sdl: Add QEMU mascot icon for use with SDL
[qemu.git] / hw / spapr_pci.c
bloba564c007b49d6f80e1ecdd8c43510205313a665d
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pci.h"
27 #include "pci_host.h"
28 #include "hw/spapr.h"
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
31 #include <libfdt.h>
33 #include "hw/pci_internals.h"
35 static PCIDevice *find_dev(sPAPREnvironment *spapr,
36 uint64_t buid, uint32_t config_addr)
38 DeviceState *qdev;
39 int devfn = (config_addr >> 8) & 0xFF;
40 sPAPRPHBState *phb;
42 QLIST_FOREACH(phb, &spapr->phbs, list) {
43 if (phb->buid != buid) {
44 continue;
47 QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
48 PCIDevice *dev = (PCIDevice *)qdev;
49 if (dev->devfn == devfn) {
50 return dev;
55 return NULL;
58 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
60 /* This handles the encoding of extended config space addresses */
61 return ((arg >> 20) & 0xf00) | (arg & 0xff);
64 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
65 uint32_t addr, uint32_t size,
66 target_ulong rets)
68 PCIDevice *pci_dev;
69 uint32_t val;
71 if ((size != 1) && (size != 2) && (size != 4)) {
72 /* access must be 1, 2 or 4 bytes */
73 rtas_st(rets, 0, -1);
74 return;
77 pci_dev = find_dev(spapr, buid, addr);
78 addr = rtas_pci_cfgaddr(addr);
80 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
81 /* Access must be to a valid device, within bounds and
82 * naturally aligned */
83 rtas_st(rets, 0, -1);
84 return;
87 val = pci_host_config_read_common(pci_dev, addr,
88 pci_config_size(pci_dev), size);
90 rtas_st(rets, 0, 0);
91 rtas_st(rets, 1, val);
94 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
95 uint32_t token, uint32_t nargs,
96 target_ulong args,
97 uint32_t nret, target_ulong rets)
99 uint64_t buid;
100 uint32_t size, addr;
102 if ((nargs != 4) || (nret != 2)) {
103 rtas_st(rets, 0, -1);
104 return;
107 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
108 size = rtas_ld(args, 3);
109 addr = rtas_ld(args, 0);
111 finish_read_pci_config(spapr, buid, addr, size, rets);
114 static void rtas_read_pci_config(sPAPREnvironment *spapr,
115 uint32_t token, uint32_t nargs,
116 target_ulong args,
117 uint32_t nret, target_ulong rets)
119 uint32_t size, addr;
121 if ((nargs != 2) || (nret != 2)) {
122 rtas_st(rets, 0, -1);
123 return;
126 size = rtas_ld(args, 1);
127 addr = rtas_ld(args, 0);
129 finish_read_pci_config(spapr, 0, addr, size, rets);
132 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
133 uint32_t addr, uint32_t size,
134 uint32_t val, target_ulong rets)
136 PCIDevice *pci_dev;
138 if ((size != 1) && (size != 2) && (size != 4)) {
139 /* access must be 1, 2 or 4 bytes */
140 rtas_st(rets, 0, -1);
141 return;
144 pci_dev = find_dev(spapr, buid, addr);
145 addr = rtas_pci_cfgaddr(addr);
147 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
148 /* Access must be to a valid device, within bounds and
149 * naturally aligned */
150 rtas_st(rets, 0, -1);
151 return;
154 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
155 val, size);
157 rtas_st(rets, 0, 0);
160 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
161 uint32_t token, uint32_t nargs,
162 target_ulong args,
163 uint32_t nret, target_ulong rets)
165 uint64_t buid;
166 uint32_t val, size, addr;
168 if ((nargs != 5) || (nret != 1)) {
169 rtas_st(rets, 0, -1);
170 return;
173 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
174 val = rtas_ld(args, 4);
175 size = rtas_ld(args, 3);
176 addr = rtas_ld(args, 0);
178 finish_write_pci_config(spapr, buid, addr, size, val, rets);
181 static void rtas_write_pci_config(sPAPREnvironment *spapr,
182 uint32_t token, uint32_t nargs,
183 target_ulong args,
184 uint32_t nret, target_ulong rets)
186 uint32_t val, size, addr;
188 if ((nargs != 3) || (nret != 1)) {
189 rtas_st(rets, 0, -1);
190 return;
194 val = rtas_ld(args, 2);
195 size = rtas_ld(args, 1);
196 addr = rtas_ld(args, 0);
198 finish_write_pci_config(spapr, 0, addr, size, val, rets);
201 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
204 * Here we need to convert pci_dev + irq_num to some unique value
205 * which is less than number of IRQs on the specific bus (now it
206 * is 16). At the moment irq_num == device_id (number of the
207 * slot?)
208 * FIXME: we should swizzle in fn and irq_num
210 return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI;
213 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
216 * Here we use the number returned by pci_spapr_map_irq to find a
217 * corresponding qemu_irq.
219 sPAPRPHBState *phb = opaque;
221 qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
224 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
225 unsigned size)
227 switch (size) {
228 case 1:
229 return cpu_inb(addr);
230 case 2:
231 return cpu_inw(addr);
232 case 4:
233 return cpu_inl(addr);
235 assert(0);
238 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
239 uint64_t data, unsigned size)
241 switch (size) {
242 case 1:
243 cpu_outb(addr, data);
244 return;
245 case 2:
246 cpu_outw(addr, data);
247 return;
248 case 4:
249 cpu_outl(addr, data);
250 return;
252 assert(0);
255 static const MemoryRegionOps spapr_io_ops = {
256 .endianness = DEVICE_LITTLE_ENDIAN,
257 .read = spapr_io_read,
258 .write = spapr_io_write
262 * PHB PCI device
264 static int spapr_phb_init(SysBusDevice *s)
266 sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
267 char *namebuf;
268 int i;
269 PCIBus *bus;
271 phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
272 namebuf = alloca(strlen(phb->dtbusname) + 32);
274 /* Initialize memory regions */
275 sprintf(namebuf, "%s.mmio", phb->dtbusname);
276 memory_region_init(&phb->memspace, namebuf, INT64_MAX);
278 sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
279 memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
280 SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
281 memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
282 &phb->memwindow);
284 /* On ppc, we only have MMIO no specific IO space from the CPU
285 * perspective. In theory we ought to be able to embed the PCI IO
286 * memory region direction in the system memory space. However,
287 * if any of the IO BAR subregions use the old_portio mechanism,
288 * that won't be processed properly unless accessed from the
289 * system io address space. This hack to bounce things via
290 * system_io works around the problem until all the users of
291 * old_portion are updated */
292 sprintf(namebuf, "%s.io", phb->dtbusname);
293 memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
294 /* FIXME: fix to support multiple PHBs */
295 memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
297 sprintf(namebuf, "%s.io-alias", phb->dtbusname);
298 memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
299 namebuf, SPAPR_PCI_IO_WIN_SIZE);
300 memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
301 &phb->iowindow);
303 bus = pci_register_bus(&phb->busdev.qdev,
304 phb->busname ? phb->busname : phb->dtbusname,
305 pci_spapr_set_irq, pci_spapr_map_irq, phb,
306 &phb->memspace, &phb->iospace,
307 PCI_DEVFN(0, 0), SPAPR_PCI_NUM_LSI);
308 phb->host_state.bus = bus;
310 QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
312 /* Initialize the LSI table */
313 for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) {
314 qemu_irq qirq;
315 uint32_t num;
317 qirq = spapr_allocate_lsi(0, &num);
318 if (!qirq) {
319 return -1;
322 phb->lsi_table[i].dt_irq = num;
323 phb->lsi_table[i].qirq = qirq;
326 return 0;
329 static Property spapr_phb_properties[] = {
330 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
331 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
332 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
333 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
334 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
335 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
336 DEFINE_PROP_END_OF_LIST(),
339 static void spapr_phb_class_init(ObjectClass *klass, void *data)
341 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
342 DeviceClass *dc = DEVICE_CLASS(klass);
344 sdc->init = spapr_phb_init;
345 dc->props = spapr_phb_properties;
347 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
348 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
349 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
350 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
353 static TypeInfo spapr_phb_info = {
354 .name = "spapr-pci-host-bridge",
355 .parent = TYPE_SYS_BUS_DEVICE,
356 .instance_size = sizeof(sPAPRPHBState),
357 .class_init = spapr_phb_class_init,
360 void spapr_create_phb(sPAPREnvironment *spapr,
361 const char *busname, uint64_t buid,
362 uint64_t mem_win_addr, uint64_t mem_win_size,
363 uint64_t io_win_addr)
365 DeviceState *dev;
367 dev = qdev_create(NULL, spapr_phb_info.name);
369 if (busname) {
370 qdev_prop_set_string(dev, "busname", g_strdup(busname));
372 qdev_prop_set_uint64(dev, "buid", buid);
373 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
374 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
375 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
377 qdev_init_nofail(dev);
380 /* Macros to operate with address in OF binding to PCI */
381 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
382 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
383 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
384 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
385 #define b_ss(x) b_x((x), 24, 2) /* the space code */
386 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
387 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
388 #define b_fff(x) b_x((x), 8, 3) /* function number */
389 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
391 int spapr_populate_pci_devices(sPAPRPHBState *phb,
392 uint32_t xics_phandle,
393 void *fdt)
395 PCIBus *bus = phb->host_state.bus;
396 int bus_off, i;
397 char nodename[256];
398 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
399 struct {
400 uint32_t hi;
401 uint64_t child;
402 uint64_t parent;
403 uint64_t size;
404 } __attribute__((packed)) ranges[] = {
406 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
407 cpu_to_be64(phb->io_win_addr),
408 cpu_to_be64(memory_region_size(&phb->iospace)),
411 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
412 cpu_to_be64(phb->mem_win_addr),
413 cpu_to_be64(memory_region_size(&phb->memwindow)),
416 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
417 uint32_t interrupt_map_mask[] = {
418 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0};
419 uint32_t interrupt_map[bus->nirq][7];
421 /* Start populating the FDT */
422 sprintf(nodename, "pci@%" PRIx64, phb->buid);
423 bus_off = fdt_add_subnode(fdt, 0, nodename);
424 if (bus_off < 0) {
425 return bus_off;
428 #define _FDT(exp) \
429 do { \
430 int ret = (exp); \
431 if (ret < 0) { \
432 return ret; \
434 } while (0)
436 /* Write PHB properties */
437 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
438 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
439 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
440 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
441 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
442 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
443 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
444 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
445 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
446 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
448 /* Build the interrupt-map, this must matches what is done
449 * in pci_spapr_map_irq
451 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
452 &interrupt_map_mask, sizeof(interrupt_map_mask)));
453 for (i = 0; i < 7; i++) {
454 uint32_t *irqmap = interrupt_map[i];
455 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
456 irqmap[1] = 0;
457 irqmap[2] = 0;
458 irqmap[3] = 0;
459 irqmap[4] = cpu_to_be32(xics_phandle);
460 irqmap[5] = cpu_to_be32(phb->lsi_table[i % SPAPR_PCI_NUM_LSI].dt_irq);
461 irqmap[6] = cpu_to_be32(0x8);
463 /* Write interrupt map */
464 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
465 7 * sizeof(interrupt_map[0])));
467 return 0;
470 static void register_types(void)
472 type_register_static(&spapr_phb_info);
474 type_init(register_types)