RISC-V GDB Stub
[qemu.git] / linux-user / elfload.c
blobe3689c658af3e281765a5978696c44aba1e579cc
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
369 unsigned long real_start, test_page_addr;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr >= guest_base
380 && test_page_addr < (guest_base + guest_size)) {
381 return -1;
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 return hwcaps;
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
468 #undef GET_FEATURE
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
494 int i;
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 ARM_HWCAP_A64_ATOMICS = 1 << 8,
516 ARM_HWCAP_A64_FPHP = 1 << 9,
517 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
518 ARM_HWCAP_A64_CPUID = 1 << 11,
519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
520 ARM_HWCAP_A64_JSCVT = 1 << 13,
521 ARM_HWCAP_A64_FCMA = 1 << 14,
522 ARM_HWCAP_A64_LRCPC = 1 << 15,
523 ARM_HWCAP_A64_DCPOP = 1 << 16,
524 ARM_HWCAP_A64_SHA3 = 1 << 17,
525 ARM_HWCAP_A64_SM3 = 1 << 18,
526 ARM_HWCAP_A64_SM4 = 1 << 19,
527 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
528 ARM_HWCAP_A64_SHA512 = 1 << 21,
529 ARM_HWCAP_A64_SVE = 1 << 22,
532 #define ELF_HWCAP get_elf_hwcap()
534 static uint32_t get_elf_hwcap(void)
536 ARMCPU *cpu = ARM_CPU(thread_cpu);
537 uint32_t hwcaps = 0;
539 hwcaps |= ARM_HWCAP_A64_FP;
540 hwcaps |= ARM_HWCAP_A64_ASIMD;
542 /* probe for the extra features */
543 #define GET_FEATURE(feat, hwcap) \
544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
554 GET_FEATURE(ARM_FEATURE_V8_FP16,
555 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
556 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
557 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
558 #undef GET_FEATURE
560 return hwcaps;
563 #endif /* not TARGET_AARCH64 */
564 #endif /* TARGET_ARM */
566 #ifdef TARGET_UNICORE32
568 #define ELF_START_MMAP 0x80000000
570 #define ELF_CLASS ELFCLASS32
571 #define ELF_DATA ELFDATA2LSB
572 #define ELF_ARCH EM_UNICORE32
574 static inline void init_thread(struct target_pt_regs *regs,
575 struct image_info *infop)
577 abi_long stack = infop->start_stack;
578 memset(regs, 0, sizeof(*regs));
579 regs->UC32_REG_asr = 0x10;
580 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
581 regs->UC32_REG_sp = infop->start_stack;
582 /* FIXME - what to for failure of get_user()? */
583 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
584 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
585 /* XXX: it seems that r0 is zeroed after ! */
586 regs->UC32_REG_00 = 0;
589 #define ELF_NREG 34
590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
592 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
594 (*regs)[0] = env->regs[0];
595 (*regs)[1] = env->regs[1];
596 (*regs)[2] = env->regs[2];
597 (*regs)[3] = env->regs[3];
598 (*regs)[4] = env->regs[4];
599 (*regs)[5] = env->regs[5];
600 (*regs)[6] = env->regs[6];
601 (*regs)[7] = env->regs[7];
602 (*regs)[8] = env->regs[8];
603 (*regs)[9] = env->regs[9];
604 (*regs)[10] = env->regs[10];
605 (*regs)[11] = env->regs[11];
606 (*regs)[12] = env->regs[12];
607 (*regs)[13] = env->regs[13];
608 (*regs)[14] = env->regs[14];
609 (*regs)[15] = env->regs[15];
610 (*regs)[16] = env->regs[16];
611 (*regs)[17] = env->regs[17];
612 (*regs)[18] = env->regs[18];
613 (*regs)[19] = env->regs[19];
614 (*regs)[20] = env->regs[20];
615 (*regs)[21] = env->regs[21];
616 (*regs)[22] = env->regs[22];
617 (*regs)[23] = env->regs[23];
618 (*regs)[24] = env->regs[24];
619 (*regs)[25] = env->regs[25];
620 (*regs)[26] = env->regs[26];
621 (*regs)[27] = env->regs[27];
622 (*regs)[28] = env->regs[28];
623 (*regs)[29] = env->regs[29];
624 (*regs)[30] = env->regs[30];
625 (*regs)[31] = env->regs[31];
627 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
628 (*regs)[33] = env->regs[0]; /* XXX */
631 #define USE_ELF_CORE_DUMP
632 #define ELF_EXEC_PAGESIZE 4096
634 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
636 #endif
638 #ifdef TARGET_SPARC
639 #ifdef TARGET_SPARC64
641 #define ELF_START_MMAP 0x80000000
642 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
643 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
644 #ifndef TARGET_ABI32
645 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
646 #else
647 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
648 #endif
650 #define ELF_CLASS ELFCLASS64
651 #define ELF_ARCH EM_SPARCV9
653 #define STACK_BIAS 2047
655 static inline void init_thread(struct target_pt_regs *regs,
656 struct image_info *infop)
658 #ifndef TARGET_ABI32
659 regs->tstate = 0;
660 #endif
661 regs->pc = infop->entry;
662 regs->npc = regs->pc + 4;
663 regs->y = 0;
664 #ifdef TARGET_ABI32
665 regs->u_regs[14] = infop->start_stack - 16 * 4;
666 #else
667 if (personality(infop->personality) == PER_LINUX32)
668 regs->u_regs[14] = infop->start_stack - 16 * 4;
669 else
670 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
671 #endif
674 #else
675 #define ELF_START_MMAP 0x80000000
676 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
677 | HWCAP_SPARC_MULDIV)
679 #define ELF_CLASS ELFCLASS32
680 #define ELF_ARCH EM_SPARC
682 static inline void init_thread(struct target_pt_regs *regs,
683 struct image_info *infop)
685 regs->psr = 0;
686 regs->pc = infop->entry;
687 regs->npc = regs->pc + 4;
688 regs->y = 0;
689 regs->u_regs[14] = infop->start_stack - 16 * 4;
692 #endif
693 #endif
695 #ifdef TARGET_PPC
697 #define ELF_MACHINE PPC_ELF_MACHINE
698 #define ELF_START_MMAP 0x80000000
700 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
702 #define elf_check_arch(x) ( (x) == EM_PPC64 )
704 #define ELF_CLASS ELFCLASS64
706 #else
708 #define ELF_CLASS ELFCLASS32
710 #endif
712 #define ELF_ARCH EM_PPC
714 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
715 See arch/powerpc/include/asm/cputable.h. */
716 enum {
717 QEMU_PPC_FEATURE_32 = 0x80000000,
718 QEMU_PPC_FEATURE_64 = 0x40000000,
719 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
720 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
721 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
722 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
723 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
724 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
725 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
726 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
727 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
728 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
729 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
730 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
731 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
732 QEMU_PPC_FEATURE_CELL = 0x00010000,
733 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
734 QEMU_PPC_FEATURE_SMT = 0x00004000,
735 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
736 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
737 QEMU_PPC_FEATURE_PA6T = 0x00000800,
738 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
739 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
740 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
741 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
742 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
744 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
745 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
747 /* Feature definitions in AT_HWCAP2. */
748 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
749 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
750 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
751 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
752 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
753 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
756 #define ELF_HWCAP get_elf_hwcap()
758 static uint32_t get_elf_hwcap(void)
760 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
761 uint32_t features = 0;
763 /* We don't have to be terribly complete here; the high points are
764 Altivec/FP/SPE support. Anything else is just a bonus. */
765 #define GET_FEATURE(flag, feature) \
766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flags, feature) \
768 do { \
769 if ((cpu->env.insns_flags2 & flags) == flags) { \
770 features |= feature; \
772 } while (0)
773 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
774 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
775 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
776 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
777 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
778 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
779 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
780 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
781 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
782 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
783 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
784 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
785 QEMU_PPC_FEATURE_ARCH_2_06);
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
789 return features;
792 #define ELF_HWCAP2 get_elf_hwcap2()
794 static uint32_t get_elf_hwcap2(void)
796 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
797 uint32_t features = 0;
799 #define GET_FEATURE(flag, feature) \
800 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
801 #define GET_FEATURE2(flag, feature) \
802 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
804 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
805 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
806 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
807 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
809 #undef GET_FEATURE
810 #undef GET_FEATURE2
812 return features;
816 * The requirements here are:
817 * - keep the final alignment of sp (sp & 0xf)
818 * - make sure the 32-bit value at the first 16 byte aligned position of
819 * AUXV is greater than 16 for glibc compatibility.
820 * AT_IGNOREPPC is used for that.
821 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
822 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
824 #define DLINFO_ARCH_ITEMS 5
825 #define ARCH_DLINFO \
826 do { \
827 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
828 /* \
829 * Handle glibc compatibility: these magic entries must \
830 * be at the lowest addresses in the final auxv. \
831 */ \
832 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
833 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
834 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
835 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
836 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
837 } while (0)
839 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
841 _regs->gpr[1] = infop->start_stack;
842 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
843 if (get_ppc64_abi(infop) < 2) {
844 uint64_t val;
845 get_user_u64(val, infop->entry + 8);
846 _regs->gpr[2] = val + infop->load_bias;
847 get_user_u64(val, infop->entry);
848 infop->entry = val + infop->load_bias;
849 } else {
850 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
852 #endif
853 _regs->nip = infop->entry;
856 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
857 #define ELF_NREG 48
858 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
860 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
862 int i;
863 target_ulong ccr = 0;
865 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
866 (*regs)[i] = tswapreg(env->gpr[i]);
869 (*regs)[32] = tswapreg(env->nip);
870 (*regs)[33] = tswapreg(env->msr);
871 (*regs)[35] = tswapreg(env->ctr);
872 (*regs)[36] = tswapreg(env->lr);
873 (*regs)[37] = tswapreg(env->xer);
875 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
876 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
878 (*regs)[38] = tswapreg(ccr);
881 #define USE_ELF_CORE_DUMP
882 #define ELF_EXEC_PAGESIZE 4096
884 #endif
886 #ifdef TARGET_MIPS
888 #define ELF_START_MMAP 0x80000000
890 #ifdef TARGET_MIPS64
891 #define ELF_CLASS ELFCLASS64
892 #else
893 #define ELF_CLASS ELFCLASS32
894 #endif
895 #define ELF_ARCH EM_MIPS
897 static inline void init_thread(struct target_pt_regs *regs,
898 struct image_info *infop)
900 regs->cp0_status = 2 << CP0St_KSU;
901 regs->cp0_epc = infop->entry;
902 regs->regs[29] = infop->start_stack;
905 /* See linux kernel: arch/mips/include/asm/elf.h. */
906 #define ELF_NREG 45
907 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
909 /* See linux kernel: arch/mips/include/asm/reg.h. */
910 enum {
911 #ifdef TARGET_MIPS64
912 TARGET_EF_R0 = 0,
913 #else
914 TARGET_EF_R0 = 6,
915 #endif
916 TARGET_EF_R26 = TARGET_EF_R0 + 26,
917 TARGET_EF_R27 = TARGET_EF_R0 + 27,
918 TARGET_EF_LO = TARGET_EF_R0 + 32,
919 TARGET_EF_HI = TARGET_EF_R0 + 33,
920 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
921 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
922 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
923 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
926 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
927 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
929 int i;
931 for (i = 0; i < TARGET_EF_R0; i++) {
932 (*regs)[i] = 0;
934 (*regs)[TARGET_EF_R0] = 0;
936 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
937 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
940 (*regs)[TARGET_EF_R26] = 0;
941 (*regs)[TARGET_EF_R27] = 0;
942 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
943 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
944 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
945 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
946 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
947 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
950 #define USE_ELF_CORE_DUMP
951 #define ELF_EXEC_PAGESIZE 4096
953 #endif /* TARGET_MIPS */
955 #ifdef TARGET_MICROBLAZE
957 #define ELF_START_MMAP 0x80000000
959 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
961 #define ELF_CLASS ELFCLASS32
962 #define ELF_ARCH EM_MICROBLAZE
964 static inline void init_thread(struct target_pt_regs *regs,
965 struct image_info *infop)
967 regs->pc = infop->entry;
968 regs->r1 = infop->start_stack;
972 #define ELF_EXEC_PAGESIZE 4096
974 #define USE_ELF_CORE_DUMP
975 #define ELF_NREG 38
976 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
978 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
979 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
981 int i, pos = 0;
983 for (i = 0; i < 32; i++) {
984 (*regs)[pos++] = tswapreg(env->regs[i]);
987 for (i = 0; i < 6; i++) {
988 (*regs)[pos++] = tswapreg(env->sregs[i]);
992 #endif /* TARGET_MICROBLAZE */
994 #ifdef TARGET_NIOS2
996 #define ELF_START_MMAP 0x80000000
998 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1000 #define ELF_CLASS ELFCLASS32
1001 #define ELF_ARCH EM_ALTERA_NIOS2
1003 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1005 regs->ea = infop->entry;
1006 regs->sp = infop->start_stack;
1007 regs->estatus = 0x3;
1010 #define ELF_EXEC_PAGESIZE 4096
1012 #define USE_ELF_CORE_DUMP
1013 #define ELF_NREG 49
1014 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1016 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1017 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1018 const CPUNios2State *env)
1020 int i;
1022 (*regs)[0] = -1;
1023 for (i = 1; i < 8; i++) /* r0-r7 */
1024 (*regs)[i] = tswapreg(env->regs[i + 7]);
1026 for (i = 8; i < 16; i++) /* r8-r15 */
1027 (*regs)[i] = tswapreg(env->regs[i - 8]);
1029 for (i = 16; i < 24; i++) /* r16-r23 */
1030 (*regs)[i] = tswapreg(env->regs[i + 7]);
1031 (*regs)[24] = -1; /* R_ET */
1032 (*regs)[25] = -1; /* R_BT */
1033 (*regs)[26] = tswapreg(env->regs[R_GP]);
1034 (*regs)[27] = tswapreg(env->regs[R_SP]);
1035 (*regs)[28] = tswapreg(env->regs[R_FP]);
1036 (*regs)[29] = tswapreg(env->regs[R_EA]);
1037 (*regs)[30] = -1; /* R_SSTATUS */
1038 (*regs)[31] = tswapreg(env->regs[R_RA]);
1040 (*regs)[32] = tswapreg(env->regs[R_PC]);
1042 (*regs)[33] = -1; /* R_STATUS */
1043 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1045 for (i = 35; i < 49; i++) /* ... */
1046 (*regs)[i] = -1;
1049 #endif /* TARGET_NIOS2 */
1051 #ifdef TARGET_OPENRISC
1053 #define ELF_START_MMAP 0x08000000
1055 #define ELF_ARCH EM_OPENRISC
1056 #define ELF_CLASS ELFCLASS32
1057 #define ELF_DATA ELFDATA2MSB
1059 static inline void init_thread(struct target_pt_regs *regs,
1060 struct image_info *infop)
1062 regs->pc = infop->entry;
1063 regs->gpr[1] = infop->start_stack;
1066 #define USE_ELF_CORE_DUMP
1067 #define ELF_EXEC_PAGESIZE 8192
1069 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1070 #define ELF_NREG 34 /* gprs and pc, sr */
1071 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1073 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1074 const CPUOpenRISCState *env)
1076 int i;
1078 for (i = 0; i < 32; i++) {
1079 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1081 (*regs)[32] = tswapreg(env->pc);
1082 (*regs)[33] = tswapreg(cpu_get_sr(env));
1084 #define ELF_HWCAP 0
1085 #define ELF_PLATFORM NULL
1087 #endif /* TARGET_OPENRISC */
1089 #ifdef TARGET_SH4
1091 #define ELF_START_MMAP 0x80000000
1093 #define ELF_CLASS ELFCLASS32
1094 #define ELF_ARCH EM_SH
1096 static inline void init_thread(struct target_pt_regs *regs,
1097 struct image_info *infop)
1099 /* Check other registers XXXXX */
1100 regs->pc = infop->entry;
1101 regs->regs[15] = infop->start_stack;
1104 /* See linux kernel: arch/sh/include/asm/elf.h. */
1105 #define ELF_NREG 23
1106 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1108 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1109 enum {
1110 TARGET_REG_PC = 16,
1111 TARGET_REG_PR = 17,
1112 TARGET_REG_SR = 18,
1113 TARGET_REG_GBR = 19,
1114 TARGET_REG_MACH = 20,
1115 TARGET_REG_MACL = 21,
1116 TARGET_REG_SYSCALL = 22
1119 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1120 const CPUSH4State *env)
1122 int i;
1124 for (i = 0; i < 16; i++) {
1125 (*regs)[i] = tswapreg(env->gregs[i]);
1128 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1129 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1130 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1131 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1132 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1133 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1134 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1137 #define USE_ELF_CORE_DUMP
1138 #define ELF_EXEC_PAGESIZE 4096
1140 enum {
1141 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1142 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1143 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1144 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1145 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1146 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1147 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1148 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1149 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1150 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1153 #define ELF_HWCAP get_elf_hwcap()
1155 static uint32_t get_elf_hwcap(void)
1157 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1158 uint32_t hwcap = 0;
1160 hwcap |= SH_CPU_HAS_FPU;
1162 if (cpu->env.features & SH_FEATURE_SH4A) {
1163 hwcap |= SH_CPU_HAS_LLSC;
1166 return hwcap;
1169 #endif
1171 #ifdef TARGET_CRIS
1173 #define ELF_START_MMAP 0x80000000
1175 #define ELF_CLASS ELFCLASS32
1176 #define ELF_ARCH EM_CRIS
1178 static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
1181 regs->erp = infop->entry;
1184 #define ELF_EXEC_PAGESIZE 8192
1186 #endif
1188 #ifdef TARGET_M68K
1190 #define ELF_START_MMAP 0x80000000
1192 #define ELF_CLASS ELFCLASS32
1193 #define ELF_ARCH EM_68K
1195 /* ??? Does this need to do anything?
1196 #define ELF_PLAT_INIT(_r) */
1198 static inline void init_thread(struct target_pt_regs *regs,
1199 struct image_info *infop)
1201 regs->usp = infop->start_stack;
1202 regs->sr = 0;
1203 regs->pc = infop->entry;
1206 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1207 #define ELF_NREG 20
1208 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1210 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1212 (*regs)[0] = tswapreg(env->dregs[1]);
1213 (*regs)[1] = tswapreg(env->dregs[2]);
1214 (*regs)[2] = tswapreg(env->dregs[3]);
1215 (*regs)[3] = tswapreg(env->dregs[4]);
1216 (*regs)[4] = tswapreg(env->dregs[5]);
1217 (*regs)[5] = tswapreg(env->dregs[6]);
1218 (*regs)[6] = tswapreg(env->dregs[7]);
1219 (*regs)[7] = tswapreg(env->aregs[0]);
1220 (*regs)[8] = tswapreg(env->aregs[1]);
1221 (*regs)[9] = tswapreg(env->aregs[2]);
1222 (*regs)[10] = tswapreg(env->aregs[3]);
1223 (*regs)[11] = tswapreg(env->aregs[4]);
1224 (*regs)[12] = tswapreg(env->aregs[5]);
1225 (*regs)[13] = tswapreg(env->aregs[6]);
1226 (*regs)[14] = tswapreg(env->dregs[0]);
1227 (*regs)[15] = tswapreg(env->aregs[7]);
1228 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1229 (*regs)[17] = tswapreg(env->sr);
1230 (*regs)[18] = tswapreg(env->pc);
1231 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1234 #define USE_ELF_CORE_DUMP
1235 #define ELF_EXEC_PAGESIZE 8192
1237 #endif
1239 #ifdef TARGET_ALPHA
1241 #define ELF_START_MMAP (0x30000000000ULL)
1243 #define ELF_CLASS ELFCLASS64
1244 #define ELF_ARCH EM_ALPHA
1246 static inline void init_thread(struct target_pt_regs *regs,
1247 struct image_info *infop)
1249 regs->pc = infop->entry;
1250 regs->ps = 8;
1251 regs->usp = infop->start_stack;
1254 #define ELF_EXEC_PAGESIZE 8192
1256 #endif /* TARGET_ALPHA */
1258 #ifdef TARGET_S390X
1260 #define ELF_START_MMAP (0x20000000000ULL)
1262 #define ELF_CLASS ELFCLASS64
1263 #define ELF_DATA ELFDATA2MSB
1264 #define ELF_ARCH EM_S390
1266 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1268 regs->psw.addr = infop->entry;
1269 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1270 regs->gprs[15] = infop->start_stack;
1273 #endif /* TARGET_S390X */
1275 #ifdef TARGET_TILEGX
1277 /* 42 bits real used address, a half for user mode */
1278 #define ELF_START_MMAP (0x00000020000000000ULL)
1280 #define elf_check_arch(x) ((x) == EM_TILEGX)
1282 #define ELF_CLASS ELFCLASS64
1283 #define ELF_DATA ELFDATA2LSB
1284 #define ELF_ARCH EM_TILEGX
1286 static inline void init_thread(struct target_pt_regs *regs,
1287 struct image_info *infop)
1289 regs->pc = infop->entry;
1290 regs->sp = infop->start_stack;
1294 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1296 #endif /* TARGET_TILEGX */
1298 #ifdef TARGET_HPPA
1300 #define ELF_START_MMAP 0x80000000
1301 #define ELF_CLASS ELFCLASS32
1302 #define ELF_ARCH EM_PARISC
1303 #define ELF_PLATFORM "PARISC"
1304 #define STACK_GROWS_DOWN 0
1305 #define STACK_ALIGNMENT 64
1307 static inline void init_thread(struct target_pt_regs *regs,
1308 struct image_info *infop)
1310 regs->iaoq[0] = infop->entry;
1311 regs->iaoq[1] = infop->entry + 4;
1312 regs->gr[23] = 0;
1313 regs->gr[24] = infop->arg_start;
1314 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1315 /* The top-of-stack contains a linkage buffer. */
1316 regs->gr[30] = infop->start_stack + 64;
1317 regs->gr[31] = infop->entry;
1320 #endif /* TARGET_HPPA */
1322 #ifndef ELF_PLATFORM
1323 #define ELF_PLATFORM (NULL)
1324 #endif
1326 #ifndef ELF_MACHINE
1327 #define ELF_MACHINE ELF_ARCH
1328 #endif
1330 #ifndef elf_check_arch
1331 #define elf_check_arch(x) ((x) == ELF_ARCH)
1332 #endif
1334 #ifndef ELF_HWCAP
1335 #define ELF_HWCAP 0
1336 #endif
1338 #ifndef STACK_GROWS_DOWN
1339 #define STACK_GROWS_DOWN 1
1340 #endif
1342 #ifndef STACK_ALIGNMENT
1343 #define STACK_ALIGNMENT 16
1344 #endif
1346 #ifdef TARGET_ABI32
1347 #undef ELF_CLASS
1348 #define ELF_CLASS ELFCLASS32
1349 #undef bswaptls
1350 #define bswaptls(ptr) bswap32s(ptr)
1351 #endif
1353 #include "elf.h"
1355 struct exec
1357 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1358 unsigned int a_text; /* length of text, in bytes */
1359 unsigned int a_data; /* length of data, in bytes */
1360 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1361 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1362 unsigned int a_entry; /* start address */
1363 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1364 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1368 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1369 #define OMAGIC 0407
1370 #define NMAGIC 0410
1371 #define ZMAGIC 0413
1372 #define QMAGIC 0314
1374 /* Necessary parameters */
1375 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1376 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1377 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1378 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1380 #define DLINFO_ITEMS 15
1382 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1384 memcpy(to, from, n);
1387 #ifdef BSWAP_NEEDED
1388 static void bswap_ehdr(struct elfhdr *ehdr)
1390 bswap16s(&ehdr->e_type); /* Object file type */
1391 bswap16s(&ehdr->e_machine); /* Architecture */
1392 bswap32s(&ehdr->e_version); /* Object file version */
1393 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1394 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1395 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1396 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1397 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1398 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1399 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1400 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1401 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1402 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1405 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1407 int i;
1408 for (i = 0; i < phnum; ++i, ++phdr) {
1409 bswap32s(&phdr->p_type); /* Segment type */
1410 bswap32s(&phdr->p_flags); /* Segment flags */
1411 bswaptls(&phdr->p_offset); /* Segment file offset */
1412 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1413 bswaptls(&phdr->p_paddr); /* Segment physical address */
1414 bswaptls(&phdr->p_filesz); /* Segment size in file */
1415 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1416 bswaptls(&phdr->p_align); /* Segment alignment */
1420 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1422 int i;
1423 for (i = 0; i < shnum; ++i, ++shdr) {
1424 bswap32s(&shdr->sh_name);
1425 bswap32s(&shdr->sh_type);
1426 bswaptls(&shdr->sh_flags);
1427 bswaptls(&shdr->sh_addr);
1428 bswaptls(&shdr->sh_offset);
1429 bswaptls(&shdr->sh_size);
1430 bswap32s(&shdr->sh_link);
1431 bswap32s(&shdr->sh_info);
1432 bswaptls(&shdr->sh_addralign);
1433 bswaptls(&shdr->sh_entsize);
1437 static void bswap_sym(struct elf_sym *sym)
1439 bswap32s(&sym->st_name);
1440 bswaptls(&sym->st_value);
1441 bswaptls(&sym->st_size);
1442 bswap16s(&sym->st_shndx);
1444 #else
1445 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1446 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1447 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1448 static inline void bswap_sym(struct elf_sym *sym) { }
1449 #endif
1451 #ifdef USE_ELF_CORE_DUMP
1452 static int elf_core_dump(int, const CPUArchState *);
1453 #endif /* USE_ELF_CORE_DUMP */
1454 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1456 /* Verify the portions of EHDR within E_IDENT for the target.
1457 This can be performed before bswapping the entire header. */
1458 static bool elf_check_ident(struct elfhdr *ehdr)
1460 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1461 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1462 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1463 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1464 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1465 && ehdr->e_ident[EI_DATA] == ELF_DATA
1466 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1469 /* Verify the portions of EHDR outside of E_IDENT for the target.
1470 This has to wait until after bswapping the header. */
1471 static bool elf_check_ehdr(struct elfhdr *ehdr)
1473 return (elf_check_arch(ehdr->e_machine)
1474 && ehdr->e_ehsize == sizeof(struct elfhdr)
1475 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1476 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1480 * 'copy_elf_strings()' copies argument/envelope strings from user
1481 * memory to free pages in kernel mem. These are in a format ready
1482 * to be put directly into the top of new user memory.
1485 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1486 abi_ulong p, abi_ulong stack_limit)
1488 char *tmp;
1489 int len, i;
1490 abi_ulong top = p;
1492 if (!p) {
1493 return 0; /* bullet-proofing */
1496 if (STACK_GROWS_DOWN) {
1497 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1498 for (i = argc - 1; i >= 0; --i) {
1499 tmp = argv[i];
1500 if (!tmp) {
1501 fprintf(stderr, "VFS: argc is wrong");
1502 exit(-1);
1504 len = strlen(tmp) + 1;
1505 tmp += len;
1507 if (len > (p - stack_limit)) {
1508 return 0;
1510 while (len) {
1511 int bytes_to_copy = (len > offset) ? offset : len;
1512 tmp -= bytes_to_copy;
1513 p -= bytes_to_copy;
1514 offset -= bytes_to_copy;
1515 len -= bytes_to_copy;
1517 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1519 if (offset == 0) {
1520 memcpy_to_target(p, scratch, top - p);
1521 top = p;
1522 offset = TARGET_PAGE_SIZE;
1526 if (p != top) {
1527 memcpy_to_target(p, scratch + offset, top - p);
1529 } else {
1530 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1531 for (i = 0; i < argc; ++i) {
1532 tmp = argv[i];
1533 if (!tmp) {
1534 fprintf(stderr, "VFS: argc is wrong");
1535 exit(-1);
1537 len = strlen(tmp) + 1;
1538 if (len > (stack_limit - p)) {
1539 return 0;
1541 while (len) {
1542 int bytes_to_copy = (len > remaining) ? remaining : len;
1544 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1546 tmp += bytes_to_copy;
1547 remaining -= bytes_to_copy;
1548 p += bytes_to_copy;
1549 len -= bytes_to_copy;
1551 if (remaining == 0) {
1552 memcpy_to_target(top, scratch, p - top);
1553 top = p;
1554 remaining = TARGET_PAGE_SIZE;
1558 if (p != top) {
1559 memcpy_to_target(top, scratch, p - top);
1563 return p;
1566 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1567 * argument/environment space. Newer kernels (>2.6.33) allow more,
1568 * dependent on stack size, but guarantee at least 32 pages for
1569 * backwards compatibility.
1571 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1573 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1574 struct image_info *info)
1576 abi_ulong size, error, guard;
1578 size = guest_stack_size;
1579 if (size < STACK_LOWER_LIMIT) {
1580 size = STACK_LOWER_LIMIT;
1582 guard = TARGET_PAGE_SIZE;
1583 if (guard < qemu_real_host_page_size) {
1584 guard = qemu_real_host_page_size;
1587 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1588 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1589 if (error == -1) {
1590 perror("mmap stack");
1591 exit(-1);
1594 /* We reserve one extra page at the top of the stack as guard. */
1595 if (STACK_GROWS_DOWN) {
1596 target_mprotect(error, guard, PROT_NONE);
1597 info->stack_limit = error + guard;
1598 return info->stack_limit + size - sizeof(void *);
1599 } else {
1600 target_mprotect(error + size, guard, PROT_NONE);
1601 info->stack_limit = error + size;
1602 return error;
1606 /* Map and zero the bss. We need to explicitly zero any fractional pages
1607 after the data section (i.e. bss). */
1608 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1610 uintptr_t host_start, host_map_start, host_end;
1612 last_bss = TARGET_PAGE_ALIGN(last_bss);
1614 /* ??? There is confusion between qemu_real_host_page_size and
1615 qemu_host_page_size here and elsewhere in target_mmap, which
1616 may lead to the end of the data section mapping from the file
1617 not being mapped. At least there was an explicit test and
1618 comment for that here, suggesting that "the file size must
1619 be known". The comment probably pre-dates the introduction
1620 of the fstat system call in target_mmap which does in fact
1621 find out the size. What isn't clear is if the workaround
1622 here is still actually needed. For now, continue with it,
1623 but merge it with the "normal" mmap that would allocate the bss. */
1625 host_start = (uintptr_t) g2h(elf_bss);
1626 host_end = (uintptr_t) g2h(last_bss);
1627 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1629 if (host_map_start < host_end) {
1630 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1631 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1632 if (p == MAP_FAILED) {
1633 perror("cannot mmap brk");
1634 exit(-1);
1638 /* Ensure that the bss page(s) are valid */
1639 if ((page_get_flags(last_bss-1) & prot) != prot) {
1640 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1643 if (host_start < host_map_start) {
1644 memset((void *)host_start, 0, host_map_start - host_start);
1648 #ifdef CONFIG_USE_FDPIC
1649 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1651 uint16_t n;
1652 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1654 /* elf32_fdpic_loadseg */
1655 n = info->nsegs;
1656 while (n--) {
1657 sp -= 12;
1658 put_user_u32(loadsegs[n].addr, sp+0);
1659 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1660 put_user_u32(loadsegs[n].p_memsz, sp+8);
1663 /* elf32_fdpic_loadmap */
1664 sp -= 4;
1665 put_user_u16(0, sp+0); /* version */
1666 put_user_u16(info->nsegs, sp+2); /* nsegs */
1668 info->personality = PER_LINUX_FDPIC;
1669 info->loadmap_addr = sp;
1671 return sp;
1673 #endif
1675 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1676 struct elfhdr *exec,
1677 struct image_info *info,
1678 struct image_info *interp_info)
1680 abi_ulong sp;
1681 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1682 int size;
1683 int i;
1684 abi_ulong u_rand_bytes;
1685 uint8_t k_rand_bytes[16];
1686 abi_ulong u_platform;
1687 const char *k_platform;
1688 const int n = sizeof(elf_addr_t);
1690 sp = p;
1692 #ifdef CONFIG_USE_FDPIC
1693 /* Needs to be before we load the env/argc/... */
1694 if (elf_is_fdpic(exec)) {
1695 /* Need 4 byte alignment for these structs */
1696 sp &= ~3;
1697 sp = loader_build_fdpic_loadmap(info, sp);
1698 info->other_info = interp_info;
1699 if (interp_info) {
1700 interp_info->other_info = info;
1701 sp = loader_build_fdpic_loadmap(interp_info, sp);
1704 #endif
1706 u_platform = 0;
1707 k_platform = ELF_PLATFORM;
1708 if (k_platform) {
1709 size_t len = strlen(k_platform) + 1;
1710 if (STACK_GROWS_DOWN) {
1711 sp -= (len + n - 1) & ~(n - 1);
1712 u_platform = sp;
1713 /* FIXME - check return value of memcpy_to_target() for failure */
1714 memcpy_to_target(sp, k_platform, len);
1715 } else {
1716 memcpy_to_target(sp, k_platform, len);
1717 u_platform = sp;
1718 sp += len + 1;
1722 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1723 * the argv and envp pointers.
1725 if (STACK_GROWS_DOWN) {
1726 sp = QEMU_ALIGN_DOWN(sp, 16);
1727 } else {
1728 sp = QEMU_ALIGN_UP(sp, 16);
1732 * Generate 16 random bytes for userspace PRNG seeding (not
1733 * cryptically secure but it's not the aim of QEMU).
1735 for (i = 0; i < 16; i++) {
1736 k_rand_bytes[i] = rand();
1738 if (STACK_GROWS_DOWN) {
1739 sp -= 16;
1740 u_rand_bytes = sp;
1741 /* FIXME - check return value of memcpy_to_target() for failure */
1742 memcpy_to_target(sp, k_rand_bytes, 16);
1743 } else {
1744 memcpy_to_target(sp, k_rand_bytes, 16);
1745 u_rand_bytes = sp;
1746 sp += 16;
1749 size = (DLINFO_ITEMS + 1) * 2;
1750 if (k_platform)
1751 size += 2;
1752 #ifdef DLINFO_ARCH_ITEMS
1753 size += DLINFO_ARCH_ITEMS * 2;
1754 #endif
1755 #ifdef ELF_HWCAP2
1756 size += 2;
1757 #endif
1758 info->auxv_len = size * n;
1760 size += envc + argc + 2;
1761 size += 1; /* argc itself */
1762 size *= n;
1764 /* Allocate space and finalize stack alignment for entry now. */
1765 if (STACK_GROWS_DOWN) {
1766 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1767 sp = u_argc;
1768 } else {
1769 u_argc = sp;
1770 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1773 u_argv = u_argc + n;
1774 u_envp = u_argv + (argc + 1) * n;
1775 u_auxv = u_envp + (envc + 1) * n;
1776 info->saved_auxv = u_auxv;
1777 info->arg_start = u_argv;
1778 info->arg_end = u_argv + argc * n;
1780 /* This is correct because Linux defines
1781 * elf_addr_t as Elf32_Off / Elf64_Off
1783 #define NEW_AUX_ENT(id, val) do { \
1784 put_user_ual(id, u_auxv); u_auxv += n; \
1785 put_user_ual(val, u_auxv); u_auxv += n; \
1786 } while(0)
1788 #ifdef ARCH_DLINFO
1790 * ARCH_DLINFO must come first so platform specific code can enforce
1791 * special alignment requirements on the AUXV if necessary (eg. PPC).
1793 ARCH_DLINFO;
1794 #endif
1795 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1796 * on info->auxv_len will trigger.
1798 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1799 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1800 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1801 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1802 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1803 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1804 NEW_AUX_ENT(AT_ENTRY, info->entry);
1805 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1806 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1807 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1808 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1809 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1810 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1811 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1812 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1814 #ifdef ELF_HWCAP2
1815 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1816 #endif
1818 if (u_platform) {
1819 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1821 NEW_AUX_ENT (AT_NULL, 0);
1822 #undef NEW_AUX_ENT
1824 /* Check that our initial calculation of the auxv length matches how much
1825 * we actually put into it.
1827 assert(info->auxv_len == u_auxv - info->saved_auxv);
1829 put_user_ual(argc, u_argc);
1831 p = info->arg_strings;
1832 for (i = 0; i < argc; ++i) {
1833 put_user_ual(p, u_argv);
1834 u_argv += n;
1835 p += target_strlen(p) + 1;
1837 put_user_ual(0, u_argv);
1839 p = info->env_strings;
1840 for (i = 0; i < envc; ++i) {
1841 put_user_ual(p, u_envp);
1842 u_envp += n;
1843 p += target_strlen(p) + 1;
1845 put_user_ual(0, u_envp);
1847 return sp;
1850 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1851 /* If the guest doesn't have a validation function just agree */
1852 static int validate_guest_space(unsigned long guest_base,
1853 unsigned long guest_size)
1855 return 1;
1857 #endif
1859 unsigned long init_guest_space(unsigned long host_start,
1860 unsigned long host_size,
1861 unsigned long guest_start,
1862 bool fixed)
1864 unsigned long current_start, real_start;
1865 int flags;
1867 assert(host_start || host_size);
1869 /* If just a starting address is given, then just verify that
1870 * address. */
1871 if (host_start && !host_size) {
1872 if (validate_guest_space(host_start, host_size) == 1) {
1873 return host_start;
1874 } else {
1875 return (unsigned long)-1;
1879 /* Setup the initial flags and start address. */
1880 current_start = host_start & qemu_host_page_mask;
1881 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1882 if (fixed) {
1883 flags |= MAP_FIXED;
1886 /* Otherwise, a non-zero size region of memory needs to be mapped
1887 * and validated. */
1888 while (1) {
1889 unsigned long real_size = host_size;
1891 /* Do not use mmap_find_vma here because that is limited to the
1892 * guest address space. We are going to make the
1893 * guest address space fit whatever we're given.
1895 real_start = (unsigned long)
1896 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1897 if (real_start == (unsigned long)-1) {
1898 return (unsigned long)-1;
1901 /* Ensure the address is properly aligned. */
1902 if (real_start & ~qemu_host_page_mask) {
1903 munmap((void *)real_start, host_size);
1904 real_size = host_size + qemu_host_page_size;
1905 real_start = (unsigned long)
1906 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1907 if (real_start == (unsigned long)-1) {
1908 return (unsigned long)-1;
1910 real_start = HOST_PAGE_ALIGN(real_start);
1913 /* Check to see if the address is valid. */
1914 if (!host_start || real_start == current_start) {
1915 int valid = validate_guest_space(real_start - guest_start,
1916 real_size);
1917 if (valid == 1) {
1918 break;
1919 } else if (valid == -1) {
1920 return (unsigned long)-1;
1922 /* valid == 0, so try again. */
1925 /* That address didn't work. Unmap and try a different one.
1926 * The address the host picked because is typically right at
1927 * the top of the host address space and leaves the guest with
1928 * no usable address space. Resort to a linear search. We
1929 * already compensated for mmap_min_addr, so this should not
1930 * happen often. Probably means we got unlucky and host
1931 * address space randomization put a shared library somewhere
1932 * inconvenient.
1934 munmap((void *)real_start, host_size);
1935 current_start += qemu_host_page_size;
1936 if (host_start == current_start) {
1937 /* Theoretically possible if host doesn't have any suitably
1938 * aligned areas. Normally the first mmap will fail.
1940 return (unsigned long)-1;
1944 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1946 return real_start;
1949 static void probe_guest_base(const char *image_name,
1950 abi_ulong loaddr, abi_ulong hiaddr)
1952 /* Probe for a suitable guest base address, if the user has not set
1953 * it explicitly, and set guest_base appropriately.
1954 * In case of error we will print a suitable message and exit.
1956 const char *errmsg;
1957 if (!have_guest_base && !reserved_va) {
1958 unsigned long host_start, real_start, host_size;
1960 /* Round addresses to page boundaries. */
1961 loaddr &= qemu_host_page_mask;
1962 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1964 if (loaddr < mmap_min_addr) {
1965 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1966 } else {
1967 host_start = loaddr;
1968 if (host_start != loaddr) {
1969 errmsg = "Address overflow loading ELF binary";
1970 goto exit_errmsg;
1973 host_size = hiaddr - loaddr;
1975 /* Setup the initial guest memory space with ranges gleaned from
1976 * the ELF image that is being loaded.
1978 real_start = init_guest_space(host_start, host_size, loaddr, false);
1979 if (real_start == (unsigned long)-1) {
1980 errmsg = "Unable to find space for application";
1981 goto exit_errmsg;
1983 guest_base = real_start - loaddr;
1985 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1986 TARGET_ABI_FMT_lx " to 0x%lx\n",
1987 loaddr, real_start);
1989 return;
1991 exit_errmsg:
1992 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1993 exit(-1);
1997 /* Load an ELF image into the address space.
1999 IMAGE_NAME is the filename of the image, to use in error messages.
2000 IMAGE_FD is the open file descriptor for the image.
2002 BPRM_BUF is a copy of the beginning of the file; this of course
2003 contains the elf file header at offset 0. It is assumed that this
2004 buffer is sufficiently aligned to present no problems to the host
2005 in accessing data at aligned offsets within the buffer.
2007 On return: INFO values will be filled in, as necessary or available. */
2009 static void load_elf_image(const char *image_name, int image_fd,
2010 struct image_info *info, char **pinterp_name,
2011 char bprm_buf[BPRM_BUF_SIZE])
2013 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2014 struct elf_phdr *phdr;
2015 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2016 int i, retval;
2017 const char *errmsg;
2019 /* First of all, some simple consistency checks */
2020 errmsg = "Invalid ELF image for this architecture";
2021 if (!elf_check_ident(ehdr)) {
2022 goto exit_errmsg;
2024 bswap_ehdr(ehdr);
2025 if (!elf_check_ehdr(ehdr)) {
2026 goto exit_errmsg;
2029 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2030 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2031 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2032 } else {
2033 phdr = (struct elf_phdr *) alloca(i);
2034 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2035 if (retval != i) {
2036 goto exit_read;
2039 bswap_phdr(phdr, ehdr->e_phnum);
2041 #ifdef CONFIG_USE_FDPIC
2042 info->nsegs = 0;
2043 info->pt_dynamic_addr = 0;
2044 #endif
2046 mmap_lock();
2048 /* Find the maximum size of the image and allocate an appropriate
2049 amount of memory to handle that. */
2050 loaddr = -1, hiaddr = 0;
2051 for (i = 0; i < ehdr->e_phnum; ++i) {
2052 if (phdr[i].p_type == PT_LOAD) {
2053 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2054 if (a < loaddr) {
2055 loaddr = a;
2057 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2058 if (a > hiaddr) {
2059 hiaddr = a;
2061 #ifdef CONFIG_USE_FDPIC
2062 ++info->nsegs;
2063 #endif
2067 load_addr = loaddr;
2068 if (ehdr->e_type == ET_DYN) {
2069 /* The image indicates that it can be loaded anywhere. Find a
2070 location that can hold the memory space required. If the
2071 image is pre-linked, LOADDR will be non-zero. Since we do
2072 not supply MAP_FIXED here we'll use that address if and
2073 only if it remains available. */
2074 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2075 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2076 -1, 0);
2077 if (load_addr == -1) {
2078 goto exit_perror;
2080 } else if (pinterp_name != NULL) {
2081 /* This is the main executable. Make sure that the low
2082 address does not conflict with MMAP_MIN_ADDR or the
2083 QEMU application itself. */
2084 probe_guest_base(image_name, loaddr, hiaddr);
2086 load_bias = load_addr - loaddr;
2088 #ifdef CONFIG_USE_FDPIC
2090 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2091 g_malloc(sizeof(*loadsegs) * info->nsegs);
2093 for (i = 0; i < ehdr->e_phnum; ++i) {
2094 switch (phdr[i].p_type) {
2095 case PT_DYNAMIC:
2096 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2097 break;
2098 case PT_LOAD:
2099 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2100 loadsegs->p_vaddr = phdr[i].p_vaddr;
2101 loadsegs->p_memsz = phdr[i].p_memsz;
2102 ++loadsegs;
2103 break;
2107 #endif
2109 info->load_bias = load_bias;
2110 info->load_addr = load_addr;
2111 info->entry = ehdr->e_entry + load_bias;
2112 info->start_code = -1;
2113 info->end_code = 0;
2114 info->start_data = -1;
2115 info->end_data = 0;
2116 info->brk = 0;
2117 info->elf_flags = ehdr->e_flags;
2119 for (i = 0; i < ehdr->e_phnum; i++) {
2120 struct elf_phdr *eppnt = phdr + i;
2121 if (eppnt->p_type == PT_LOAD) {
2122 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2123 int elf_prot = 0;
2125 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2126 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2127 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2129 vaddr = load_bias + eppnt->p_vaddr;
2130 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2131 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2133 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2134 elf_prot, MAP_PRIVATE | MAP_FIXED,
2135 image_fd, eppnt->p_offset - vaddr_po);
2136 if (error == -1) {
2137 goto exit_perror;
2140 vaddr_ef = vaddr + eppnt->p_filesz;
2141 vaddr_em = vaddr + eppnt->p_memsz;
2143 /* If the load segment requests extra zeros (e.g. bss), map it. */
2144 if (vaddr_ef < vaddr_em) {
2145 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2148 /* Find the full program boundaries. */
2149 if (elf_prot & PROT_EXEC) {
2150 if (vaddr < info->start_code) {
2151 info->start_code = vaddr;
2153 if (vaddr_ef > info->end_code) {
2154 info->end_code = vaddr_ef;
2157 if (elf_prot & PROT_WRITE) {
2158 if (vaddr < info->start_data) {
2159 info->start_data = vaddr;
2161 if (vaddr_ef > info->end_data) {
2162 info->end_data = vaddr_ef;
2164 if (vaddr_em > info->brk) {
2165 info->brk = vaddr_em;
2168 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2169 char *interp_name;
2171 if (*pinterp_name) {
2172 errmsg = "Multiple PT_INTERP entries";
2173 goto exit_errmsg;
2175 interp_name = malloc(eppnt->p_filesz);
2176 if (!interp_name) {
2177 goto exit_perror;
2180 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2181 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2182 eppnt->p_filesz);
2183 } else {
2184 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2185 eppnt->p_offset);
2186 if (retval != eppnt->p_filesz) {
2187 goto exit_perror;
2190 if (interp_name[eppnt->p_filesz - 1] != 0) {
2191 errmsg = "Invalid PT_INTERP entry";
2192 goto exit_errmsg;
2194 *pinterp_name = interp_name;
2198 if (info->end_data == 0) {
2199 info->start_data = info->end_code;
2200 info->end_data = info->end_code;
2201 info->brk = info->end_code;
2204 if (qemu_log_enabled()) {
2205 load_symbols(ehdr, image_fd, load_bias);
2208 mmap_unlock();
2210 close(image_fd);
2211 return;
2213 exit_read:
2214 if (retval >= 0) {
2215 errmsg = "Incomplete read of file header";
2216 goto exit_errmsg;
2218 exit_perror:
2219 errmsg = strerror(errno);
2220 exit_errmsg:
2221 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2222 exit(-1);
2225 static void load_elf_interp(const char *filename, struct image_info *info,
2226 char bprm_buf[BPRM_BUF_SIZE])
2228 int fd, retval;
2230 fd = open(path(filename), O_RDONLY);
2231 if (fd < 0) {
2232 goto exit_perror;
2235 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2236 if (retval < 0) {
2237 goto exit_perror;
2239 if (retval < BPRM_BUF_SIZE) {
2240 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2243 load_elf_image(filename, fd, info, NULL, bprm_buf);
2244 return;
2246 exit_perror:
2247 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2248 exit(-1);
2251 static int symfind(const void *s0, const void *s1)
2253 target_ulong addr = *(target_ulong *)s0;
2254 struct elf_sym *sym = (struct elf_sym *)s1;
2255 int result = 0;
2256 if (addr < sym->st_value) {
2257 result = -1;
2258 } else if (addr >= sym->st_value + sym->st_size) {
2259 result = 1;
2261 return result;
2264 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2266 #if ELF_CLASS == ELFCLASS32
2267 struct elf_sym *syms = s->disas_symtab.elf32;
2268 #else
2269 struct elf_sym *syms = s->disas_symtab.elf64;
2270 #endif
2272 // binary search
2273 struct elf_sym *sym;
2275 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2276 if (sym != NULL) {
2277 return s->disas_strtab + sym->st_name;
2280 return "";
2283 /* FIXME: This should use elf_ops.h */
2284 static int symcmp(const void *s0, const void *s1)
2286 struct elf_sym *sym0 = (struct elf_sym *)s0;
2287 struct elf_sym *sym1 = (struct elf_sym *)s1;
2288 return (sym0->st_value < sym1->st_value)
2289 ? -1
2290 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2293 /* Best attempt to load symbols from this ELF object. */
2294 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2296 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2297 uint64_t segsz;
2298 struct elf_shdr *shdr;
2299 char *strings = NULL;
2300 struct syminfo *s = NULL;
2301 struct elf_sym *new_syms, *syms = NULL;
2303 shnum = hdr->e_shnum;
2304 i = shnum * sizeof(struct elf_shdr);
2305 shdr = (struct elf_shdr *)alloca(i);
2306 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2307 return;
2310 bswap_shdr(shdr, shnum);
2311 for (i = 0; i < shnum; ++i) {
2312 if (shdr[i].sh_type == SHT_SYMTAB) {
2313 sym_idx = i;
2314 str_idx = shdr[i].sh_link;
2315 goto found;
2319 /* There will be no symbol table if the file was stripped. */
2320 return;
2322 found:
2323 /* Now know where the strtab and symtab are. Snarf them. */
2324 s = g_try_new(struct syminfo, 1);
2325 if (!s) {
2326 goto give_up;
2329 segsz = shdr[str_idx].sh_size;
2330 s->disas_strtab = strings = g_try_malloc(segsz);
2331 if (!strings ||
2332 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2333 goto give_up;
2336 segsz = shdr[sym_idx].sh_size;
2337 syms = g_try_malloc(segsz);
2338 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2339 goto give_up;
2342 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2343 /* Implausibly large symbol table: give up rather than ploughing
2344 * on with the number of symbols calculation overflowing
2346 goto give_up;
2348 nsyms = segsz / sizeof(struct elf_sym);
2349 for (i = 0; i < nsyms; ) {
2350 bswap_sym(syms + i);
2351 /* Throw away entries which we do not need. */
2352 if (syms[i].st_shndx == SHN_UNDEF
2353 || syms[i].st_shndx >= SHN_LORESERVE
2354 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2355 if (i < --nsyms) {
2356 syms[i] = syms[nsyms];
2358 } else {
2359 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2360 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2361 syms[i].st_value &= ~(target_ulong)1;
2362 #endif
2363 syms[i].st_value += load_bias;
2364 i++;
2368 /* No "useful" symbol. */
2369 if (nsyms == 0) {
2370 goto give_up;
2373 /* Attempt to free the storage associated with the local symbols
2374 that we threw away. Whether or not this has any effect on the
2375 memory allocation depends on the malloc implementation and how
2376 many symbols we managed to discard. */
2377 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2378 if (new_syms == NULL) {
2379 goto give_up;
2381 syms = new_syms;
2383 qsort(syms, nsyms, sizeof(*syms), symcmp);
2385 s->disas_num_syms = nsyms;
2386 #if ELF_CLASS == ELFCLASS32
2387 s->disas_symtab.elf32 = syms;
2388 #else
2389 s->disas_symtab.elf64 = syms;
2390 #endif
2391 s->lookup_symbol = lookup_symbolxx;
2392 s->next = syminfos;
2393 syminfos = s;
2395 return;
2397 give_up:
2398 g_free(s);
2399 g_free(strings);
2400 g_free(syms);
2403 uint32_t get_elf_eflags(int fd)
2405 struct elfhdr ehdr;
2406 off_t offset;
2407 int ret;
2409 /* Read ELF header */
2410 offset = lseek(fd, 0, SEEK_SET);
2411 if (offset == (off_t) -1) {
2412 return 0;
2414 ret = read(fd, &ehdr, sizeof(ehdr));
2415 if (ret < sizeof(ehdr)) {
2416 return 0;
2418 offset = lseek(fd, offset, SEEK_SET);
2419 if (offset == (off_t) -1) {
2420 return 0;
2423 /* Check ELF signature */
2424 if (!elf_check_ident(&ehdr)) {
2425 return 0;
2428 /* check header */
2429 bswap_ehdr(&ehdr);
2430 if (!elf_check_ehdr(&ehdr)) {
2431 return 0;
2434 /* return architecture id */
2435 return ehdr.e_flags;
2438 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2440 struct image_info interp_info;
2441 struct elfhdr elf_ex;
2442 char *elf_interpreter = NULL;
2443 char *scratch;
2445 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2447 load_elf_image(bprm->filename, bprm->fd, info,
2448 &elf_interpreter, bprm->buf);
2450 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2451 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2452 when we load the interpreter. */
2453 elf_ex = *(struct elfhdr *)bprm->buf;
2455 /* Do this so that we can load the interpreter, if need be. We will
2456 change some of these later */
2457 bprm->p = setup_arg_pages(bprm, info);
2459 scratch = g_new0(char, TARGET_PAGE_SIZE);
2460 if (STACK_GROWS_DOWN) {
2461 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2462 bprm->p, info->stack_limit);
2463 info->file_string = bprm->p;
2464 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2465 bprm->p, info->stack_limit);
2466 info->env_strings = bprm->p;
2467 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2468 bprm->p, info->stack_limit);
2469 info->arg_strings = bprm->p;
2470 } else {
2471 info->arg_strings = bprm->p;
2472 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2473 bprm->p, info->stack_limit);
2474 info->env_strings = bprm->p;
2475 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2476 bprm->p, info->stack_limit);
2477 info->file_string = bprm->p;
2478 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2479 bprm->p, info->stack_limit);
2482 g_free(scratch);
2484 if (!bprm->p) {
2485 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2486 exit(-1);
2489 if (elf_interpreter) {
2490 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2492 /* If the program interpreter is one of these two, then assume
2493 an iBCS2 image. Otherwise assume a native linux image. */
2495 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2496 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2497 info->personality = PER_SVR4;
2499 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2500 and some applications "depend" upon this behavior. Since
2501 we do not have the power to recompile these, we emulate
2502 the SVr4 behavior. Sigh. */
2503 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2504 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2508 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2509 info, (elf_interpreter ? &interp_info : NULL));
2510 info->start_stack = bprm->p;
2512 /* If we have an interpreter, set that as the program's entry point.
2513 Copy the load_bias as well, to help PPC64 interpret the entry
2514 point as a function descriptor. Do this after creating elf tables
2515 so that we copy the original program entry point into the AUXV. */
2516 if (elf_interpreter) {
2517 info->load_bias = interp_info.load_bias;
2518 info->entry = interp_info.entry;
2519 free(elf_interpreter);
2522 #ifdef USE_ELF_CORE_DUMP
2523 bprm->core_dump = &elf_core_dump;
2524 #endif
2526 return 0;
2529 #ifdef USE_ELF_CORE_DUMP
2531 * Definitions to generate Intel SVR4-like core files.
2532 * These mostly have the same names as the SVR4 types with "target_elf_"
2533 * tacked on the front to prevent clashes with linux definitions,
2534 * and the typedef forms have been avoided. This is mostly like
2535 * the SVR4 structure, but more Linuxy, with things that Linux does
2536 * not support and which gdb doesn't really use excluded.
2538 * Fields we don't dump (their contents is zero) in linux-user qemu
2539 * are marked with XXX.
2541 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2543 * Porting ELF coredump for target is (quite) simple process. First you
2544 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2545 * the target resides):
2547 * #define USE_ELF_CORE_DUMP
2549 * Next you define type of register set used for dumping. ELF specification
2550 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2552 * typedef <target_regtype> target_elf_greg_t;
2553 * #define ELF_NREG <number of registers>
2554 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2556 * Last step is to implement target specific function that copies registers
2557 * from given cpu into just specified register set. Prototype is:
2559 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2560 * const CPUArchState *env);
2562 * Parameters:
2563 * regs - copy register values into here (allocated and zeroed by caller)
2564 * env - copy registers from here
2566 * Example for ARM target is provided in this file.
2569 /* An ELF note in memory */
2570 struct memelfnote {
2571 const char *name;
2572 size_t namesz;
2573 size_t namesz_rounded;
2574 int type;
2575 size_t datasz;
2576 size_t datasz_rounded;
2577 void *data;
2578 size_t notesz;
2581 struct target_elf_siginfo {
2582 abi_int si_signo; /* signal number */
2583 abi_int si_code; /* extra code */
2584 abi_int si_errno; /* errno */
2587 struct target_elf_prstatus {
2588 struct target_elf_siginfo pr_info; /* Info associated with signal */
2589 abi_short pr_cursig; /* Current signal */
2590 abi_ulong pr_sigpend; /* XXX */
2591 abi_ulong pr_sighold; /* XXX */
2592 target_pid_t pr_pid;
2593 target_pid_t pr_ppid;
2594 target_pid_t pr_pgrp;
2595 target_pid_t pr_sid;
2596 struct target_timeval pr_utime; /* XXX User time */
2597 struct target_timeval pr_stime; /* XXX System time */
2598 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2599 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2600 target_elf_gregset_t pr_reg; /* GP registers */
2601 abi_int pr_fpvalid; /* XXX */
2604 #define ELF_PRARGSZ (80) /* Number of chars for args */
2606 struct target_elf_prpsinfo {
2607 char pr_state; /* numeric process state */
2608 char pr_sname; /* char for pr_state */
2609 char pr_zomb; /* zombie */
2610 char pr_nice; /* nice val */
2611 abi_ulong pr_flag; /* flags */
2612 target_uid_t pr_uid;
2613 target_gid_t pr_gid;
2614 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2615 /* Lots missing */
2616 char pr_fname[16]; /* filename of executable */
2617 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2620 /* Here is the structure in which status of each thread is captured. */
2621 struct elf_thread_status {
2622 QTAILQ_ENTRY(elf_thread_status) ets_link;
2623 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2624 #if 0
2625 elf_fpregset_t fpu; /* NT_PRFPREG */
2626 struct task_struct *thread;
2627 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2628 #endif
2629 struct memelfnote notes[1];
2630 int num_notes;
2633 struct elf_note_info {
2634 struct memelfnote *notes;
2635 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2636 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2638 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2639 #if 0
2641 * Current version of ELF coredump doesn't support
2642 * dumping fp regs etc.
2644 elf_fpregset_t *fpu;
2645 elf_fpxregset_t *xfpu;
2646 int thread_status_size;
2647 #endif
2648 int notes_size;
2649 int numnote;
2652 struct vm_area_struct {
2653 target_ulong vma_start; /* start vaddr of memory region */
2654 target_ulong vma_end; /* end vaddr of memory region */
2655 abi_ulong vma_flags; /* protection etc. flags for the region */
2656 QTAILQ_ENTRY(vm_area_struct) vma_link;
2659 struct mm_struct {
2660 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2661 int mm_count; /* number of mappings */
2664 static struct mm_struct *vma_init(void);
2665 static void vma_delete(struct mm_struct *);
2666 static int vma_add_mapping(struct mm_struct *, target_ulong,
2667 target_ulong, abi_ulong);
2668 static int vma_get_mapping_count(const struct mm_struct *);
2669 static struct vm_area_struct *vma_first(const struct mm_struct *);
2670 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2671 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2672 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2673 unsigned long flags);
2675 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2676 static void fill_note(struct memelfnote *, const char *, int,
2677 unsigned int, void *);
2678 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2679 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2680 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2681 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2682 static size_t note_size(const struct memelfnote *);
2683 static void free_note_info(struct elf_note_info *);
2684 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2685 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2686 static int core_dump_filename(const TaskState *, char *, size_t);
2688 static int dump_write(int, const void *, size_t);
2689 static int write_note(struct memelfnote *, int);
2690 static int write_note_info(struct elf_note_info *, int);
2692 #ifdef BSWAP_NEEDED
2693 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2695 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2696 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2697 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2698 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2699 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2700 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2701 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2702 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2703 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2704 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2705 /* cpu times are not filled, so we skip them */
2706 /* regs should be in correct format already */
2707 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2710 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2712 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2713 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2714 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2715 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2716 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2717 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2718 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2721 static void bswap_note(struct elf_note *en)
2723 bswap32s(&en->n_namesz);
2724 bswap32s(&en->n_descsz);
2725 bswap32s(&en->n_type);
2727 #else
2728 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2729 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2730 static inline void bswap_note(struct elf_note *en) { }
2731 #endif /* BSWAP_NEEDED */
2734 * Minimal support for linux memory regions. These are needed
2735 * when we are finding out what memory exactly belongs to
2736 * emulated process. No locks needed here, as long as
2737 * thread that received the signal is stopped.
2740 static struct mm_struct *vma_init(void)
2742 struct mm_struct *mm;
2744 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2745 return (NULL);
2747 mm->mm_count = 0;
2748 QTAILQ_INIT(&mm->mm_mmap);
2750 return (mm);
2753 static void vma_delete(struct mm_struct *mm)
2755 struct vm_area_struct *vma;
2757 while ((vma = vma_first(mm)) != NULL) {
2758 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2759 g_free(vma);
2761 g_free(mm);
2764 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2765 target_ulong end, abi_ulong flags)
2767 struct vm_area_struct *vma;
2769 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2770 return (-1);
2772 vma->vma_start = start;
2773 vma->vma_end = end;
2774 vma->vma_flags = flags;
2776 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2777 mm->mm_count++;
2779 return (0);
2782 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2784 return (QTAILQ_FIRST(&mm->mm_mmap));
2787 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2789 return (QTAILQ_NEXT(vma, vma_link));
2792 static int vma_get_mapping_count(const struct mm_struct *mm)
2794 return (mm->mm_count);
2798 * Calculate file (dump) size of given memory region.
2800 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2802 /* if we cannot even read the first page, skip it */
2803 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2804 return (0);
2807 * Usually we don't dump executable pages as they contain
2808 * non-writable code that debugger can read directly from
2809 * target library etc. However, thread stacks are marked
2810 * also executable so we read in first page of given region
2811 * and check whether it contains elf header. If there is
2812 * no elf header, we dump it.
2814 if (vma->vma_flags & PROT_EXEC) {
2815 char page[TARGET_PAGE_SIZE];
2817 copy_from_user(page, vma->vma_start, sizeof (page));
2818 if ((page[EI_MAG0] == ELFMAG0) &&
2819 (page[EI_MAG1] == ELFMAG1) &&
2820 (page[EI_MAG2] == ELFMAG2) &&
2821 (page[EI_MAG3] == ELFMAG3)) {
2823 * Mappings are possibly from ELF binary. Don't dump
2824 * them.
2826 return (0);
2830 return (vma->vma_end - vma->vma_start);
2833 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2834 unsigned long flags)
2836 struct mm_struct *mm = (struct mm_struct *)priv;
2838 vma_add_mapping(mm, start, end, flags);
2839 return (0);
2842 static void fill_note(struct memelfnote *note, const char *name, int type,
2843 unsigned int sz, void *data)
2845 unsigned int namesz;
2847 namesz = strlen(name) + 1;
2848 note->name = name;
2849 note->namesz = namesz;
2850 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2851 note->type = type;
2852 note->datasz = sz;
2853 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2855 note->data = data;
2858 * We calculate rounded up note size here as specified by
2859 * ELF document.
2861 note->notesz = sizeof (struct elf_note) +
2862 note->namesz_rounded + note->datasz_rounded;
2865 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2866 uint32_t flags)
2868 (void) memset(elf, 0, sizeof(*elf));
2870 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2871 elf->e_ident[EI_CLASS] = ELF_CLASS;
2872 elf->e_ident[EI_DATA] = ELF_DATA;
2873 elf->e_ident[EI_VERSION] = EV_CURRENT;
2874 elf->e_ident[EI_OSABI] = ELF_OSABI;
2876 elf->e_type = ET_CORE;
2877 elf->e_machine = machine;
2878 elf->e_version = EV_CURRENT;
2879 elf->e_phoff = sizeof(struct elfhdr);
2880 elf->e_flags = flags;
2881 elf->e_ehsize = sizeof(struct elfhdr);
2882 elf->e_phentsize = sizeof(struct elf_phdr);
2883 elf->e_phnum = segs;
2885 bswap_ehdr(elf);
2888 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2890 phdr->p_type = PT_NOTE;
2891 phdr->p_offset = offset;
2892 phdr->p_vaddr = 0;
2893 phdr->p_paddr = 0;
2894 phdr->p_filesz = sz;
2895 phdr->p_memsz = 0;
2896 phdr->p_flags = 0;
2897 phdr->p_align = 0;
2899 bswap_phdr(phdr, 1);
2902 static size_t note_size(const struct memelfnote *note)
2904 return (note->notesz);
2907 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2908 const TaskState *ts, int signr)
2910 (void) memset(prstatus, 0, sizeof (*prstatus));
2911 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2912 prstatus->pr_pid = ts->ts_tid;
2913 prstatus->pr_ppid = getppid();
2914 prstatus->pr_pgrp = getpgrp();
2915 prstatus->pr_sid = getsid(0);
2917 bswap_prstatus(prstatus);
2920 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2922 char *base_filename;
2923 unsigned int i, len;
2925 (void) memset(psinfo, 0, sizeof (*psinfo));
2927 len = ts->info->arg_end - ts->info->arg_start;
2928 if (len >= ELF_PRARGSZ)
2929 len = ELF_PRARGSZ - 1;
2930 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2931 return -EFAULT;
2932 for (i = 0; i < len; i++)
2933 if (psinfo->pr_psargs[i] == 0)
2934 psinfo->pr_psargs[i] = ' ';
2935 psinfo->pr_psargs[len] = 0;
2937 psinfo->pr_pid = getpid();
2938 psinfo->pr_ppid = getppid();
2939 psinfo->pr_pgrp = getpgrp();
2940 psinfo->pr_sid = getsid(0);
2941 psinfo->pr_uid = getuid();
2942 psinfo->pr_gid = getgid();
2944 base_filename = g_path_get_basename(ts->bprm->filename);
2946 * Using strncpy here is fine: at max-length,
2947 * this field is not NUL-terminated.
2949 (void) strncpy(psinfo->pr_fname, base_filename,
2950 sizeof(psinfo->pr_fname));
2952 g_free(base_filename);
2953 bswap_psinfo(psinfo);
2954 return (0);
2957 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2959 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2960 elf_addr_t orig_auxv = auxv;
2961 void *ptr;
2962 int len = ts->info->auxv_len;
2965 * Auxiliary vector is stored in target process stack. It contains
2966 * {type, value} pairs that we need to dump into note. This is not
2967 * strictly necessary but we do it here for sake of completeness.
2970 /* read in whole auxv vector and copy it to memelfnote */
2971 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2972 if (ptr != NULL) {
2973 fill_note(note, "CORE", NT_AUXV, len, ptr);
2974 unlock_user(ptr, auxv, len);
2979 * Constructs name of coredump file. We have following convention
2980 * for the name:
2981 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2983 * Returns 0 in case of success, -1 otherwise (errno is set).
2985 static int core_dump_filename(const TaskState *ts, char *buf,
2986 size_t bufsize)
2988 char timestamp[64];
2989 char *base_filename = NULL;
2990 struct timeval tv;
2991 struct tm tm;
2993 assert(bufsize >= PATH_MAX);
2995 if (gettimeofday(&tv, NULL) < 0) {
2996 (void) fprintf(stderr, "unable to get current timestamp: %s",
2997 strerror(errno));
2998 return (-1);
3001 base_filename = g_path_get_basename(ts->bprm->filename);
3002 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3003 localtime_r(&tv.tv_sec, &tm));
3004 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3005 base_filename, timestamp, (int)getpid());
3006 g_free(base_filename);
3008 return (0);
3011 static int dump_write(int fd, const void *ptr, size_t size)
3013 const char *bufp = (const char *)ptr;
3014 ssize_t bytes_written, bytes_left;
3015 struct rlimit dumpsize;
3016 off_t pos;
3018 bytes_written = 0;
3019 getrlimit(RLIMIT_CORE, &dumpsize);
3020 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3021 if (errno == ESPIPE) { /* not a seekable stream */
3022 bytes_left = size;
3023 } else {
3024 return pos;
3026 } else {
3027 if (dumpsize.rlim_cur <= pos) {
3028 return -1;
3029 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3030 bytes_left = size;
3031 } else {
3032 size_t limit_left=dumpsize.rlim_cur - pos;
3033 bytes_left = limit_left >= size ? size : limit_left ;
3038 * In normal conditions, single write(2) should do but
3039 * in case of socket etc. this mechanism is more portable.
3041 do {
3042 bytes_written = write(fd, bufp, bytes_left);
3043 if (bytes_written < 0) {
3044 if (errno == EINTR)
3045 continue;
3046 return (-1);
3047 } else if (bytes_written == 0) { /* eof */
3048 return (-1);
3050 bufp += bytes_written;
3051 bytes_left -= bytes_written;
3052 } while (bytes_left > 0);
3054 return (0);
3057 static int write_note(struct memelfnote *men, int fd)
3059 struct elf_note en;
3061 en.n_namesz = men->namesz;
3062 en.n_type = men->type;
3063 en.n_descsz = men->datasz;
3065 bswap_note(&en);
3067 if (dump_write(fd, &en, sizeof(en)) != 0)
3068 return (-1);
3069 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3070 return (-1);
3071 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3072 return (-1);
3074 return (0);
3077 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3079 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3080 TaskState *ts = (TaskState *)cpu->opaque;
3081 struct elf_thread_status *ets;
3083 ets = g_malloc0(sizeof (*ets));
3084 ets->num_notes = 1; /* only prstatus is dumped */
3085 fill_prstatus(&ets->prstatus, ts, 0);
3086 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3087 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3088 &ets->prstatus);
3090 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3092 info->notes_size += note_size(&ets->notes[0]);
3095 static void init_note_info(struct elf_note_info *info)
3097 /* Initialize the elf_note_info structure so that it is at
3098 * least safe to call free_note_info() on it. Must be
3099 * called before calling fill_note_info().
3101 memset(info, 0, sizeof (*info));
3102 QTAILQ_INIT(&info->thread_list);
3105 static int fill_note_info(struct elf_note_info *info,
3106 long signr, const CPUArchState *env)
3108 #define NUMNOTES 3
3109 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3110 TaskState *ts = (TaskState *)cpu->opaque;
3111 int i;
3113 info->notes = g_new0(struct memelfnote, NUMNOTES);
3114 if (info->notes == NULL)
3115 return (-ENOMEM);
3116 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3117 if (info->prstatus == NULL)
3118 return (-ENOMEM);
3119 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3120 if (info->prstatus == NULL)
3121 return (-ENOMEM);
3124 * First fill in status (and registers) of current thread
3125 * including process info & aux vector.
3127 fill_prstatus(info->prstatus, ts, signr);
3128 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3129 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3130 sizeof (*info->prstatus), info->prstatus);
3131 fill_psinfo(info->psinfo, ts);
3132 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3133 sizeof (*info->psinfo), info->psinfo);
3134 fill_auxv_note(&info->notes[2], ts);
3135 info->numnote = 3;
3137 info->notes_size = 0;
3138 for (i = 0; i < info->numnote; i++)
3139 info->notes_size += note_size(&info->notes[i]);
3141 /* read and fill status of all threads */
3142 cpu_list_lock();
3143 CPU_FOREACH(cpu) {
3144 if (cpu == thread_cpu) {
3145 continue;
3147 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3149 cpu_list_unlock();
3151 return (0);
3154 static void free_note_info(struct elf_note_info *info)
3156 struct elf_thread_status *ets;
3158 while (!QTAILQ_EMPTY(&info->thread_list)) {
3159 ets = QTAILQ_FIRST(&info->thread_list);
3160 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3161 g_free(ets);
3164 g_free(info->prstatus);
3165 g_free(info->psinfo);
3166 g_free(info->notes);
3169 static int write_note_info(struct elf_note_info *info, int fd)
3171 struct elf_thread_status *ets;
3172 int i, error = 0;
3174 /* write prstatus, psinfo and auxv for current thread */
3175 for (i = 0; i < info->numnote; i++)
3176 if ((error = write_note(&info->notes[i], fd)) != 0)
3177 return (error);
3179 /* write prstatus for each thread */
3180 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3181 if ((error = write_note(&ets->notes[0], fd)) != 0)
3182 return (error);
3185 return (0);
3189 * Write out ELF coredump.
3191 * See documentation of ELF object file format in:
3192 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3194 * Coredump format in linux is following:
3196 * 0 +----------------------+ \
3197 * | ELF header | ET_CORE |
3198 * +----------------------+ |
3199 * | ELF program headers | |--- headers
3200 * | - NOTE section | |
3201 * | - PT_LOAD sections | |
3202 * +----------------------+ /
3203 * | NOTEs: |
3204 * | - NT_PRSTATUS |
3205 * | - NT_PRSINFO |
3206 * | - NT_AUXV |
3207 * +----------------------+ <-- aligned to target page
3208 * | Process memory dump |
3209 * : :
3210 * . .
3211 * : :
3212 * | |
3213 * +----------------------+
3215 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3216 * NT_PRSINFO -> struct elf_prpsinfo
3217 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3219 * Format follows System V format as close as possible. Current
3220 * version limitations are as follows:
3221 * - no floating point registers are dumped
3223 * Function returns 0 in case of success, negative errno otherwise.
3225 * TODO: make this work also during runtime: it should be
3226 * possible to force coredump from running process and then
3227 * continue processing. For example qemu could set up SIGUSR2
3228 * handler (provided that target process haven't registered
3229 * handler for that) that does the dump when signal is received.
3231 static int elf_core_dump(int signr, const CPUArchState *env)
3233 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3234 const TaskState *ts = (const TaskState *)cpu->opaque;
3235 struct vm_area_struct *vma = NULL;
3236 char corefile[PATH_MAX];
3237 struct elf_note_info info;
3238 struct elfhdr elf;
3239 struct elf_phdr phdr;
3240 struct rlimit dumpsize;
3241 struct mm_struct *mm = NULL;
3242 off_t offset = 0, data_offset = 0;
3243 int segs = 0;
3244 int fd = -1;
3246 init_note_info(&info);
3248 errno = 0;
3249 getrlimit(RLIMIT_CORE, &dumpsize);
3250 if (dumpsize.rlim_cur == 0)
3251 return 0;
3253 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3254 return (-errno);
3256 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3257 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3258 return (-errno);
3261 * Walk through target process memory mappings and
3262 * set up structure containing this information. After
3263 * this point vma_xxx functions can be used.
3265 if ((mm = vma_init()) == NULL)
3266 goto out;
3268 walk_memory_regions(mm, vma_walker);
3269 segs = vma_get_mapping_count(mm);
3272 * Construct valid coredump ELF header. We also
3273 * add one more segment for notes.
3275 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3276 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3277 goto out;
3279 /* fill in the in-memory version of notes */
3280 if (fill_note_info(&info, signr, env) < 0)
3281 goto out;
3283 offset += sizeof (elf); /* elf header */
3284 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3286 /* write out notes program header */
3287 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3289 offset += info.notes_size;
3290 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3291 goto out;
3294 * ELF specification wants data to start at page boundary so
3295 * we align it here.
3297 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3300 * Write program headers for memory regions mapped in
3301 * the target process.
3303 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3304 (void) memset(&phdr, 0, sizeof (phdr));
3306 phdr.p_type = PT_LOAD;
3307 phdr.p_offset = offset;
3308 phdr.p_vaddr = vma->vma_start;
3309 phdr.p_paddr = 0;
3310 phdr.p_filesz = vma_dump_size(vma);
3311 offset += phdr.p_filesz;
3312 phdr.p_memsz = vma->vma_end - vma->vma_start;
3313 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3314 if (vma->vma_flags & PROT_WRITE)
3315 phdr.p_flags |= PF_W;
3316 if (vma->vma_flags & PROT_EXEC)
3317 phdr.p_flags |= PF_X;
3318 phdr.p_align = ELF_EXEC_PAGESIZE;
3320 bswap_phdr(&phdr, 1);
3321 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3322 goto out;
3327 * Next we write notes just after program headers. No
3328 * alignment needed here.
3330 if (write_note_info(&info, fd) < 0)
3331 goto out;
3333 /* align data to page boundary */
3334 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3335 goto out;
3338 * Finally we can dump process memory into corefile as well.
3340 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3341 abi_ulong addr;
3342 abi_ulong end;
3344 end = vma->vma_start + vma_dump_size(vma);
3346 for (addr = vma->vma_start; addr < end;
3347 addr += TARGET_PAGE_SIZE) {
3348 char page[TARGET_PAGE_SIZE];
3349 int error;
3352 * Read in page from target process memory and
3353 * write it to coredump file.
3355 error = copy_from_user(page, addr, sizeof (page));
3356 if (error != 0) {
3357 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3358 addr);
3359 errno = -error;
3360 goto out;
3362 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3363 goto out;
3367 out:
3368 free_note_info(&info);
3369 if (mm != NULL)
3370 vma_delete(mm);
3371 (void) close(fd);
3373 if (errno != 0)
3374 return (-errno);
3375 return (0);
3377 #endif /* USE_ELF_CORE_DUMP */
3379 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3381 init_thread(regs, infop);