2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
29 #define env cpu_single_env
32 int tb_invalidated_flag
;
34 //#define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState
*env
)
38 return cpu_has_work(env
);
41 void cpu_loop_exit(void)
43 env
->current_tb
= NULL
;
44 longjmp(env
->jmp_env
, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
55 /* XXX: restore cpu registers saved in host registers */
57 env
->exception_index
= -1;
58 longjmp(env
->jmp_env
, 1);
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
66 unsigned long next_tb
;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles
> CF_COUNT_MASK
)
72 max_cycles
= CF_COUNT_MASK
;
74 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
77 /* execute the generated code */
78 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
79 env
->current_tb
= NULL
;
81 if ((next_tb
& 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env
, tb
);
86 tb_phys_invalidate(tb
, -1);
90 static TranslationBlock
*tb_find_slow(target_ulong pc
,
94 TranslationBlock
*tb
, **ptb1
;
96 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
97 target_ulong virt_page2
;
99 tb_invalidated_flag
= 0;
101 /* find translated block using physical mappings */
102 phys_pc
= get_page_addr_code(env
, pc
);
103 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
105 h
= tb_phys_hash_func(phys_pc
);
106 ptb1
= &tb_phys_hash
[h
];
112 tb
->page_addr
[0] == phys_page1
&&
113 tb
->cs_base
== cs_base
&&
114 tb
->flags
== flags
) {
115 /* check next page if needed */
116 if (tb
->page_addr
[1] != -1) {
117 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
119 phys_page2
= get_page_addr_code(env
, virt_page2
);
120 if (tb
->page_addr
[1] == phys_page2
)
126 ptb1
= &tb
->phys_hash_next
;
129 /* if no translated code available, then translate it now */
130 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
133 /* Move the last found TB to the head of the list */
135 *ptb1
= tb
->phys_hash_next
;
136 tb
->phys_hash_next
= tb_phys_hash
[h
];
137 tb_phys_hash
[h
] = tb
;
139 /* we add the TB in the virtual pc hash table */
140 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
144 static inline TranslationBlock
*tb_find_fast(void)
146 TranslationBlock
*tb
;
147 target_ulong cs_base
, pc
;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
153 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
154 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
155 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
156 tb
->flags
!= flags
)) {
157 tb
= tb_find_slow(pc
, cs_base
, flags
);
162 static CPUDebugExcpHandler
*debug_excp_handler
;
164 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
166 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
168 debug_excp_handler
= handler
;
172 static void cpu_handle_debug_exception(CPUState
*env
)
176 if (!env
->watchpoint_hit
) {
177 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
178 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
181 if (debug_excp_handler
) {
182 debug_excp_handler(env
);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request
;
190 int cpu_exec(CPUState
*env1
)
192 volatile host_reg_t saved_env_reg
;
193 int ret
, interrupt_request
;
194 TranslationBlock
*tb
;
196 unsigned long next_tb
;
199 if (!cpu_has_work(env1
)) {
206 cpu_single_env
= env1
;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
212 saved_env_reg
= (host_reg_t
) env
;
216 if (unlikely(exit_request
)) {
217 env
->exit_request
= 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
223 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
224 CC_OP
= CC_OP_EFLAGS
;
225 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env
->cc_op
= CC_OP_FLAGS
;
229 env
->cc_dest
= env
->sr
& 0xf;
230 env
->cc_x
= (env
->sr
>> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_S390X)
243 #error unsupported target CPU
245 env
->exception_index
= -1;
247 /* prepare setjmp context for exception handling */
249 if (setjmp(env
->jmp_env
) == 0) {
250 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
252 env
= cpu_single_env
;
253 #define env cpu_single_env
255 /* if an exception is pending, we execute it here */
256 if (env
->exception_index
>= 0) {
257 if (env
->exception_index
>= EXCP_INTERRUPT
) {
258 /* exit request from the cpu execution loop */
259 ret
= env
->exception_index
;
260 if (ret
== EXCP_DEBUG
) {
261 cpu_handle_debug_exception(env
);
265 #if defined(CONFIG_USER_ONLY)
266 /* if user mode only, we simulate a fake exception
267 which will be handled outside the cpu execution
269 #if defined(TARGET_I386)
270 do_interrupt_user(env
->exception_index
,
271 env
->exception_is_int
,
273 env
->exception_next_eip
);
274 /* successfully delivered */
275 env
->old_exception
= -1;
277 ret
= env
->exception_index
;
280 #if defined(TARGET_I386)
281 /* simulate a real cpu exception. On i386, it can
282 trigger new exceptions, but we do not handle
283 double or triple faults yet. */
284 do_interrupt(env
->exception_index
,
285 env
->exception_is_int
,
287 env
->exception_next_eip
, 0);
288 /* successfully delivered */
289 env
->old_exception
= -1;
290 #elif defined(TARGET_PPC)
292 #elif defined(TARGET_LM32)
294 #elif defined(TARGET_MICROBLAZE)
296 #elif defined(TARGET_MIPS)
298 #elif defined(TARGET_SPARC)
300 #elif defined(TARGET_ARM)
302 #elif defined(TARGET_UNICORE32)
304 #elif defined(TARGET_SH4)
306 #elif defined(TARGET_ALPHA)
308 #elif defined(TARGET_CRIS)
310 #elif defined(TARGET_M68K)
312 #elif defined(TARGET_S390X)
315 env
->exception_index
= -1;
320 next_tb
= 0; /* force lookup of first TB */
322 interrupt_request
= env
->interrupt_request
;
323 if (unlikely(interrupt_request
)) {
324 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
328 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
329 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
330 env
->exception_index
= EXCP_DEBUG
;
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
336 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
337 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
339 env
->exception_index
= EXCP_HLT
;
343 #if defined(TARGET_I386)
344 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
345 svm_check_intercept(SVM_EXIT_INIT
);
347 env
->exception_index
= EXCP_HALTED
;
349 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
351 } else if (env
->hflags2
& HF2_GIF_MASK
) {
352 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
353 !(env
->hflags
& HF_SMM_MASK
)) {
354 svm_check_intercept(SVM_EXIT_SMI
);
355 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
358 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
359 !(env
->hflags2
& HF2_NMI_MASK
)) {
360 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
361 env
->hflags2
|= HF2_NMI_MASK
;
362 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
364 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
365 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
366 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
368 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
369 (((env
->hflags2
& HF2_VINTR_MASK
) &&
370 (env
->hflags2
& HF2_HIF_MASK
)) ||
371 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
372 (env
->eflags
& IF_MASK
&&
373 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
375 svm_check_intercept(SVM_EXIT_INTR
);
376 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
377 intno
= cpu_get_pic_interrupt(env
);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
381 env
= cpu_single_env
;
382 #define env cpu_single_env
384 do_interrupt(intno
, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
390 (env
->eflags
& IF_MASK
) &&
391 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR
);
395 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
397 do_interrupt(intno
, 0, 0, 0, 1);
398 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
403 #elif defined(TARGET_PPC)
405 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
409 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
410 ppc_hw_interrupt(env
);
411 if (env
->pending_interrupts
== 0)
412 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
415 #elif defined(TARGET_LM32)
416 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
417 && (env
->ie
& IE_IE
)) {
418 env
->exception_index
= EXCP_IRQ
;
422 #elif defined(TARGET_MICROBLAZE)
423 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
424 && (env
->sregs
[SR_MSR
] & MSR_IE
)
425 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
426 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
427 env
->exception_index
= EXCP_IRQ
;
431 #elif defined(TARGET_MIPS)
432 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
433 cpu_mips_hw_interrupts_pending(env
)) {
435 env
->exception_index
= EXCP_EXT_INTERRUPT
;
440 #elif defined(TARGET_SPARC)
441 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
442 if (cpu_interrupts_enabled(env
) &&
443 env
->interrupt_index
> 0) {
444 int pil
= env
->interrupt_index
& 0xf;
445 int type
= env
->interrupt_index
& 0xf0;
447 if (((type
== TT_EXTINT
) &&
448 cpu_pil_allowed(env
, pil
)) ||
450 env
->exception_index
= env
->interrupt_index
;
456 #elif defined(TARGET_ARM)
457 if (interrupt_request
& CPU_INTERRUPT_FIQ
458 && !(env
->uncached_cpsr
& CPSR_F
)) {
459 env
->exception_index
= EXCP_FIQ
;
463 /* ARMv7-M interrupt return works by loading a magic value
464 into the PC. On real hardware the load causes the
465 return to occur. The qemu implementation performs the
466 jump normally, then does the exception return when the
467 CPU tries to execute code at the magic address.
468 This will cause the magic PC value to be pushed to
469 the stack if an interrupt occurred at the wrong time.
470 We avoid this by disabling interrupts when
471 pc contains a magic address. */
472 if (interrupt_request
& CPU_INTERRUPT_HARD
473 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
474 || !(env
->uncached_cpsr
& CPSR_I
))) {
475 env
->exception_index
= EXCP_IRQ
;
479 #elif defined(TARGET_UNICORE32)
480 if (interrupt_request
& CPU_INTERRUPT_HARD
481 && !(env
->uncached_asr
& ASR_I
)) {
485 #elif defined(TARGET_SH4)
486 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
495 #elif defined(TARGET_CRIS)
496 if (interrupt_request
& CPU_INTERRUPT_HARD
497 && (env
->pregs
[PR_CCS
] & I_FLAG
)
498 && !env
->locked_irq
) {
499 env
->exception_index
= EXCP_IRQ
;
503 if (interrupt_request
& CPU_INTERRUPT_NMI
504 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
505 env
->exception_index
= EXCP_NMI
;
509 #elif defined(TARGET_M68K)
510 if (interrupt_request
& CPU_INTERRUPT_HARD
511 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
512 < env
->pending_level
) {
513 /* Real hardware gets the interrupt vector via an
514 IACK cycle at this point. Current emulated
515 hardware doesn't rely on this, so we
516 provide/save the vector when the interrupt is
518 env
->exception_index
= env
->pending_vector
;
522 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
523 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
524 (env
->psw
.mask
& PSW_MASK_EXT
)) {
529 /* Don't use the cached interrupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
532 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
538 if (unlikely(env
->exit_request
)) {
539 env
->exit_request
= 0;
540 env
->exception_index
= EXCP_INTERRUPT
;
543 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
545 /* restore flags in standard format */
546 #if defined(TARGET_I386)
547 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
548 log_cpu_state(env
, X86_DUMP_CCOP
);
549 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
550 #elif defined(TARGET_M68K)
551 cpu_m68k_flush_flags(env
, env
->cc_op
);
552 env
->cc_op
= CC_OP_FLAGS
;
553 env
->sr
= (env
->sr
& 0xffe0)
554 | env
->cc_dest
| (env
->cc_x
<< 4);
555 log_cpu_state(env
, 0);
557 log_cpu_state(env
, 0);
560 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
563 /* Note: we do it here to avoid a gcc bug on Mac OS X when
564 doing it in tb_find_slow */
565 if (tb_invalidated_flag
) {
566 /* as some TB could have been invalidated because
567 of memory exceptions while generating the code, we
568 must recompute the hash index here */
570 tb_invalidated_flag
= 0;
572 #ifdef CONFIG_DEBUG_EXEC
573 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
574 (long)tb
->tc_ptr
, tb
->pc
,
575 lookup_symbol(tb
->pc
));
577 /* see if we can patch the calling TB. When the TB
578 spans two pages, we cannot safely do a direct
580 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
581 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
583 spin_unlock(&tb_lock
);
585 /* cpu_interrupt might be called while translating the
586 TB, but before it is linked into a potentially
587 infinite loop and becomes env->current_tb. Avoid
588 starting execution if there is a pending interrupt. */
589 env
->current_tb
= tb
;
591 if (likely(!env
->exit_request
)) {
593 /* execute the generated code */
594 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
596 env
= cpu_single_env
;
597 #define env cpu_single_env
599 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
600 if ((next_tb
& 3) == 2) {
601 /* Instruction counter expired. */
603 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
605 cpu_pc_from_tb(env
, tb
);
606 insns_left
= env
->icount_decr
.u32
;
607 if (env
->icount_extra
&& insns_left
>= 0) {
608 /* Refill decrementer and continue execution. */
609 env
->icount_extra
+= insns_left
;
610 if (env
->icount_extra
> 0xffff) {
613 insns_left
= env
->icount_extra
;
615 env
->icount_extra
-= insns_left
;
616 env
->icount_decr
.u16
.low
= insns_left
;
618 if (insns_left
> 0) {
619 /* Execute remaining instructions. */
620 cpu_exec_nocache(insns_left
, tb
);
622 env
->exception_index
= EXCP_INTERRUPT
;
628 env
->current_tb
= NULL
;
629 /* reset soft MMU for next block (it can currently
630 only be set by a memory fault) */
636 #if defined(TARGET_I386)
637 /* restore flags in standard format */
638 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
639 #elif defined(TARGET_ARM)
640 /* XXX: Save/restore host fpu exception state?. */
641 #elif defined(TARGET_UNICORE32)
642 #elif defined(TARGET_SPARC)
643 #elif defined(TARGET_PPC)
644 #elif defined(TARGET_LM32)
645 #elif defined(TARGET_M68K)
646 cpu_m68k_flush_flags(env
, env
->cc_op
);
647 env
->cc_op
= CC_OP_FLAGS
;
648 env
->sr
= (env
->sr
& 0xffe0)
649 | env
->cc_dest
| (env
->cc_x
<< 4);
650 #elif defined(TARGET_MICROBLAZE)
651 #elif defined(TARGET_MIPS)
652 #elif defined(TARGET_SH4)
653 #elif defined(TARGET_ALPHA)
654 #elif defined(TARGET_CRIS)
655 #elif defined(TARGET_S390X)
658 #error unsupported target CPU
661 /* restore global registers */
663 env
= (void *) saved_env_reg
;
665 /* fail safe : never use cpu_single_env outside cpu_exec() */
666 cpu_single_env
= NULL
;