spapr: convert boot CPUs into CPU core devices
[qemu.git] / hw / ppc / spapr.c
blob52e89afd1582e70b1d14e3f9fbf252174a2b6d8c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
71 #include <libfdt.h>
73 /* SLOF memory layout:
75 * SLOF raw image loaded at 0, copies its romfs right below the flat
76 * device-tree, then position SLOF itself 31M below that
78 * So we set FW_OVERHEAD to 40MB which should account for all of that
79 * and more
81 * We load our kernel at 4M, leaving space for SLOF initial image
83 #define FDT_MAX_SIZE 0x100000
84 #define RTAS_MAX_SIZE 0x10000
85 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
86 #define FW_MAX_SIZE 0x400000
87 #define FW_FILE_NAME "slof.bin"
88 #define FW_OVERHEAD 0x2800000
89 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
91 #define MIN_RMA_SLOF 128UL
93 #define PHANDLE_XICP 0x00001111
95 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
97 static XICSState *try_create_xics(const char *type, int nr_servers,
98 int nr_irqs, Error **errp)
100 Error *err = NULL;
101 DeviceState *dev;
103 dev = qdev_create(NULL, type);
104 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
105 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
106 object_property_set_bool(OBJECT(dev), true, "realized", &err);
107 if (err) {
108 error_propagate(errp, err);
109 object_unparent(OBJECT(dev));
110 return NULL;
112 return XICS_COMMON(dev);
115 static XICSState *xics_system_init(MachineState *machine,
116 int nr_servers, int nr_irqs, Error **errp)
118 XICSState *icp = NULL;
120 if (kvm_enabled()) {
121 Error *err = NULL;
123 if (machine_kernel_irqchip_allowed(machine)) {
124 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
126 if (machine_kernel_irqchip_required(machine) && !icp) {
127 error_reportf_err(err,
128 "kernel_irqchip requested but unavailable: ");
129 } else {
130 error_free(err);
134 if (!icp) {
135 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
138 return icp;
141 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
142 int smt_threads)
144 int i, ret = 0;
145 uint32_t servers_prop[smt_threads];
146 uint32_t gservers_prop[smt_threads * 2];
147 int index = ppc_get_vcpu_dt_id(cpu);
149 if (cpu->cpu_version) {
150 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
151 if (ret < 0) {
152 return ret;
156 /* Build interrupt servers and gservers properties */
157 for (i = 0; i < smt_threads; i++) {
158 servers_prop[i] = cpu_to_be32(index + i);
159 /* Hack, direct the group queues back to cpu 0 */
160 gservers_prop[i*2] = cpu_to_be32(index + i);
161 gservers_prop[i*2 + 1] = 0;
163 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
164 servers_prop, sizeof(servers_prop));
165 if (ret < 0) {
166 return ret;
168 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
169 gservers_prop, sizeof(gservers_prop));
171 return ret;
174 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
176 int ret = 0;
177 PowerPCCPU *cpu = POWERPC_CPU(cs);
178 int index = ppc_get_vcpu_dt_id(cpu);
179 uint32_t associativity[] = {cpu_to_be32(0x5),
180 cpu_to_be32(0x0),
181 cpu_to_be32(0x0),
182 cpu_to_be32(0x0),
183 cpu_to_be32(cs->numa_node),
184 cpu_to_be32(index)};
186 /* Advertise NUMA via ibm,associativity */
187 if (nb_numa_nodes > 1) {
188 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
189 sizeof(associativity));
192 return ret;
195 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
197 int ret = 0, offset, cpus_offset;
198 CPUState *cs;
199 char cpu_model[32];
200 int smt = kvmppc_smt_threads();
201 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
203 CPU_FOREACH(cs) {
204 PowerPCCPU *cpu = POWERPC_CPU(cs);
205 DeviceClass *dc = DEVICE_GET_CLASS(cs);
206 int index = ppc_get_vcpu_dt_id(cpu);
208 if ((index % smt) != 0) {
209 continue;
212 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
214 cpus_offset = fdt_path_offset(fdt, "/cpus");
215 if (cpus_offset < 0) {
216 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
217 "cpus");
218 if (cpus_offset < 0) {
219 return cpus_offset;
222 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
223 if (offset < 0) {
224 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
225 if (offset < 0) {
226 return offset;
230 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
231 pft_size_prop, sizeof(pft_size_prop));
232 if (ret < 0) {
233 return ret;
236 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
237 if (ret < 0) {
238 return ret;
241 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
242 ppc_get_compat_smt_threads(cpu));
243 if (ret < 0) {
244 return ret;
247 return ret;
251 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
252 size_t maxsize)
254 size_t maxcells = maxsize / sizeof(uint32_t);
255 int i, j, count;
256 uint32_t *p = prop;
258 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
259 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261 if (!sps->page_shift) {
262 break;
264 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
265 if (sps->enc[count].page_shift == 0) {
266 break;
269 if ((p - prop) >= (maxcells - 3 - count * 2)) {
270 break;
272 *(p++) = cpu_to_be32(sps->page_shift);
273 *(p++) = cpu_to_be32(sps->slb_enc);
274 *(p++) = cpu_to_be32(count);
275 for (j = 0; j < count; j++) {
276 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
277 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
281 return (p - prop) * sizeof(uint32_t);
284 static hwaddr spapr_node0_size(void)
286 MachineState *machine = MACHINE(qdev_get_machine());
288 if (nb_numa_nodes) {
289 int i;
290 for (i = 0; i < nb_numa_nodes; ++i) {
291 if (numa_info[i].node_mem) {
292 return MIN(pow2floor(numa_info[i].node_mem),
293 machine->ram_size);
297 return machine->ram_size;
300 #define _FDT(exp) \
301 do { \
302 int ret = (exp); \
303 if (ret < 0) { \
304 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
305 #exp, fdt_strerror(ret)); \
306 exit(1); \
308 } while (0)
310 static void add_str(GString *s, const gchar *s1)
312 g_string_append_len(s, s1, strlen(s1) + 1);
315 static void *spapr_create_fdt_skel(hwaddr initrd_base,
316 hwaddr initrd_size,
317 hwaddr kernel_size,
318 bool little_endian,
319 const char *kernel_cmdline,
320 uint32_t epow_irq)
322 void *fdt;
323 uint32_t start_prop = cpu_to_be32(initrd_base);
324 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
325 GString *hypertas = g_string_sized_new(256);
326 GString *qemu_hypertas = g_string_sized_new(256);
327 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
328 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
329 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
330 char *buf;
332 add_str(hypertas, "hcall-pft");
333 add_str(hypertas, "hcall-term");
334 add_str(hypertas, "hcall-dabr");
335 add_str(hypertas, "hcall-interrupt");
336 add_str(hypertas, "hcall-tce");
337 add_str(hypertas, "hcall-vio");
338 add_str(hypertas, "hcall-splpar");
339 add_str(hypertas, "hcall-bulk");
340 add_str(hypertas, "hcall-set-mode");
341 add_str(qemu_hypertas, "hcall-memop1");
343 fdt = g_malloc0(FDT_MAX_SIZE);
344 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
346 if (kernel_size) {
347 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
349 if (initrd_size) {
350 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
352 _FDT((fdt_finish_reservemap(fdt)));
354 /* Root node */
355 _FDT((fdt_begin_node(fdt, "")));
356 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
357 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
358 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
361 * Add info to guest to indentify which host is it being run on
362 * and what is the uuid of the guest
364 if (kvmppc_get_host_model(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-model", buf)));
366 g_free(buf);
368 if (kvmppc_get_host_serial(&buf)) {
369 _FDT((fdt_property_string(fdt, "host-serial", buf)));
370 g_free(buf);
373 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
374 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
375 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
376 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
377 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
378 qemu_uuid[14], qemu_uuid[15]);
380 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
381 if (qemu_uuid_set) {
382 _FDT((fdt_property_string(fdt, "system-id", buf)));
384 g_free(buf);
386 if (qemu_get_vm_name()) {
387 _FDT((fdt_property_string(fdt, "ibm,partition-name",
388 qemu_get_vm_name())));
391 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
392 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
394 /* /chosen */
395 _FDT((fdt_begin_node(fdt, "chosen")));
397 /* Set Form1_affinity */
398 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
400 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
401 _FDT((fdt_property(fdt, "linux,initrd-start",
402 &start_prop, sizeof(start_prop))));
403 _FDT((fdt_property(fdt, "linux,initrd-end",
404 &end_prop, sizeof(end_prop))));
405 if (kernel_size) {
406 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
407 cpu_to_be64(kernel_size) };
409 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
410 if (little_endian) {
411 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
414 if (boot_menu) {
415 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
417 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
419 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
421 _FDT((fdt_end_node(fdt)));
423 /* RTAS */
424 _FDT((fdt_begin_node(fdt, "rtas")));
426 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
427 add_str(hypertas, "hcall-multi-tce");
429 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
430 hypertas->len)));
431 g_string_free(hypertas, TRUE);
432 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
433 qemu_hypertas->len)));
434 g_string_free(qemu_hypertas, TRUE);
436 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
437 refpoints, sizeof(refpoints))));
439 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
440 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
441 RTAS_EVENT_SCAN_RATE)));
443 if (msi_nonbroken) {
444 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
448 * According to PAPR, rtas ibm,os-term does not guarantee a return
449 * back to the guest cpu.
451 * While an additional ibm,extended-os-term property indicates that
452 * rtas call return will always occur. Set this property.
454 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
456 _FDT((fdt_end_node(fdt)));
458 /* interrupt controller */
459 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
461 _FDT((fdt_property_string(fdt, "device_type",
462 "PowerPC-External-Interrupt-Presentation")));
463 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
464 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
465 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
466 interrupt_server_ranges_prop,
467 sizeof(interrupt_server_ranges_prop))));
468 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
469 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
470 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
472 _FDT((fdt_end_node(fdt)));
474 /* vdevice */
475 _FDT((fdt_begin_node(fdt, "vdevice")));
477 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
478 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
479 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
480 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
481 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
482 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
484 _FDT((fdt_end_node(fdt)));
486 /* event-sources */
487 spapr_events_fdt_skel(fdt, epow_irq);
489 /* /hypervisor node */
490 if (kvm_enabled()) {
491 uint8_t hypercall[16];
493 /* indicate KVM hypercall interface */
494 _FDT((fdt_begin_node(fdt, "hypervisor")));
495 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
496 if (kvmppc_has_cap_fixup_hcalls()) {
498 * Older KVM versions with older guest kernels were broken with the
499 * magic page, don't allow the guest to map it.
501 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
502 sizeof(hypercall))) {
503 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
504 sizeof(hypercall))));
507 _FDT((fdt_end_node(fdt)));
510 _FDT((fdt_end_node(fdt))); /* close root node */
511 _FDT((fdt_finish(fdt)));
513 return fdt;
516 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
517 hwaddr size)
519 uint32_t associativity[] = {
520 cpu_to_be32(0x4), /* length */
521 cpu_to_be32(0x0), cpu_to_be32(0x0),
522 cpu_to_be32(0x0), cpu_to_be32(nodeid)
524 char mem_name[32];
525 uint64_t mem_reg_property[2];
526 int off;
528 mem_reg_property[0] = cpu_to_be64(start);
529 mem_reg_property[1] = cpu_to_be64(size);
531 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
532 off = fdt_add_subnode(fdt, 0, mem_name);
533 _FDT(off);
534 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
535 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
536 sizeof(mem_reg_property))));
537 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
538 sizeof(associativity))));
539 return off;
542 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
544 MachineState *machine = MACHINE(spapr);
545 hwaddr mem_start, node_size;
546 int i, nb_nodes = nb_numa_nodes;
547 NodeInfo *nodes = numa_info;
548 NodeInfo ramnode;
550 /* No NUMA nodes, assume there is just one node with whole RAM */
551 if (!nb_numa_nodes) {
552 nb_nodes = 1;
553 ramnode.node_mem = machine->ram_size;
554 nodes = &ramnode;
557 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
558 if (!nodes[i].node_mem) {
559 continue;
561 if (mem_start >= machine->ram_size) {
562 node_size = 0;
563 } else {
564 node_size = nodes[i].node_mem;
565 if (node_size > machine->ram_size - mem_start) {
566 node_size = machine->ram_size - mem_start;
569 if (!mem_start) {
570 /* ppc_spapr_init() checks for rma_size <= node0_size already */
571 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
572 mem_start += spapr->rma_size;
573 node_size -= spapr->rma_size;
575 for ( ; node_size; ) {
576 hwaddr sizetmp = pow2floor(node_size);
578 /* mem_start != 0 here */
579 if (ctzl(mem_start) < ctzl(sizetmp)) {
580 sizetmp = 1ULL << ctzl(mem_start);
583 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
584 node_size -= sizetmp;
585 mem_start += sizetmp;
589 return 0;
592 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
593 sPAPRMachineState *spapr)
595 PowerPCCPU *cpu = POWERPC_CPU(cs);
596 CPUPPCState *env = &cpu->env;
597 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
598 int index = ppc_get_vcpu_dt_id(cpu);
599 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
600 0xffffffff, 0xffffffff};
601 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
602 : SPAPR_TIMEBASE_FREQ;
603 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
604 uint32_t page_sizes_prop[64];
605 size_t page_sizes_prop_size;
606 uint32_t vcpus_per_socket = smp_threads * smp_cores;
607 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
609 /* Note: we keep CI large pages off for now because a 64K capable guest
610 * provisioned with large pages might otherwise try to map a qemu
611 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
612 * even if that qemu runs on a 4k host.
614 * We can later add this bit back when we are confident this is not
615 * an issue (!HV KVM or 64K host)
617 uint8_t pa_features_206[] = { 6, 0,
618 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
619 uint8_t pa_features_207[] = { 24, 0,
620 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
621 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
623 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
624 uint8_t *pa_features;
625 size_t pa_size;
627 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
628 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
630 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
631 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
632 env->dcache_line_size)));
633 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
634 env->dcache_line_size)));
635 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
636 env->icache_line_size)));
637 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
638 env->icache_line_size)));
640 if (pcc->l1_dcache_size) {
641 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
642 pcc->l1_dcache_size)));
643 } else {
644 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
646 if (pcc->l1_icache_size) {
647 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
648 pcc->l1_icache_size)));
649 } else {
650 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
653 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
654 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
655 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
656 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
657 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
658 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
660 if (env->spr_cb[SPR_PURR].oea_read) {
661 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
664 if (env->mmu_model & POWERPC_MMU_1TSEG) {
665 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
666 segs, sizeof(segs))));
669 /* Advertise VMX/VSX (vector extensions) if available
670 * 0 / no property == no vector extensions
671 * 1 == VMX / Altivec available
672 * 2 == VSX available */
673 if (env->insns_flags & PPC_ALTIVEC) {
674 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
676 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
679 /* Advertise DFP (Decimal Floating Point) if available
680 * 0 / no property == no DFP
681 * 1 == DFP available */
682 if (env->insns_flags2 & PPC2_DFP) {
683 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
686 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
687 sizeof(page_sizes_prop));
688 if (page_sizes_prop_size) {
689 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
690 page_sizes_prop, page_sizes_prop_size)));
693 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
694 if (env->mmu_model == POWERPC_MMU_2_06) {
695 pa_features = pa_features_206;
696 pa_size = sizeof(pa_features_206);
697 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
698 pa_features = pa_features_207;
699 pa_size = sizeof(pa_features_207);
701 if (env->ci_large_pages) {
702 pa_features[3] |= 0x20;
704 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
707 cs->cpu_index / vcpus_per_socket)));
709 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
710 pft_size_prop, sizeof(pft_size_prop))));
712 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
714 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
715 ppc_get_compat_smt_threads(cpu)));
718 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
720 CPUState *cs;
721 int cpus_offset;
722 char *nodename;
723 int smt = kvmppc_smt_threads();
725 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
726 _FDT(cpus_offset);
727 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
728 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
731 * We walk the CPUs in reverse order to ensure that CPU DT nodes
732 * created by fdt_add_subnode() end up in the right order in FDT
733 * for the guest kernel the enumerate the CPUs correctly.
735 CPU_FOREACH_REVERSE(cs) {
736 PowerPCCPU *cpu = POWERPC_CPU(cs);
737 int index = ppc_get_vcpu_dt_id(cpu);
738 DeviceClass *dc = DEVICE_GET_CLASS(cs);
739 int offset;
741 if ((index % smt) != 0) {
742 continue;
745 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
746 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
747 g_free(nodename);
748 _FDT(offset);
749 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
755 * Adds ibm,dynamic-reconfiguration-memory node.
756 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
757 * of this device tree node.
759 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
761 MachineState *machine = MACHINE(spapr);
762 int ret, i, offset;
763 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
764 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
765 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
766 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
767 memory_region_size(&spapr->hotplug_memory.mr)) /
768 lmb_size;
769 uint32_t *int_buf, *cur_index, buf_len;
770 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
773 * Don't create the node if there is no hotpluggable memory
775 if (machine->ram_size == machine->maxram_size) {
776 return 0;
780 * Allocate enough buffer size to fit in ibm,dynamic-memory
781 * or ibm,associativity-lookup-arrays
783 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
784 * sizeof(uint32_t);
785 cur_index = int_buf = g_malloc0(buf_len);
787 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
789 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
790 sizeof(prop_lmb_size));
791 if (ret < 0) {
792 goto out;
795 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
796 if (ret < 0) {
797 goto out;
800 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
801 if (ret < 0) {
802 goto out;
805 /* ibm,dynamic-memory */
806 int_buf[0] = cpu_to_be32(nr_lmbs);
807 cur_index++;
808 for (i = 0; i < nr_lmbs; i++) {
809 uint64_t addr = i * lmb_size;
810 uint32_t *dynamic_memory = cur_index;
812 if (i >= hotplug_lmb_start) {
813 sPAPRDRConnector *drc;
814 sPAPRDRConnectorClass *drck;
816 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
817 g_assert(drc);
818 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
820 dynamic_memory[0] = cpu_to_be32(addr >> 32);
821 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
822 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
823 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
824 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
825 if (memory_region_present(get_system_memory(), addr)) {
826 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
827 } else {
828 dynamic_memory[5] = cpu_to_be32(0);
830 } else {
832 * LMB information for RMA, boot time RAM and gap b/n RAM and
833 * hotplug memory region -- all these are marked as reserved
834 * and as having no valid DRC.
836 dynamic_memory[0] = cpu_to_be32(addr >> 32);
837 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
838 dynamic_memory[2] = cpu_to_be32(0);
839 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
840 dynamic_memory[4] = cpu_to_be32(-1);
841 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
842 SPAPR_LMB_FLAGS_DRC_INVALID);
845 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
847 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
848 if (ret < 0) {
849 goto out;
852 /* ibm,associativity-lookup-arrays */
853 cur_index = int_buf;
854 int_buf[0] = cpu_to_be32(nr_nodes);
855 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
856 cur_index += 2;
857 for (i = 0; i < nr_nodes; i++) {
858 uint32_t associativity[] = {
859 cpu_to_be32(0x0),
860 cpu_to_be32(0x0),
861 cpu_to_be32(0x0),
862 cpu_to_be32(i)
864 memcpy(cur_index, associativity, sizeof(associativity));
865 cur_index += 4;
867 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
868 (cur_index - int_buf) * sizeof(uint32_t));
869 out:
870 g_free(int_buf);
871 return ret;
874 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
875 target_ulong addr, target_ulong size,
876 bool cpu_update, bool memory_update)
878 void *fdt, *fdt_skel;
879 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
880 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
882 size -= sizeof(hdr);
884 /* Create sceleton */
885 fdt_skel = g_malloc0(size);
886 _FDT((fdt_create(fdt_skel, size)));
887 _FDT((fdt_begin_node(fdt_skel, "")));
888 _FDT((fdt_end_node(fdt_skel)));
889 _FDT((fdt_finish(fdt_skel)));
890 fdt = g_malloc0(size);
891 _FDT((fdt_open_into(fdt_skel, fdt, size)));
892 g_free(fdt_skel);
894 /* Fixup cpu nodes */
895 if (cpu_update) {
896 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
899 /* Generate ibm,dynamic-reconfiguration-memory node if required */
900 if (memory_update && smc->dr_lmb_enabled) {
901 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
904 /* Pack resulting tree */
905 _FDT((fdt_pack(fdt)));
907 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
908 trace_spapr_cas_failed(size);
909 return -1;
912 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
913 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
914 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
915 g_free(fdt);
917 return 0;
920 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
921 hwaddr fdt_addr,
922 hwaddr rtas_addr,
923 hwaddr rtas_size)
925 MachineState *machine = MACHINE(qdev_get_machine());
926 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
927 const char *boot_device = machine->boot_order;
928 int ret, i;
929 size_t cb = 0;
930 char *bootlist;
931 void *fdt;
932 sPAPRPHBState *phb;
934 fdt = g_malloc(FDT_MAX_SIZE);
936 /* open out the base tree into a temp buffer for the final tweaks */
937 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
939 ret = spapr_populate_memory(spapr, fdt);
940 if (ret < 0) {
941 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
942 exit(1);
945 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
946 if (ret < 0) {
947 fprintf(stderr, "couldn't setup vio devices in fdt\n");
948 exit(1);
951 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
952 ret = spapr_rng_populate_dt(fdt);
953 if (ret < 0) {
954 fprintf(stderr, "could not set up rng device in the fdt\n");
955 exit(1);
959 QLIST_FOREACH(phb, &spapr->phbs, list) {
960 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
961 if (ret < 0) {
962 error_report("couldn't setup PCI devices in fdt");
963 exit(1);
967 /* RTAS */
968 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
969 if (ret < 0) {
970 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
973 /* cpus */
974 spapr_populate_cpus_dt_node(fdt, spapr);
976 bootlist = get_boot_devices_list(&cb, true);
977 if (cb && bootlist) {
978 int offset = fdt_path_offset(fdt, "/chosen");
979 if (offset < 0) {
980 exit(1);
982 for (i = 0; i < cb; i++) {
983 if (bootlist[i] == '\n') {
984 bootlist[i] = ' ';
988 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
991 if (boot_device && strlen(boot_device)) {
992 int offset = fdt_path_offset(fdt, "/chosen");
994 if (offset < 0) {
995 exit(1);
997 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1000 if (!spapr->has_graphics) {
1001 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1004 if (smc->dr_lmb_enabled) {
1005 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1008 _FDT((fdt_pack(fdt)));
1010 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1011 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1012 fdt_totalsize(fdt), FDT_MAX_SIZE);
1013 exit(1);
1016 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1017 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1019 g_free(bootlist);
1020 g_free(fdt);
1023 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1025 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1028 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1030 CPUPPCState *env = &cpu->env;
1032 if (msr_pr) {
1033 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1034 env->gpr[3] = H_PRIVILEGE;
1035 } else {
1036 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1040 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1041 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1042 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1043 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1044 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1047 * Get the fd to access the kernel htab, re-opening it if necessary
1049 static int get_htab_fd(sPAPRMachineState *spapr)
1051 if (spapr->htab_fd >= 0) {
1052 return spapr->htab_fd;
1055 spapr->htab_fd = kvmppc_get_htab_fd(false);
1056 if (spapr->htab_fd < 0) {
1057 error_report("Unable to open fd for reading hash table from KVM: %s",
1058 strerror(errno));
1061 return spapr->htab_fd;
1064 static void close_htab_fd(sPAPRMachineState *spapr)
1066 if (spapr->htab_fd >= 0) {
1067 close(spapr->htab_fd);
1069 spapr->htab_fd = -1;
1072 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1074 int shift;
1076 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1077 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1078 * that's much more than is needed for Linux guests */
1079 shift = ctz64(pow2ceil(ramsize)) - 7;
1080 shift = MAX(shift, 18); /* Minimum architected size */
1081 shift = MIN(shift, 46); /* Maximum architected size */
1082 return shift;
1085 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1086 Error **errp)
1088 long rc;
1090 /* Clean up any HPT info from a previous boot */
1091 g_free(spapr->htab);
1092 spapr->htab = NULL;
1093 spapr->htab_shift = 0;
1094 close_htab_fd(spapr);
1096 rc = kvmppc_reset_htab(shift);
1097 if (rc < 0) {
1098 /* kernel-side HPT needed, but couldn't allocate one */
1099 error_setg_errno(errp, errno,
1100 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1101 shift);
1102 /* This is almost certainly fatal, but if the caller really
1103 * wants to carry on with shift == 0, it's welcome to try */
1104 } else if (rc > 0) {
1105 /* kernel-side HPT allocated */
1106 if (rc != shift) {
1107 error_setg(errp,
1108 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1109 shift, rc);
1112 spapr->htab_shift = shift;
1113 spapr->htab = NULL;
1114 } else {
1115 /* kernel-side HPT not needed, allocate in userspace instead */
1116 size_t size = 1ULL << shift;
1117 int i;
1119 spapr->htab = qemu_memalign(size, size);
1120 if (!spapr->htab) {
1121 error_setg_errno(errp, errno,
1122 "Could not allocate HPT of order %d", shift);
1123 return;
1126 memset(spapr->htab, 0, size);
1127 spapr->htab_shift = shift;
1129 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1130 DIRTY_HPTE(HPTE(spapr->htab, i));
1135 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1137 bool matched = false;
1139 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1140 matched = true;
1143 if (!matched) {
1144 error_report("Device %s is not supported by this machine yet.",
1145 qdev_fw_name(DEVICE(sbdev)));
1146 exit(1);
1149 return 0;
1152 static void ppc_spapr_reset(void)
1154 MachineState *machine = MACHINE(qdev_get_machine());
1155 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1156 PowerPCCPU *first_ppc_cpu;
1157 uint32_t rtas_limit;
1159 /* Check for unknown sysbus devices */
1160 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1162 /* Allocate and/or reset the hash page table */
1163 spapr_reallocate_hpt(spapr,
1164 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1165 &error_fatal);
1167 /* Update the RMA size if necessary */
1168 if (spapr->vrma_adjust) {
1169 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1170 spapr->htab_shift);
1173 qemu_devices_reset();
1176 * We place the device tree and RTAS just below either the top of the RMA,
1177 * or just below 2GB, whichever is lowere, so that it can be
1178 * processed with 32-bit real mode code if necessary
1180 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1181 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1182 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1184 /* Load the fdt */
1185 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1186 spapr->rtas_size);
1188 /* Copy RTAS over */
1189 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1190 spapr->rtas_size);
1192 /* Set up the entry state */
1193 first_ppc_cpu = POWERPC_CPU(first_cpu);
1194 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1195 first_ppc_cpu->env.gpr[5] = 0;
1196 first_cpu->halted = 0;
1197 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1201 static void spapr_create_nvram(sPAPRMachineState *spapr)
1203 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1204 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1206 if (dinfo) {
1207 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1208 &error_fatal);
1211 qdev_init_nofail(dev);
1213 spapr->nvram = (struct sPAPRNVRAM *)dev;
1216 static void spapr_rtc_create(sPAPRMachineState *spapr)
1218 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1220 qdev_init_nofail(dev);
1221 spapr->rtc = dev;
1223 object_property_add_alias(qdev_get_machine(), "rtc-time",
1224 OBJECT(spapr->rtc), "date", NULL);
1227 /* Returns whether we want to use VGA or not */
1228 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1230 switch (vga_interface_type) {
1231 case VGA_NONE:
1232 return false;
1233 case VGA_DEVICE:
1234 return true;
1235 case VGA_STD:
1236 case VGA_VIRTIO:
1237 return pci_vga_init(pci_bus) != NULL;
1238 default:
1239 error_setg(errp,
1240 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1241 return false;
1245 static int spapr_post_load(void *opaque, int version_id)
1247 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1248 int err = 0;
1250 /* In earlier versions, there was no separate qdev for the PAPR
1251 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1252 * So when migrating from those versions, poke the incoming offset
1253 * value into the RTC device */
1254 if (version_id < 3) {
1255 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1258 return err;
1261 static bool version_before_3(void *opaque, int version_id)
1263 return version_id < 3;
1266 static const VMStateDescription vmstate_spapr = {
1267 .name = "spapr",
1268 .version_id = 3,
1269 .minimum_version_id = 1,
1270 .post_load = spapr_post_load,
1271 .fields = (VMStateField[]) {
1272 /* used to be @next_irq */
1273 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1275 /* RTC offset */
1276 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1278 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1279 VMSTATE_END_OF_LIST()
1283 static int htab_save_setup(QEMUFile *f, void *opaque)
1285 sPAPRMachineState *spapr = opaque;
1287 /* "Iteration" header */
1288 qemu_put_be32(f, spapr->htab_shift);
1290 if (spapr->htab) {
1291 spapr->htab_save_index = 0;
1292 spapr->htab_first_pass = true;
1293 } else {
1294 assert(kvm_enabled());
1298 return 0;
1301 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1302 int64_t max_ns)
1304 bool has_timeout = max_ns != -1;
1305 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1306 int index = spapr->htab_save_index;
1307 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1309 assert(spapr->htab_first_pass);
1311 do {
1312 int chunkstart;
1314 /* Consume invalid HPTEs */
1315 while ((index < htabslots)
1316 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1317 index++;
1318 CLEAN_HPTE(HPTE(spapr->htab, index));
1321 /* Consume valid HPTEs */
1322 chunkstart = index;
1323 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1324 && HPTE_VALID(HPTE(spapr->htab, index))) {
1325 index++;
1326 CLEAN_HPTE(HPTE(spapr->htab, index));
1329 if (index > chunkstart) {
1330 int n_valid = index - chunkstart;
1332 qemu_put_be32(f, chunkstart);
1333 qemu_put_be16(f, n_valid);
1334 qemu_put_be16(f, 0);
1335 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1336 HASH_PTE_SIZE_64 * n_valid);
1338 if (has_timeout &&
1339 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1340 break;
1343 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1345 if (index >= htabslots) {
1346 assert(index == htabslots);
1347 index = 0;
1348 spapr->htab_first_pass = false;
1350 spapr->htab_save_index = index;
1353 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1354 int64_t max_ns)
1356 bool final = max_ns < 0;
1357 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1358 int examined = 0, sent = 0;
1359 int index = spapr->htab_save_index;
1360 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1362 assert(!spapr->htab_first_pass);
1364 do {
1365 int chunkstart, invalidstart;
1367 /* Consume non-dirty HPTEs */
1368 while ((index < htabslots)
1369 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1370 index++;
1371 examined++;
1374 chunkstart = index;
1375 /* Consume valid dirty HPTEs */
1376 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1377 && HPTE_DIRTY(HPTE(spapr->htab, index))
1378 && HPTE_VALID(HPTE(spapr->htab, index))) {
1379 CLEAN_HPTE(HPTE(spapr->htab, index));
1380 index++;
1381 examined++;
1384 invalidstart = index;
1385 /* Consume invalid dirty HPTEs */
1386 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1387 && HPTE_DIRTY(HPTE(spapr->htab, index))
1388 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1389 CLEAN_HPTE(HPTE(spapr->htab, index));
1390 index++;
1391 examined++;
1394 if (index > chunkstart) {
1395 int n_valid = invalidstart - chunkstart;
1396 int n_invalid = index - invalidstart;
1398 qemu_put_be32(f, chunkstart);
1399 qemu_put_be16(f, n_valid);
1400 qemu_put_be16(f, n_invalid);
1401 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1402 HASH_PTE_SIZE_64 * n_valid);
1403 sent += index - chunkstart;
1405 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1406 break;
1410 if (examined >= htabslots) {
1411 break;
1414 if (index >= htabslots) {
1415 assert(index == htabslots);
1416 index = 0;
1418 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1420 if (index >= htabslots) {
1421 assert(index == htabslots);
1422 index = 0;
1425 spapr->htab_save_index = index;
1427 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1430 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1431 #define MAX_KVM_BUF_SIZE 2048
1433 static int htab_save_iterate(QEMUFile *f, void *opaque)
1435 sPAPRMachineState *spapr = opaque;
1436 int fd;
1437 int rc = 0;
1439 /* Iteration header */
1440 qemu_put_be32(f, 0);
1442 if (!spapr->htab) {
1443 assert(kvm_enabled());
1445 fd = get_htab_fd(spapr);
1446 if (fd < 0) {
1447 return fd;
1450 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1451 if (rc < 0) {
1452 return rc;
1454 } else if (spapr->htab_first_pass) {
1455 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1456 } else {
1457 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1460 /* End marker */
1461 qemu_put_be32(f, 0);
1462 qemu_put_be16(f, 0);
1463 qemu_put_be16(f, 0);
1465 return rc;
1468 static int htab_save_complete(QEMUFile *f, void *opaque)
1470 sPAPRMachineState *spapr = opaque;
1471 int fd;
1473 /* Iteration header */
1474 qemu_put_be32(f, 0);
1476 if (!spapr->htab) {
1477 int rc;
1479 assert(kvm_enabled());
1481 fd = get_htab_fd(spapr);
1482 if (fd < 0) {
1483 return fd;
1486 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1487 if (rc < 0) {
1488 return rc;
1490 close_htab_fd(spapr);
1491 } else {
1492 if (spapr->htab_first_pass) {
1493 htab_save_first_pass(f, spapr, -1);
1495 htab_save_later_pass(f, spapr, -1);
1498 /* End marker */
1499 qemu_put_be32(f, 0);
1500 qemu_put_be16(f, 0);
1501 qemu_put_be16(f, 0);
1503 return 0;
1506 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1508 sPAPRMachineState *spapr = opaque;
1509 uint32_t section_hdr;
1510 int fd = -1;
1512 if (version_id < 1 || version_id > 1) {
1513 error_report("htab_load() bad version");
1514 return -EINVAL;
1517 section_hdr = qemu_get_be32(f);
1519 if (section_hdr) {
1520 Error *local_err = NULL;
1522 /* First section gives the htab size */
1523 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1524 if (local_err) {
1525 error_report_err(local_err);
1526 return -EINVAL;
1528 return 0;
1531 if (!spapr->htab) {
1532 assert(kvm_enabled());
1534 fd = kvmppc_get_htab_fd(true);
1535 if (fd < 0) {
1536 error_report("Unable to open fd to restore KVM hash table: %s",
1537 strerror(errno));
1541 while (true) {
1542 uint32_t index;
1543 uint16_t n_valid, n_invalid;
1545 index = qemu_get_be32(f);
1546 n_valid = qemu_get_be16(f);
1547 n_invalid = qemu_get_be16(f);
1549 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1550 /* End of Stream */
1551 break;
1554 if ((index + n_valid + n_invalid) >
1555 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1556 /* Bad index in stream */
1557 error_report(
1558 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1559 index, n_valid, n_invalid, spapr->htab_shift);
1560 return -EINVAL;
1563 if (spapr->htab) {
1564 if (n_valid) {
1565 qemu_get_buffer(f, HPTE(spapr->htab, index),
1566 HASH_PTE_SIZE_64 * n_valid);
1568 if (n_invalid) {
1569 memset(HPTE(spapr->htab, index + n_valid), 0,
1570 HASH_PTE_SIZE_64 * n_invalid);
1572 } else {
1573 int rc;
1575 assert(fd >= 0);
1577 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1578 if (rc < 0) {
1579 return rc;
1584 if (!spapr->htab) {
1585 assert(fd >= 0);
1586 close(fd);
1589 return 0;
1592 static SaveVMHandlers savevm_htab_handlers = {
1593 .save_live_setup = htab_save_setup,
1594 .save_live_iterate = htab_save_iterate,
1595 .save_live_complete_precopy = htab_save_complete,
1596 .load_state = htab_load,
1599 static void spapr_boot_set(void *opaque, const char *boot_device,
1600 Error **errp)
1602 MachineState *machine = MACHINE(qdev_get_machine());
1603 machine->boot_order = g_strdup(boot_device);
1607 * Reset routine for LMB DR devices.
1609 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1610 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1611 * when it walks all its children devices. LMB devices reset occurs
1612 * as part of spapr_ppc_reset().
1614 static void spapr_drc_reset(void *opaque)
1616 sPAPRDRConnector *drc = opaque;
1617 DeviceState *d = DEVICE(drc);
1619 if (d) {
1620 device_reset(d);
1624 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1626 MachineState *machine = MACHINE(spapr);
1627 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1628 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1629 int i;
1631 for (i = 0; i < nr_lmbs; i++) {
1632 sPAPRDRConnector *drc;
1633 uint64_t addr;
1635 addr = i * lmb_size + spapr->hotplug_memory.base;
1636 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1637 addr/lmb_size);
1638 qemu_register_reset(spapr_drc_reset, drc);
1643 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1644 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1645 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1647 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1649 int i;
1651 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1652 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1653 " is not aligned to %llu MiB",
1654 machine->ram_size,
1655 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1656 return;
1659 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1660 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1661 " is not aligned to %llu MiB",
1662 machine->ram_size,
1663 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1664 return;
1667 for (i = 0; i < nb_numa_nodes; i++) {
1668 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1669 error_setg(errp,
1670 "Node %d memory size 0x%" PRIx64
1671 " is not aligned to %llu MiB",
1672 i, numa_info[i].node_mem,
1673 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1674 return;
1679 /* pSeries LPAR / sPAPR hardware init */
1680 static void ppc_spapr_init(MachineState *machine)
1682 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1683 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1684 const char *kernel_filename = machine->kernel_filename;
1685 const char *kernel_cmdline = machine->kernel_cmdline;
1686 const char *initrd_filename = machine->initrd_filename;
1687 PCIHostState *phb;
1688 int i;
1689 MemoryRegion *sysmem = get_system_memory();
1690 MemoryRegion *ram = g_new(MemoryRegion, 1);
1691 MemoryRegion *rma_region;
1692 void *rma = NULL;
1693 hwaddr rma_alloc_size;
1694 hwaddr node0_size = spapr_node0_size();
1695 uint32_t initrd_base = 0;
1696 long kernel_size = 0, initrd_size = 0;
1697 long load_limit, fw_size;
1698 bool kernel_le = false;
1699 char *filename;
1700 int smt = kvmppc_smt_threads();
1701 int spapr_cores = smp_cpus / smp_threads;
1702 int spapr_max_cores = max_cpus / smp_threads;
1704 if (smc->dr_cpu_enabled) {
1705 if (smp_cpus % smp_threads) {
1706 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1707 smp_cpus, smp_threads);
1708 exit(1);
1710 if (max_cpus % smp_threads) {
1711 error_report("max_cpus (%u) must be multiple of threads (%u)",
1712 max_cpus, smp_threads);
1713 exit(1);
1717 msi_nonbroken = true;
1719 QLIST_INIT(&spapr->phbs);
1721 cpu_ppc_hypercall = emulate_spapr_hypercall;
1723 /* Allocate RMA if necessary */
1724 rma_alloc_size = kvmppc_alloc_rma(&rma);
1726 if (rma_alloc_size == -1) {
1727 error_report("Unable to create RMA");
1728 exit(1);
1731 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1732 spapr->rma_size = rma_alloc_size;
1733 } else {
1734 spapr->rma_size = node0_size;
1736 /* With KVM, we don't actually know whether KVM supports an
1737 * unbounded RMA (PR KVM) or is limited by the hash table size
1738 * (HV KVM using VRMA), so we always assume the latter
1740 * In that case, we also limit the initial allocations for RTAS
1741 * etc... to 256M since we have no way to know what the VRMA size
1742 * is going to be as it depends on the size of the hash table
1743 * isn't determined yet.
1745 if (kvm_enabled()) {
1746 spapr->vrma_adjust = 1;
1747 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1751 if (spapr->rma_size > node0_size) {
1752 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1753 spapr->rma_size);
1754 exit(1);
1757 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1758 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1760 /* Set up Interrupt Controller before we create the VCPUs */
1761 spapr->icp = xics_system_init(machine,
1762 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1763 XICS_IRQS, &error_fatal);
1765 if (smc->dr_lmb_enabled) {
1766 spapr_validate_node_memory(machine, &error_fatal);
1769 /* init CPUs */
1770 if (machine->cpu_model == NULL) {
1771 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1774 if (smc->dr_cpu_enabled) {
1775 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1777 spapr->cores = g_new0(Object *, spapr_max_cores);
1778 for (i = 0; i < spapr_cores; i++) {
1779 int core_dt_id = i * smt;
1780 Object *core;
1782 if (!object_class_by_name(type)) {
1783 error_report("Unable to find sPAPR CPU Core definition");
1784 exit(1);
1787 core = object_new(type);
1788 object_property_set_int(core, smp_threads, "nr-threads",
1789 &error_fatal);
1790 object_property_set_int(core, core_dt_id, CPU_CORE_PROP_CORE_ID,
1791 &error_fatal);
1792 object_property_set_bool(core, true, "realized", &error_fatal);
1794 g_free(type);
1795 } else {
1796 for (i = 0; i < smp_cpus; i++) {
1797 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1798 if (cpu == NULL) {
1799 error_report("Unable to find PowerPC CPU definition");
1800 exit(1);
1802 spapr_cpu_init(spapr, cpu, &error_fatal);
1806 if (kvm_enabled()) {
1807 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1808 kvmppc_enable_logical_ci_hcalls();
1809 kvmppc_enable_set_mode_hcall();
1812 /* allocate RAM */
1813 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1814 machine->ram_size);
1815 memory_region_add_subregion(sysmem, 0, ram);
1817 if (rma_alloc_size && rma) {
1818 rma_region = g_new(MemoryRegion, 1);
1819 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1820 rma_alloc_size, rma);
1821 vmstate_register_ram_global(rma_region);
1822 memory_region_add_subregion(sysmem, 0, rma_region);
1825 /* initialize hotplug memory address space */
1826 if (machine->ram_size < machine->maxram_size) {
1827 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1829 * Limit the number of hotpluggable memory slots to half the number
1830 * slots that KVM supports, leaving the other half for PCI and other
1831 * devices. However ensure that number of slots doesn't drop below 32.
1833 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1834 SPAPR_MAX_RAM_SLOTS;
1836 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1837 max_memslots = SPAPR_MAX_RAM_SLOTS;
1839 if (machine->ram_slots > max_memslots) {
1840 error_report("Specified number of memory slots %"
1841 PRIu64" exceeds max supported %d",
1842 machine->ram_slots, max_memslots);
1843 exit(1);
1846 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1847 SPAPR_HOTPLUG_MEM_ALIGN);
1848 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1849 "hotplug-memory", hotplug_mem_size);
1850 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1851 &spapr->hotplug_memory.mr);
1854 if (smc->dr_lmb_enabled) {
1855 spapr_create_lmb_dr_connectors(spapr);
1858 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1859 if (!filename) {
1860 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1861 exit(1);
1863 spapr->rtas_size = get_image_size(filename);
1864 if (spapr->rtas_size < 0) {
1865 error_report("Could not get size of LPAR rtas '%s'", filename);
1866 exit(1);
1868 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1869 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1870 error_report("Could not load LPAR rtas '%s'", filename);
1871 exit(1);
1873 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1874 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1875 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1876 exit(1);
1878 g_free(filename);
1880 /* Set up EPOW events infrastructure */
1881 spapr_events_init(spapr);
1883 /* Set up the RTC RTAS interfaces */
1884 spapr_rtc_create(spapr);
1886 /* Set up VIO bus */
1887 spapr->vio_bus = spapr_vio_bus_init();
1889 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1890 if (serial_hds[i]) {
1891 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1895 /* We always have at least the nvram device on VIO */
1896 spapr_create_nvram(spapr);
1898 /* Set up PCI */
1899 spapr_pci_rtas_init();
1901 phb = spapr_create_phb(spapr, 0);
1903 for (i = 0; i < nb_nics; i++) {
1904 NICInfo *nd = &nd_table[i];
1906 if (!nd->model) {
1907 nd->model = g_strdup("ibmveth");
1910 if (strcmp(nd->model, "ibmveth") == 0) {
1911 spapr_vlan_create(spapr->vio_bus, nd);
1912 } else {
1913 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1917 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1918 spapr_vscsi_create(spapr->vio_bus);
1921 /* Graphics */
1922 if (spapr_vga_init(phb->bus, &error_fatal)) {
1923 spapr->has_graphics = true;
1924 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1927 if (machine->usb) {
1928 if (smc->use_ohci_by_default) {
1929 pci_create_simple(phb->bus, -1, "pci-ohci");
1930 } else {
1931 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1934 if (spapr->has_graphics) {
1935 USBBus *usb_bus = usb_bus_find(-1);
1937 usb_create_simple(usb_bus, "usb-kbd");
1938 usb_create_simple(usb_bus, "usb-mouse");
1942 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1943 error_report(
1944 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1945 MIN_RMA_SLOF);
1946 exit(1);
1949 if (kernel_filename) {
1950 uint64_t lowaddr = 0;
1952 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1953 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1954 0, 0);
1955 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1956 kernel_size = load_elf(kernel_filename,
1957 translate_kernel_address, NULL,
1958 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1959 0, 0);
1960 kernel_le = kernel_size > 0;
1962 if (kernel_size < 0) {
1963 error_report("error loading %s: %s",
1964 kernel_filename, load_elf_strerror(kernel_size));
1965 exit(1);
1968 /* load initrd */
1969 if (initrd_filename) {
1970 /* Try to locate the initrd in the gap between the kernel
1971 * and the firmware. Add a bit of space just in case
1973 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1974 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1975 load_limit - initrd_base);
1976 if (initrd_size < 0) {
1977 error_report("could not load initial ram disk '%s'",
1978 initrd_filename);
1979 exit(1);
1981 } else {
1982 initrd_base = 0;
1983 initrd_size = 0;
1987 if (bios_name == NULL) {
1988 bios_name = FW_FILE_NAME;
1990 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1991 if (!filename) {
1992 error_report("Could not find LPAR firmware '%s'", bios_name);
1993 exit(1);
1995 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1996 if (fw_size <= 0) {
1997 error_report("Could not load LPAR firmware '%s'", filename);
1998 exit(1);
2000 g_free(filename);
2002 /* FIXME: Should register things through the MachineState's qdev
2003 * interface, this is a legacy from the sPAPREnvironment structure
2004 * which predated MachineState but had a similar function */
2005 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2006 register_savevm_live(NULL, "spapr/htab", -1, 1,
2007 &savevm_htab_handlers, spapr);
2009 /* Prepare the device tree */
2010 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2011 kernel_size, kernel_le,
2012 kernel_cmdline,
2013 spapr->check_exception_irq);
2014 assert(spapr->fdt_skel != NULL);
2016 /* used by RTAS */
2017 QTAILQ_INIT(&spapr->ccs_list);
2018 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2020 qemu_register_boot_set(spapr_boot_set, spapr);
2023 static int spapr_kvm_type(const char *vm_type)
2025 if (!vm_type) {
2026 return 0;
2029 if (!strcmp(vm_type, "HV")) {
2030 return 1;
2033 if (!strcmp(vm_type, "PR")) {
2034 return 2;
2037 error_report("Unknown kvm-type specified '%s'", vm_type);
2038 exit(1);
2042 * Implementation of an interface to adjust firmware path
2043 * for the bootindex property handling.
2045 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2046 DeviceState *dev)
2048 #define CAST(type, obj, name) \
2049 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2050 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2051 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2053 if (d) {
2054 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2055 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2056 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2058 if (spapr) {
2060 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2061 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2062 * in the top 16 bits of the 64-bit LUN
2064 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2065 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2066 (uint64_t)id << 48);
2067 } else if (virtio) {
2069 * We use SRP luns of the form 01000000 | (target << 8) | lun
2070 * in the top 32 bits of the 64-bit LUN
2071 * Note: the quote above is from SLOF and it is wrong,
2072 * the actual binding is:
2073 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2075 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2076 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2077 (uint64_t)id << 32);
2078 } else if (usb) {
2080 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2081 * in the top 32 bits of the 64-bit LUN
2083 unsigned usb_port = atoi(usb->port->path);
2084 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2085 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2086 (uint64_t)id << 32);
2090 if (phb) {
2091 /* Replace "pci" with "pci@800000020000000" */
2092 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2095 return NULL;
2098 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2100 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2102 return g_strdup(spapr->kvm_type);
2105 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2107 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2109 g_free(spapr->kvm_type);
2110 spapr->kvm_type = g_strdup(value);
2113 static void spapr_machine_initfn(Object *obj)
2115 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2117 spapr->htab_fd = -1;
2118 object_property_add_str(obj, "kvm-type",
2119 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2120 object_property_set_description(obj, "kvm-type",
2121 "Specifies the KVM virtualization mode (HV, PR)",
2122 NULL);
2125 static void spapr_machine_finalizefn(Object *obj)
2127 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2129 g_free(spapr->kvm_type);
2132 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2134 CPUState *cs = arg;
2136 cpu_synchronize_state(cs);
2137 ppc_cpu_do_system_reset(cs);
2140 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2142 CPUState *cs;
2144 CPU_FOREACH(cs) {
2145 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2149 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2150 uint32_t node, Error **errp)
2152 sPAPRDRConnector *drc;
2153 sPAPRDRConnectorClass *drck;
2154 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2155 int i, fdt_offset, fdt_size;
2156 void *fdt;
2158 for (i = 0; i < nr_lmbs; i++) {
2159 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2160 addr/SPAPR_MEMORY_BLOCK_SIZE);
2161 g_assert(drc);
2163 fdt = create_device_tree(&fdt_size);
2164 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2165 SPAPR_MEMORY_BLOCK_SIZE);
2167 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2168 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2169 addr += SPAPR_MEMORY_BLOCK_SIZE;
2171 /* send hotplug notification to the
2172 * guest only in case of hotplugged memory
2174 if (dev->hotplugged) {
2175 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2179 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2180 uint32_t node, Error **errp)
2182 Error *local_err = NULL;
2183 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2184 PCDIMMDevice *dimm = PC_DIMM(dev);
2185 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2186 MemoryRegion *mr = ddc->get_memory_region(dimm);
2187 uint64_t align = memory_region_get_alignment(mr);
2188 uint64_t size = memory_region_size(mr);
2189 uint64_t addr;
2191 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2192 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2193 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2194 goto out;
2197 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2198 if (local_err) {
2199 goto out;
2202 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2203 if (local_err) {
2204 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2205 goto out;
2208 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2210 out:
2211 error_propagate(errp, local_err);
2214 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2215 DeviceState *dev, Error **errp)
2217 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2219 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2220 int node;
2222 if (!smc->dr_lmb_enabled) {
2223 error_setg(errp, "Memory hotplug not supported for this machine");
2224 return;
2226 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2227 if (*errp) {
2228 return;
2230 if (node < 0 || node >= MAX_NODES) {
2231 error_setg(errp, "Invaild node %d", node);
2232 return;
2236 * Currently PowerPC kernel doesn't allow hot-adding memory to
2237 * memory-less node, but instead will silently add the memory
2238 * to the first node that has some memory. This causes two
2239 * unexpected behaviours for the user.
2241 * - Memory gets hotplugged to a different node than what the user
2242 * specified.
2243 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2244 * to memory-less node, a reboot will set things accordingly
2245 * and the previously hotplugged memory now ends in the right node.
2246 * This appears as if some memory moved from one node to another.
2248 * So until kernel starts supporting memory hotplug to memory-less
2249 * nodes, just prevent such attempts upfront in QEMU.
2251 if (nb_numa_nodes && !numa_info[node].node_mem) {
2252 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2253 node);
2254 return;
2257 spapr_memory_plug(hotplug_dev, dev, node, errp);
2261 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2262 DeviceState *dev, Error **errp)
2264 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2265 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2269 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2270 DeviceState *dev, Error **errp)
2272 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2273 spapr_core_pre_plug(hotplug_dev, dev, errp);
2277 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2278 DeviceState *dev)
2280 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2281 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2282 return HOTPLUG_HANDLER(machine);
2284 return NULL;
2287 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2289 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2290 * socket means much for the paravirtualized PAPR platform) */
2291 return cpu_index / smp_threads / smp_cores;
2294 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2296 MachineClass *mc = MACHINE_CLASS(oc);
2297 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2298 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2299 NMIClass *nc = NMI_CLASS(oc);
2300 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2302 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2305 * We set up the default / latest behaviour here. The class_init
2306 * functions for the specific versioned machine types can override
2307 * these details for backwards compatibility
2309 mc->init = ppc_spapr_init;
2310 mc->reset = ppc_spapr_reset;
2311 mc->block_default_type = IF_SCSI;
2312 mc->max_cpus = MAX_CPUMASK_BITS;
2313 mc->no_parallel = 1;
2314 mc->default_boot_order = "";
2315 mc->default_ram_size = 512 * M_BYTE;
2316 mc->kvm_type = spapr_kvm_type;
2317 mc->has_dynamic_sysbus = true;
2318 mc->pci_allow_0_address = true;
2319 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2320 hc->pre_plug = spapr_machine_device_pre_plug;
2321 hc->plug = spapr_machine_device_plug;
2322 hc->unplug = spapr_machine_device_unplug;
2323 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2325 smc->dr_lmb_enabled = true;
2326 smc->dr_cpu_enabled = true;
2327 fwc->get_dev_path = spapr_get_fw_dev_path;
2328 nc->nmi_monitor_handler = spapr_nmi;
2331 static const TypeInfo spapr_machine_info = {
2332 .name = TYPE_SPAPR_MACHINE,
2333 .parent = TYPE_MACHINE,
2334 .abstract = true,
2335 .instance_size = sizeof(sPAPRMachineState),
2336 .instance_init = spapr_machine_initfn,
2337 .instance_finalize = spapr_machine_finalizefn,
2338 .class_size = sizeof(sPAPRMachineClass),
2339 .class_init = spapr_machine_class_init,
2340 .interfaces = (InterfaceInfo[]) {
2341 { TYPE_FW_PATH_PROVIDER },
2342 { TYPE_NMI },
2343 { TYPE_HOTPLUG_HANDLER },
2348 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2349 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2350 void *data) \
2352 MachineClass *mc = MACHINE_CLASS(oc); \
2353 spapr_machine_##suffix##_class_options(mc); \
2354 if (latest) { \
2355 mc->alias = "pseries"; \
2356 mc->is_default = 1; \
2359 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2361 MachineState *machine = MACHINE(obj); \
2362 spapr_machine_##suffix##_instance_options(machine); \
2364 static const TypeInfo spapr_machine_##suffix##_info = { \
2365 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2366 .parent = TYPE_SPAPR_MACHINE, \
2367 .class_init = spapr_machine_##suffix##_class_init, \
2368 .instance_init = spapr_machine_##suffix##_instance_init, \
2369 }; \
2370 static void spapr_machine_register_##suffix(void) \
2372 type_register(&spapr_machine_##suffix##_info); \
2374 type_init(spapr_machine_register_##suffix)
2377 * pseries-2.7
2379 static void spapr_machine_2_7_instance_options(MachineState *machine)
2383 static void spapr_machine_2_7_class_options(MachineClass *mc)
2385 /* Defaults for the latest behaviour inherited from the base class */
2388 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2391 * pseries-2.6
2393 #define SPAPR_COMPAT_2_6 \
2394 HW_COMPAT_2_6
2396 static void spapr_machine_2_6_instance_options(MachineState *machine)
2400 static void spapr_machine_2_6_class_options(MachineClass *mc)
2402 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2404 spapr_machine_2_7_class_options(mc);
2405 smc->dr_cpu_enabled = false;
2406 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2409 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2412 * pseries-2.5
2414 #define SPAPR_COMPAT_2_5 \
2415 HW_COMPAT_2_5 \
2417 .driver = "spapr-vlan", \
2418 .property = "use-rx-buffer-pools", \
2419 .value = "off", \
2422 static void spapr_machine_2_5_instance_options(MachineState *machine)
2426 static void spapr_machine_2_5_class_options(MachineClass *mc)
2428 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2430 spapr_machine_2_6_class_options(mc);
2431 smc->use_ohci_by_default = true;
2432 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2435 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2438 * pseries-2.4
2440 #define SPAPR_COMPAT_2_4 \
2441 HW_COMPAT_2_4
2443 static void spapr_machine_2_4_instance_options(MachineState *machine)
2445 spapr_machine_2_5_instance_options(machine);
2448 static void spapr_machine_2_4_class_options(MachineClass *mc)
2450 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2452 spapr_machine_2_5_class_options(mc);
2453 smc->dr_lmb_enabled = false;
2454 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2457 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2460 * pseries-2.3
2462 #define SPAPR_COMPAT_2_3 \
2463 HW_COMPAT_2_3 \
2465 .driver = "spapr-pci-host-bridge",\
2466 .property = "dynamic-reconfiguration",\
2467 .value = "off",\
2470 static void spapr_machine_2_3_instance_options(MachineState *machine)
2472 spapr_machine_2_4_instance_options(machine);
2473 savevm_skip_section_footers();
2474 global_state_set_optional();
2475 savevm_skip_configuration();
2478 static void spapr_machine_2_3_class_options(MachineClass *mc)
2480 spapr_machine_2_4_class_options(mc);
2481 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2483 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2486 * pseries-2.2
2489 #define SPAPR_COMPAT_2_2 \
2490 HW_COMPAT_2_2 \
2492 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2493 .property = "mem_win_size",\
2494 .value = "0x20000000",\
2497 static void spapr_machine_2_2_instance_options(MachineState *machine)
2499 spapr_machine_2_3_instance_options(machine);
2500 machine->suppress_vmdesc = true;
2503 static void spapr_machine_2_2_class_options(MachineClass *mc)
2505 spapr_machine_2_3_class_options(mc);
2506 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2508 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2511 * pseries-2.1
2513 #define SPAPR_COMPAT_2_1 \
2514 HW_COMPAT_2_1
2516 static void spapr_machine_2_1_instance_options(MachineState *machine)
2518 spapr_machine_2_2_instance_options(machine);
2521 static void spapr_machine_2_1_class_options(MachineClass *mc)
2523 spapr_machine_2_2_class_options(mc);
2524 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2526 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2528 static void spapr_machine_register_types(void)
2530 type_register_static(&spapr_machine_info);
2533 type_init(spapr_machine_register_types)