARGET_UNICORE32)
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && !(env->uncached_asr & ASR_I)) {
482 do_interrupt(env);
483 next_tb = 0;
485 #elif defined(TARGET_SH4)
486 if (interrupt_request & CPU_INTERRUPT_HARD) {
487 do_interrupt(env);
488 next_tb = 0;
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request & CPU_INTERRUPT_HARD) {
492 do_interrupt(env);
493 next_tb = 0;
495 #elif defined(TARGET_CRIS)
496 if (interrupt_request & CPU_INTERRUPT_HARD
497 && (env->pregs[PR_CCS] & I_FLAG)
498 && !env->locked_irq) {
499 env->exception_index = EXCP_IRQ;
500 do_interrupt(env);
501 next_tb = 0;
503 if (interrupt_request & CPU_INTERRUPT_NMI
504 && (env->pregs[PR_CCS] & M_FLAG)) {
505 env->exception_index = EXCP_NMI;
506 do_interrupt(env);
507 next_tb = 0;
509 #elif defined(TARGET_M68K)
510 if (interrupt_request & CPU_INTERRUPT_HARD
511 && ((env->sr & SR_I) >> SR_I_SHIFT)
512 < env->pending_level) {
513 /* Real hardware gets the interrupt vector via an
514 IACK cycle at this point. Current emulated
515 hardware doesn't rely on this, so we
516 provide/save the vector when the interrupt is
517 first signalled. */
518 env->exception_index = env->pending_vector;
519 do_interrupt(1);
520 next_tb = 0;
522 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
523 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
524 (env->psw.mask & PSW_MASK_EXT)) {
525 do_interrupt(env);
526 next_tb = 0;
528 #endif
529 /* Don't use the cached interrupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
535 next_tb = 0;
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
541 cpu_loop_exit();
543 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
546 #if defined(TARGET_I386)
547 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
548 log_cpu_state(env, X86_DUMP_CCOP);
549 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
550 #elif defined(TARGET_M68K)
551 cpu_m68k_flush_flags(env, env->cc_op);
552 env->cc_op = CC_OP_FLAGS;
553 env->sr = (env->sr & 0xffe0)
554 | env->cc_dest | (env->cc_x << 4);
555 log_cpu_state(env, 0);
556 #else
557 log_cpu_state(env, 0);
558 #endif
560 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
561 spin_lock(&tb_lock);
562 tb = tb_find_fast();
563 /* Note: we do it here to avoid a gcc bug on Mac OS X when
564 doing it in tb_find_slow */
565 if (tb_invalidated_flag) {
566 /* as some TB could have been invalidated because
567 of memory exceptions while generating the code, we
568 must recompute the hash index here */
569 next_tb = 0;
570 tb_invalidated_flag = 0;
572 #ifdef CONFIG_DEBUG_EXEC
573 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
574 (long)tb->tc_ptr, tb->pc,
575 lookup_symbol(tb->pc));
576 #endif
577 /* see if we can patch the calling TB. When the TB
578 spans two pages, we cannot safely do a direct
579 jump. */
580 if (next_tb != 0 && tb->page_addr[1] == -1) {
581 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
583 spin_unlock(&tb_lock);
585 /* cpu_interrupt might be called while translating the
586 TB, but before it is linked into a potentially
587 infinite loop and becomes env->current_tb. Avoid
588 starting execution if there is a pending interrupt. */
589 env->current_tb = tb;
590 barrier();
591 if (likely(!env->exit_request)) {
592 tc_ptr = tb->tc_ptr;
593 /* execute the generated code */
594 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
595 #undef env
596 env = cpu_single_env;
597 #define env cpu_single_env
598 #endif
599 next_tb = tcg_qemu_tb_exec(tc_ptr);
600 if ((next_tb & 3) == 2) {
601 /* Instruction counter expired. */
602 int insns_left;
603 tb = (TranslationBlock *)(long)(next_tb & ~3);
604 /* Restore PC. */
605 cpu_pc_from_tb(env, tb);
606 insns_left = env->icount_decr.u32;
607 if (env->icount_extra && insns_left >= 0) {
608 /* Refill decrementer and continue execution. */
609 env->icount_extra += insns_left;
610 if (env->icount_extra > 0xffff) {
611 insns_left = 0xffff;
612 } else {
613 insns_left = env->icount_extra;
615 env->icount_extra -= insns_left;
616 env->icount_decr.u16.low = insns_left;
617 } else {
618 if (insns_left > 0) {
619 /* Execute remaining instructions. */
620 cpu_exec_nocache(insns_left, tb);
622 env->exception_index = EXCP_INTERRUPT;
623 next_tb = 0;
624 cpu_loop_exit();
628 env->current_tb = NULL;
629 /* reset soft MMU for next block (it can currently
630 only be set by a memory fault) */
631 } /* for(;;) */
633 } /* for(;;) */
636 #if defined(TARGET_I386)
637 /* restore flags in standard format */
638 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
639 #elif defined(TARGET_ARM)
640 /* XXX: Save/restore host fpu exception state?. */
641 #elif defined(TARGET_UNICORE32)
642 #elif defined(TARGET_SPARC)
643 #elif defined(TARGET_PPC)
644 #elif defined(TARGET_LM32)
645 #elif defined(TARGET_M68K)
646 cpu_m68k_flush_flags(env, env->cc_op);
647 env->cc_op = CC_OP_FLAGS;
648 env->sr = (env->sr & 0xffe0)
649 | env->cc_dest | (env->cc_x << 4);
650 #elif defined(TARGET_MICROBLAZE)
651 #elif defined(TARGET_MIPS)
652 #elif defined(TARGET_SH4)
653 #elif defined(TARGET_ALPHA)
654 #elif defined(TARGET_CRIS)
655 #elif defined(TARGET_S390X)
656 /* XXXXX */
657 #else
658 #error unsupported target CPU
659 #endif
661 /* restore global registers */
662 barrier();
663 env = (void *) saved_env_reg;
665 /* fail safe : never use cpu_single_env outside cpu_exec() */
666 cpu_single_env = NULL;
667 return ret;