2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState
*env
)
55 return cpu_has_work(env
);
58 void cpu_loop_exit(void)
60 env
->current_tb
= NULL
;
61 longjmp(env
->jmp_env
, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
69 #if !defined(CONFIG_SOFTMMU)
71 struct ucontext
*uc
= puc
;
72 #elif defined(__OpenBSD__)
73 struct sigcontext
*uc
= puc
;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
83 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, (sigset_t
*)&uc
->uc_sigmask
, NULL
);
88 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
95 env
->exception_index
= -1;
96 longjmp(env
->jmp_env
, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
103 unsigned long next_tb
;
104 TranslationBlock
*tb
;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles
> CF_COUNT_MASK
)
109 max_cycles
= CF_COUNT_MASK
;
111 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
113 env
->current_tb
= tb
;
114 /* execute the generated code */
115 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
116 env
->current_tb
= NULL
;
118 if ((next_tb
& 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env
, tb
);
123 tb_phys_invalidate(tb
, -1);
127 static TranslationBlock
*tb_find_slow(target_ulong pc
,
128 target_ulong cs_base
,
131 TranslationBlock
*tb
, **ptb1
;
133 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
134 target_ulong virt_page2
;
136 tb_invalidated_flag
= 0;
138 /* find translated block using physical mappings */
139 phys_pc
= get_page_addr_code(env
, pc
);
140 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
142 h
= tb_phys_hash_func(phys_pc
);
143 ptb1
= &tb_phys_hash
[h
];
149 tb
->page_addr
[0] == phys_page1
&&
150 tb
->cs_base
== cs_base
&&
151 tb
->flags
== flags
) {
152 /* check next page if needed */
153 if (tb
->page_addr
[1] != -1) {
154 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
156 phys_page2
= get_page_addr_code(env
, virt_page2
);
157 if (tb
->page_addr
[1] == phys_page2
)
163 ptb1
= &tb
->phys_hash_next
;
166 /* if no translated code available, then translate it now */
167 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
170 /* Move the last found TB to the head of the list */
172 *ptb1
= tb
->phys_hash_next
;
173 tb
->phys_hash_next
= tb_phys_hash
[h
];
174 tb_phys_hash
[h
] = tb
;
176 /* we add the TB in the virtual pc hash table */
177 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
181 static inline TranslationBlock
*tb_find_fast(void)
183 TranslationBlock
*tb
;
184 target_ulong cs_base
, pc
;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
190 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
191 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
192 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
193 tb
->flags
!= flags
)) {
194 tb
= tb_find_slow(pc
, cs_base
, flags
);
199 /* main execution loop */
201 volatile sig_atomic_t exit_request
;
203 int cpu_exec(CPUState
*env1
)
205 volatile host_reg_t saved_env_reg
;
206 int ret
, interrupt_request
;
207 TranslationBlock
*tb
;
209 unsigned long next_tb
;
211 if (cpu_halted(env1
) == EXCP_HALTED
)
214 cpu_single_env
= env1
;
216 /* the access to env below is actually saving the global register's
217 value, so that files not including target-xyz/exec.h are free to
219 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
220 saved_env_reg
= (host_reg_t
) env
;
224 if (unlikely(exit_request
)) {
225 env
->exit_request
= 1;
228 #if defined(TARGET_I386)
229 /* put eflags in CPU temporary format */
230 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
231 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
232 CC_OP
= CC_OP_EFLAGS
;
233 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
234 #elif defined(TARGET_SPARC)
235 #elif defined(TARGET_M68K)
236 env
->cc_op
= CC_OP_FLAGS
;
237 env
->cc_dest
= env
->sr
& 0xf;
238 env
->cc_x
= (env
->sr
>> 4) & 1;
239 #elif defined(TARGET_ALPHA)
240 #elif defined(TARGET_ARM)
241 #elif defined(TARGET_PPC)
242 #elif defined(TARGET_LM32)
243 #elif defined(TARGET_MICROBLAZE)
244 #elif defined(TARGET_MIPS)
245 #elif defined(TARGET_SH4)
246 #elif defined(TARGET_CRIS)
247 #elif defined(TARGET_S390X)
250 #error unsupported target CPU
252 env
->exception_index
= -1;
254 /* prepare setjmp context for exception handling */
256 if (setjmp(env
->jmp_env
) == 0) {
257 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
259 env
= cpu_single_env
;
260 #define env cpu_single_env
262 /* if an exception is pending, we execute it here */
263 if (env
->exception_index
>= 0) {
264 if (env
->exception_index
>= EXCP_INTERRUPT
) {
265 /* exit request from the cpu execution loop */
266 ret
= env
->exception_index
;
269 #if defined(CONFIG_USER_ONLY)
270 /* if user mode only, we simulate a fake exception
271 which will be handled outside the cpu execution
273 #if defined(TARGET_I386)
274 do_interrupt_user(env
->exception_index
,
275 env
->exception_is_int
,
277 env
->exception_next_eip
);
278 /* successfully delivered */
279 env
->old_exception
= -1;
281 ret
= env
->exception_index
;
284 #if defined(TARGET_I386)
285 /* simulate a real cpu exception. On i386, it can
286 trigger new exceptions, but we do not handle
287 double or triple faults yet. */
288 do_interrupt(env
->exception_index
,
289 env
->exception_is_int
,
291 env
->exception_next_eip
, 0);
292 /* successfully delivered */
293 env
->old_exception
= -1;
294 #elif defined(TARGET_PPC)
296 #elif defined(TARGET_LM32)
298 #elif defined(TARGET_MICROBLAZE)
300 #elif defined(TARGET_MIPS)
302 #elif defined(TARGET_SPARC)
304 #elif defined(TARGET_ARM)
306 #elif defined(TARGET_SH4)
308 #elif defined(TARGET_ALPHA)
310 #elif defined(TARGET_CRIS)
312 #elif defined(TARGET_M68K)
315 env
->exception_index
= -1;
320 next_tb
= 0; /* force lookup of first TB */
322 interrupt_request
= env
->interrupt_request
;
323 if (unlikely(interrupt_request
)) {
324 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
331 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
332 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
333 env
->exception_index
= EXCP_DEBUG
;
336 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
337 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
338 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32)
339 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
340 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
342 env
->exception_index
= EXCP_HLT
;
346 #if defined(TARGET_I386)
347 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
348 svm_check_intercept(SVM_EXIT_INIT
);
350 env
->exception_index
= EXCP_HALTED
;
352 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
354 } else if (env
->hflags2
& HF2_GIF_MASK
) {
355 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
356 !(env
->hflags
& HF_SMM_MASK
)) {
357 svm_check_intercept(SVM_EXIT_SMI
);
358 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
361 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
362 !(env
->hflags2
& HF2_NMI_MASK
)) {
363 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
364 env
->hflags2
|= HF2_NMI_MASK
;
365 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
367 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
368 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
369 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
371 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
372 (((env
->hflags2
& HF2_VINTR_MASK
) &&
373 (env
->hflags2
& HF2_HIF_MASK
)) ||
374 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
375 (env
->eflags
& IF_MASK
&&
376 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
378 svm_check_intercept(SVM_EXIT_INTR
);
379 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
380 intno
= cpu_get_pic_interrupt(env
);
381 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
382 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
384 env
= cpu_single_env
;
385 #define env cpu_single_env
387 do_interrupt(intno
, 0, 0, 0, 1);
388 /* ensure that no TB jump will be modified as
389 the program flow was changed */
391 #if !defined(CONFIG_USER_ONLY)
392 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
393 (env
->eflags
& IF_MASK
) &&
394 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
396 /* FIXME: this should respect TPR */
397 svm_check_intercept(SVM_EXIT_VINTR
);
398 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
399 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
400 do_interrupt(intno
, 0, 0, 0, 1);
401 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
406 #elif defined(TARGET_PPC)
408 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
412 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
413 ppc_hw_interrupt(env
);
414 if (env
->pending_interrupts
== 0)
415 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
418 #elif defined(TARGET_LM32)
419 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
420 && (env
->ie
& IE_IE
)) {
421 env
->exception_index
= EXCP_IRQ
;
425 #elif defined(TARGET_MICROBLAZE)
426 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
427 && (env
->sregs
[SR_MSR
] & MSR_IE
)
428 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
429 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
430 env
->exception_index
= EXCP_IRQ
;
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
436 cpu_mips_hw_interrupts_pending(env
)) {
438 env
->exception_index
= EXCP_EXT_INTERRUPT
;
443 #elif defined(TARGET_SPARC)
444 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
445 if (cpu_interrupts_enabled(env
) &&
446 env
->interrupt_index
> 0) {
447 int pil
= env
->interrupt_index
& 0xf;
448 int type
= env
->interrupt_index
& 0xf0;
450 if (((type
== TT_EXTINT
) &&
451 cpu_pil_allowed(env
, pil
)) ||
453 env
->exception_index
= env
->interrupt_index
;
458 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
459 //do_interrupt(0, 0, 0, 0, 0);
460 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
462 #elif defined(TARGET_ARM)
463 if (interrupt_request
& CPU_INTERRUPT_FIQ
464 && !(env
->uncached_cpsr
& CPSR_F
)) {
465 env
->exception_index
= EXCP_FIQ
;
469 /* ARMv7-M interrupt return works by loading a magic value
470 into the PC. On real hardware the load causes the
471 return to occur. The qemu implementation performs the
472 jump normally, then does the exception return when the
473 CPU tries to execute code at the magic address.
474 This will cause the magic PC value to be pushed to
475 the stack if an interrupt occured at the wrong time.
476 We avoid this by disabling interrupts when
477 pc contains a magic address. */
478 if (interrupt_request
& CPU_INTERRUPT_HARD
479 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
480 || !(env
->uncached_cpsr
& CPSR_I
))) {
481 env
->exception_index
= EXCP_IRQ
;
485 #elif defined(TARGET_SH4)
486 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
495 #elif defined(TARGET_CRIS)
496 if (interrupt_request
& CPU_INTERRUPT_HARD
497 && (env
->pregs
[PR_CCS
] & I_FLAG
)
498 && !env
->locked_irq
) {
499 env
->exception_index
= EXCP_IRQ
;
503 if (interrupt_request
& CPU_INTERRUPT_NMI
504 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
505 env
->exception_index
= EXCP_NMI
;
509 #elif defined(TARGET_M68K)
510 if (interrupt_request
& CPU_INTERRUPT_HARD
511 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
512 < env
->pending_level
) {
513 /* Real hardware gets the interrupt vector via an
514 IACK cycle at this point. Current emulated
515 hardware doesn't rely on this, so we
516 provide/save the vector when the interrupt is
518 env
->exception_index
= env
->pending_vector
;
523 /* Don't use the cached interupt_request value,
524 do_interrupt may have updated the EXITTB flag. */
525 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
526 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
527 /* ensure that no TB jump will be modified as
528 the program flow was changed */
532 if (unlikely(env
->exit_request
)) {
533 env
->exit_request
= 0;
534 env
->exception_index
= EXCP_INTERRUPT
;
537 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
538 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
539 /* restore flags in standard format */
540 #if defined(TARGET_I386)
541 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
542 log_cpu_state(env
, X86_DUMP_CCOP
);
543 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
544 #elif defined(TARGET_M68K)
545 cpu_m68k_flush_flags(env
, env
->cc_op
);
546 env
->cc_op
= CC_OP_FLAGS
;
547 env
->sr
= (env
->sr
& 0xffe0)
548 | env
->cc_dest
| (env
->cc_x
<< 4);
549 log_cpu_state(env
, 0);
551 log_cpu_state(env
, 0);
554 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
557 /* Note: we do it here to avoid a gcc bug on Mac OS X when
558 doing it in tb_find_slow */
559 if (tb_invalidated_flag
) {
560 /* as some TB could have been invalidated because
561 of memory exceptions while generating the code, we
562 must recompute the hash index here */
564 tb_invalidated_flag
= 0;
566 #ifdef CONFIG_DEBUG_EXEC
567 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
568 (long)tb
->tc_ptr
, tb
->pc
,
569 lookup_symbol(tb
->pc
));
571 /* see if we can patch the calling TB. When the TB
572 spans two pages, we cannot safely do a direct
574 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
575 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
577 spin_unlock(&tb_lock
);
579 /* cpu_interrupt might be called while translating the
580 TB, but before it is linked into a potentially
581 infinite loop and becomes env->current_tb. Avoid
582 starting execution if there is a pending interrupt. */
583 env
->current_tb
= tb
;
585 if (likely(!env
->exit_request
)) {
587 /* execute the generated code */
588 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
590 env
= cpu_single_env
;
591 #define env cpu_single_env
593 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
594 if ((next_tb
& 3) == 2) {
595 /* Instruction counter expired. */
597 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
599 cpu_pc_from_tb(env
, tb
);
600 insns_left
= env
->icount_decr
.u32
;
601 if (env
->icount_extra
&& insns_left
>= 0) {
602 /* Refill decrementer and continue execution. */
603 env
->icount_extra
+= insns_left
;
604 if (env
->icount_extra
> 0xffff) {
607 insns_left
= env
->icount_extra
;
609 env
->icount_extra
-= insns_left
;
610 env
->icount_decr
.u16
.low
= insns_left
;
612 if (insns_left
> 0) {
613 /* Execute remaining instructions. */
614 cpu_exec_nocache(insns_left
, tb
);
616 env
->exception_index
= EXCP_INTERRUPT
;
622 env
->current_tb
= NULL
;
623 /* reset soft MMU for next block (it can currently
624 only be set by a memory fault) */
630 #if defined(TARGET_I386)
631 /* restore flags in standard format */
632 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
633 #elif defined(TARGET_ARM)
634 /* XXX: Save/restore host fpu exception state?. */
635 #elif defined(TARGET_SPARC)
636 #elif defined(TARGET_PPC)
637 #elif defined(TARGET_LM32)
638 #elif defined(TARGET_M68K)
639 cpu_m68k_flush_flags(env
, env
->cc_op
);
640 env
->cc_op
= CC_OP_FLAGS
;
641 env
->sr
= (env
->sr
& 0xffe0)
642 | env
->cc_dest
| (env
->cc_x
<< 4);
643 #elif defined(TARGET_MICROBLAZE)
644 #elif defined(TARGET_MIPS)
645 #elif defined(TARGET_SH4)
646 #elif defined(TARGET_ALPHA)
647 #elif defined(TARGET_CRIS)
648 #elif defined(TARGET_S390X)
651 #error unsupported target CPU
654 /* restore global registers */
656 env
= (void *) saved_env_reg
;
658 /* fail safe : never use cpu_single_env outside cpu_exec() */
659 cpu_single_env
= NULL
;
663 /* must only be called from the generated code as an exception can be
665 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
667 /* XXX: cannot enable it yet because it yields to MMU exception
668 where NIP != read address on PowerPC */
670 target_ulong phys_addr
;
671 phys_addr
= get_phys_addr_code(env
, start
);
672 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
676 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
678 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
680 CPUX86State
*saved_env
;
684 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
686 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
687 (selector
<< 4), 0xffff, 0);
689 helper_load_seg(seg_reg
, selector
);
694 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
696 CPUX86State
*saved_env
;
701 helper_fsave(ptr
, data32
);
706 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
708 CPUX86State
*saved_env
;
713 helper_frstor(ptr
, data32
);
718 #endif /* TARGET_I386 */
720 #if !defined(CONFIG_SOFTMMU)
722 #if defined(TARGET_I386)
723 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
725 #define EXCEPTION_ACTION cpu_loop_exit()
728 /* 'pc' is the host PC at which the exception was raised. 'address' is
729 the effective address of the memory exception. 'is_write' is 1 if a
730 write caused the exception and otherwise 0'. 'old_set' is the
731 signal set which should be restored */
732 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
733 int is_write
, sigset_t
*old_set
,
736 TranslationBlock
*tb
;
740 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
741 #if defined(DEBUG_SIGNAL)
742 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
743 pc
, address
, is_write
, *(unsigned long *)old_set
);
745 /* XXX: locking issue */
746 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
750 /* see if it is an MMU fault */
751 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
753 return 0; /* not an MMU fault */
755 return 1; /* the MMU fault was handled without causing real CPU fault */
756 /* now we have a real cpu fault */
759 /* the PC is inside the translated code. It means that we have
760 a virtual CPU fault */
761 cpu_restore_state(tb
, env
, pc
, puc
);
764 /* we restore the process signal mask as the sigreturn should
765 do it (XXX: use sigsetjmp) */
766 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
769 /* never comes here */
773 #if defined(__i386__)
775 #if defined(__APPLE__)
776 # include <sys/ucontext.h>
778 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
779 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
780 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
781 # define MASK_sig(context) ((context)->uc_sigmask)
782 #elif defined (__NetBSD__)
783 # include <ucontext.h>
785 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
786 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
787 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
788 # define MASK_sig(context) ((context)->uc_sigmask)
789 #elif defined (__FreeBSD__) || defined(__DragonFly__)
790 # include <ucontext.h>
792 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
793 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
794 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
795 # define MASK_sig(context) ((context)->uc_sigmask)
796 #elif defined(__OpenBSD__)
797 # define EIP_sig(context) ((context)->sc_eip)
798 # define TRAP_sig(context) ((context)->sc_trapno)
799 # define ERROR_sig(context) ((context)->sc_err)
800 # define MASK_sig(context) ((context)->sc_mask)
802 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
803 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
804 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
805 # define MASK_sig(context) ((context)->uc_sigmask)
808 int cpu_signal_handler(int host_signum
, void *pinfo
,
811 siginfo_t
*info
= pinfo
;
812 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
813 ucontext_t
*uc
= puc
;
814 #elif defined(__OpenBSD__)
815 struct sigcontext
*uc
= puc
;
817 struct ucontext
*uc
= puc
;
826 #define REG_TRAPNO TRAPNO
829 trapno
= TRAP_sig(uc
);
830 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
832 (ERROR_sig(uc
) >> 1) & 1 : 0,
836 #elif defined(__x86_64__)
839 #define PC_sig(context) _UC_MACHINE_PC(context)
840 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
841 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
842 #define MASK_sig(context) ((context)->uc_sigmask)
843 #elif defined(__OpenBSD__)
844 #define PC_sig(context) ((context)->sc_rip)
845 #define TRAP_sig(context) ((context)->sc_trapno)
846 #define ERROR_sig(context) ((context)->sc_err)
847 #define MASK_sig(context) ((context)->sc_mask)
848 #elif defined (__FreeBSD__) || defined(__DragonFly__)
849 #include <ucontext.h>
851 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
852 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
853 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
854 #define MASK_sig(context) ((context)->uc_sigmask)
856 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
857 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
858 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
859 #define MASK_sig(context) ((context)->uc_sigmask)
862 int cpu_signal_handler(int host_signum
, void *pinfo
,
865 siginfo_t
*info
= pinfo
;
867 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
868 ucontext_t
*uc
= puc
;
869 #elif defined(__OpenBSD__)
870 struct sigcontext
*uc
= puc
;
872 struct ucontext
*uc
= puc
;
876 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
877 TRAP_sig(uc
) == 0xe ?
878 (ERROR_sig(uc
) >> 1) & 1 : 0,
882 #elif defined(_ARCH_PPC)
884 /***********************************************************************
885 * signal context platform-specific definitions
889 /* All Registers access - only for local access */
890 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
891 /* Gpr Registers access */
892 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
893 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
894 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
895 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
896 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
897 # define LR_sig(context) REG_sig(link, context) /* Link register */
898 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
899 /* Float Registers access */
900 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
901 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
902 /* Exception Registers access */
903 # define DAR_sig(context) REG_sig(dar, context)
904 # define DSISR_sig(context) REG_sig(dsisr, context)
905 # define TRAP_sig(context) REG_sig(trap, context)
908 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
909 #include <ucontext.h>
910 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
911 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
912 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
913 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
914 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
915 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
916 /* Exception Registers access */
917 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
918 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
919 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
920 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
923 # include <sys/ucontext.h>
924 typedef struct ucontext SIGCONTEXT
;
925 /* All Registers access - only for local access */
926 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
927 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
928 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
929 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
930 /* Gpr Registers access */
931 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
932 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
933 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
934 # define CTR_sig(context) REG_sig(ctr, context)
935 # define XER_sig(context) REG_sig(xer, context) /* Link register */
936 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
937 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
938 /* Float Registers access */
939 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
940 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
941 /* Exception Registers access */
942 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
943 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
944 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
945 #endif /* __APPLE__ */
947 int cpu_signal_handler(int host_signum
, void *pinfo
,
950 siginfo_t
*info
= pinfo
;
951 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
952 ucontext_t
*uc
= puc
;
954 struct ucontext
*uc
= puc
;
963 if (DSISR_sig(uc
) & 0x00800000)
966 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
969 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
970 is_write
, &uc
->uc_sigmask
, puc
);
973 #elif defined(__alpha__)
975 int cpu_signal_handler(int host_signum
, void *pinfo
,
978 siginfo_t
*info
= pinfo
;
979 struct ucontext
*uc
= puc
;
980 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
984 /* XXX: need kernel patch to get write flag faster */
985 switch (insn
>> 26) {
1000 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1001 is_write
, &uc
->uc_sigmask
, puc
);
1003 #elif defined(__sparc__)
1005 int cpu_signal_handler(int host_signum
, void *pinfo
,
1008 siginfo_t
*info
= pinfo
;
1011 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1012 uint32_t *regs
= (uint32_t *)(info
+ 1);
1013 void *sigmask
= (regs
+ 20);
1014 /* XXX: is there a standard glibc define ? */
1015 unsigned long pc
= regs
[1];
1018 struct sigcontext
*sc
= puc
;
1019 unsigned long pc
= sc
->sigc_regs
.tpc
;
1020 void *sigmask
= (void *)sc
->sigc_mask
;
1021 #elif defined(__OpenBSD__)
1022 struct sigcontext
*uc
= puc
;
1023 unsigned long pc
= uc
->sc_pc
;
1024 void *sigmask
= (void *)(long)uc
->sc_mask
;
1028 /* XXX: need kernel patch to get write flag faster */
1030 insn
= *(uint32_t *)pc
;
1031 if ((insn
>> 30) == 3) {
1032 switch((insn
>> 19) & 0x3f) {
1056 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1057 is_write
, sigmask
, NULL
);
1060 #elif defined(__arm__)
1062 int cpu_signal_handler(int host_signum
, void *pinfo
,
1065 siginfo_t
*info
= pinfo
;
1066 struct ucontext
*uc
= puc
;
1070 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1071 pc
= uc
->uc_mcontext
.gregs
[R15
];
1073 pc
= uc
->uc_mcontext
.arm_pc
;
1075 /* XXX: compute is_write */
1077 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1079 &uc
->uc_sigmask
, puc
);
1082 #elif defined(__mc68000)
1084 int cpu_signal_handler(int host_signum
, void *pinfo
,
1087 siginfo_t
*info
= pinfo
;
1088 struct ucontext
*uc
= puc
;
1092 pc
= uc
->uc_mcontext
.gregs
[16];
1093 /* XXX: compute is_write */
1095 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1097 &uc
->uc_sigmask
, puc
);
1100 #elif defined(__ia64)
1103 /* This ought to be in <bits/siginfo.h>... */
1104 # define __ISR_VALID 1
1107 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1109 siginfo_t
*info
= pinfo
;
1110 struct ucontext
*uc
= puc
;
1114 ip
= uc
->uc_mcontext
.sc_ip
;
1115 switch (host_signum
) {
1121 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1122 /* ISR.W (write-access) is bit 33: */
1123 is_write
= (info
->si_isr
>> 33) & 1;
1129 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1131 (sigset_t
*)&uc
->uc_sigmask
, puc
);
1134 #elif defined(__s390__)
1136 int cpu_signal_handler(int host_signum
, void *pinfo
,
1139 siginfo_t
*info
= pinfo
;
1140 struct ucontext
*uc
= puc
;
1145 pc
= uc
->uc_mcontext
.psw
.addr
;
1147 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1148 of the normal 2 arguments. The 3rd argument contains the "int_code"
1149 from the hardware which does in fact contain the is_write value.
1150 The rt signal handler, as far as I can tell, does not give this value
1151 at all. Not that we could get to it from here even if it were. */
1152 /* ??? This is not even close to complete, since it ignores all
1153 of the read-modify-write instructions. */
1154 pinsn
= (uint16_t *)pc
;
1155 switch (pinsn
[0] >> 8) {
1157 case 0x42: /* STC */
1158 case 0x40: /* STH */
1161 case 0xc4: /* RIL format insns */
1162 switch (pinsn
[0] & 0xf) {
1163 case 0xf: /* STRL */
1164 case 0xb: /* STGRL */
1165 case 0x7: /* STHRL */
1169 case 0xe3: /* RXY format insns */
1170 switch (pinsn
[2] & 0xff) {
1171 case 0x50: /* STY */
1172 case 0x24: /* STG */
1173 case 0x72: /* STCY */
1174 case 0x70: /* STHY */
1175 case 0x8e: /* STPQ */
1176 case 0x3f: /* STRVH */
1177 case 0x3e: /* STRV */
1178 case 0x2f: /* STRVG */
1183 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1184 is_write
, &uc
->uc_sigmask
, puc
);
1187 #elif defined(__mips__)
1189 int cpu_signal_handler(int host_signum
, void *pinfo
,
1192 siginfo_t
*info
= pinfo
;
1193 struct ucontext
*uc
= puc
;
1194 greg_t pc
= uc
->uc_mcontext
.pc
;
1197 /* XXX: compute is_write */
1199 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1200 is_write
, &uc
->uc_sigmask
, puc
);
1203 #elif defined(__hppa__)
1205 int cpu_signal_handler(int host_signum
, void *pinfo
,
1208 struct siginfo
*info
= pinfo
;
1209 struct ucontext
*uc
= puc
;
1210 unsigned long pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1211 uint32_t insn
= *(uint32_t *)pc
;
1214 /* XXX: need kernel patch to get write flag faster. */
1215 switch (insn
>> 26) {
1216 case 0x1a: /* STW */
1217 case 0x19: /* STH */
1218 case 0x18: /* STB */
1219 case 0x1b: /* STWM */
1223 case 0x09: /* CSTWX, FSTWX, FSTWS */
1224 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1225 /* Distinguish from coprocessor load ... */
1226 is_write
= (insn
>> 9) & 1;
1230 switch ((insn
>> 6) & 15) {
1231 case 0xa: /* STWS */
1232 case 0x9: /* STHS */
1233 case 0x8: /* STBS */
1234 case 0xe: /* STWAS */
1235 case 0xc: /* STBYS */
1241 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1242 is_write
, &uc
->uc_sigmask
, puc
);
1247 #error host CPU specific signal handler needed
1251 #endif /* !defined(CONFIG_SOFTMMU) */