hw/timer/hpet: Fix debug format strings
[qemu.git] / hw / timer / hpet.c
blobedaa5a0adfb51e1bb042c93ff0ec66a5652ecc4d
1 /*
2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
29 #include "hw/irq.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/rtc/mc146818rtc.h"
36 #include "hw/rtc/mc146818rtc_regs.h"
37 #include "migration/vmstate.h"
38 #include "hw/timer/i8254.h"
39 #include "exec/address-spaces.h"
40 #include "qom/object.h"
42 //#define HPET_DEBUG
43 #ifdef HPET_DEBUG
44 #define DPRINTF printf
45 #else
46 #define DPRINTF(...)
47 #endif
49 #define HPET_MSI_SUPPORT 0
51 typedef struct HPETState HPETState;
52 DECLARE_INSTANCE_CHECKER(HPETState, HPET,
53 TYPE_HPET)
55 struct HPETState;
56 typedef struct HPETTimer { /* timers */
57 uint8_t tn; /*timer number*/
58 QEMUTimer *qemu_timer;
59 struct HPETState *state;
60 /* Memory-mapped, software visible timer registers */
61 uint64_t config; /* configuration/cap */
62 uint64_t cmp; /* comparator */
63 uint64_t fsb; /* FSB route */
64 /* Hidden register state */
65 uint64_t period; /* Last value written to comparator */
66 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
67 * mode. Next pop will be actual timer expiration.
69 } HPETTimer;
71 struct HPETState {
72 /*< private >*/
73 SysBusDevice parent_obj;
74 /*< public >*/
76 MemoryRegion iomem;
77 uint64_t hpet_offset;
78 bool hpet_offset_saved;
79 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
80 uint32_t flags;
81 uint8_t rtc_irq_level;
82 qemu_irq pit_enabled;
83 uint8_t num_timers;
84 uint32_t intcap;
85 HPETTimer timer[HPET_MAX_TIMERS];
87 /* Memory-mapped, software visible registers */
88 uint64_t capability; /* capabilities */
89 uint64_t config; /* configuration */
90 uint64_t isr; /* interrupt status reg */
91 uint64_t hpet_counter; /* main counter */
92 uint8_t hpet_id; /* instance id */
95 static uint32_t hpet_in_legacy_mode(HPETState *s)
97 return s->config & HPET_CFG_LEGACY;
100 static uint32_t timer_int_route(struct HPETTimer *timer)
102 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
105 static uint32_t timer_fsb_route(HPETTimer *t)
107 return t->config & HPET_TN_FSB_ENABLE;
110 static uint32_t hpet_enabled(HPETState *s)
112 return s->config & HPET_CFG_ENABLE;
115 static uint32_t timer_is_periodic(HPETTimer *t)
117 return t->config & HPET_TN_PERIODIC;
120 static uint32_t timer_enabled(HPETTimer *t)
122 return t->config & HPET_TN_ENABLE;
125 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
127 return ((int32_t)(b - a) < 0);
130 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
132 return ((int64_t)(b - a) < 0);
135 static uint64_t ticks_to_ns(uint64_t value)
137 return value * HPET_CLK_PERIOD;
140 static uint64_t ns_to_ticks(uint64_t value)
142 return value / HPET_CLK_PERIOD;
145 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
147 new &= mask;
148 new |= old & ~mask;
149 return new;
152 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
154 return (!(old & mask) && (new & mask));
157 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
159 return ((old & mask) && !(new & mask));
162 static uint64_t hpet_get_ticks(HPETState *s)
164 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
168 * calculate diff between comparator value and current ticks
170 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
173 if (t->config & HPET_TN_32BIT) {
174 uint32_t diff, cmp;
176 cmp = (uint32_t)t->cmp;
177 diff = cmp - (uint32_t)current;
178 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
179 return (uint64_t)diff;
180 } else {
181 uint64_t diff, cmp;
183 cmp = t->cmp;
184 diff = cmp - current;
185 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
186 return diff;
190 static void update_irq(struct HPETTimer *timer, int set)
192 uint64_t mask;
193 HPETState *s;
194 int route;
196 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
197 /* if LegacyReplacementRoute bit is set, HPET specification requires
198 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
199 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
201 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
202 } else {
203 route = timer_int_route(timer);
205 s = timer->state;
206 mask = 1 << timer->tn;
207 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
208 s->isr &= ~mask;
209 if (!timer_fsb_route(timer)) {
210 qemu_irq_lower(s->irqs[route]);
212 } else if (timer_fsb_route(timer)) {
213 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
214 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
215 NULL);
216 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
217 s->isr |= mask;
218 qemu_irq_raise(s->irqs[route]);
219 } else {
220 s->isr &= ~mask;
221 qemu_irq_pulse(s->irqs[route]);
225 static int hpet_pre_save(void *opaque)
227 HPETState *s = opaque;
229 /* save current counter value */
230 if (hpet_enabled(s)) {
231 s->hpet_counter = hpet_get_ticks(s);
234 return 0;
237 static int hpet_pre_load(void *opaque)
239 HPETState *s = opaque;
241 /* version 1 only supports 3, later versions will load the actual value */
242 s->num_timers = HPET_MIN_TIMERS;
243 return 0;
246 static bool hpet_validate_num_timers(void *opaque, int version_id)
248 HPETState *s = opaque;
250 if (s->num_timers < HPET_MIN_TIMERS) {
251 return false;
252 } else if (s->num_timers > HPET_MAX_TIMERS) {
253 return false;
255 return true;
258 static int hpet_post_load(void *opaque, int version_id)
260 HPETState *s = opaque;
262 /* Recalculate the offset between the main counter and guest time */
263 if (!s->hpet_offset_saved) {
264 s->hpet_offset = ticks_to_ns(s->hpet_counter)
265 - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
268 /* Push number of timers into capability returned via HPET_ID */
269 s->capability &= ~HPET_ID_NUM_TIM_MASK;
270 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
271 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
273 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
274 s->flags &= ~(1 << HPET_MSI_SUPPORT);
275 if (s->timer[0].config & HPET_TN_FSB_CAP) {
276 s->flags |= 1 << HPET_MSI_SUPPORT;
278 return 0;
281 static bool hpet_offset_needed(void *opaque)
283 HPETState *s = opaque;
285 return hpet_enabled(s) && s->hpet_offset_saved;
288 static bool hpet_rtc_irq_level_needed(void *opaque)
290 HPETState *s = opaque;
292 return s->rtc_irq_level != 0;
295 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
296 .name = "hpet/rtc_irq_level",
297 .version_id = 1,
298 .minimum_version_id = 1,
299 .needed = hpet_rtc_irq_level_needed,
300 .fields = (VMStateField[]) {
301 VMSTATE_UINT8(rtc_irq_level, HPETState),
302 VMSTATE_END_OF_LIST()
306 static const VMStateDescription vmstate_hpet_offset = {
307 .name = "hpet/offset",
308 .version_id = 1,
309 .minimum_version_id = 1,
310 .needed = hpet_offset_needed,
311 .fields = (VMStateField[]) {
312 VMSTATE_UINT64(hpet_offset, HPETState),
313 VMSTATE_END_OF_LIST()
317 static const VMStateDescription vmstate_hpet_timer = {
318 .name = "hpet_timer",
319 .version_id = 1,
320 .minimum_version_id = 1,
321 .fields = (VMStateField[]) {
322 VMSTATE_UINT8(tn, HPETTimer),
323 VMSTATE_UINT64(config, HPETTimer),
324 VMSTATE_UINT64(cmp, HPETTimer),
325 VMSTATE_UINT64(fsb, HPETTimer),
326 VMSTATE_UINT64(period, HPETTimer),
327 VMSTATE_UINT8(wrap_flag, HPETTimer),
328 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
329 VMSTATE_END_OF_LIST()
333 static const VMStateDescription vmstate_hpet = {
334 .name = "hpet",
335 .version_id = 2,
336 .minimum_version_id = 1,
337 .pre_save = hpet_pre_save,
338 .pre_load = hpet_pre_load,
339 .post_load = hpet_post_load,
340 .fields = (VMStateField[]) {
341 VMSTATE_UINT64(config, HPETState),
342 VMSTATE_UINT64(isr, HPETState),
343 VMSTATE_UINT64(hpet_counter, HPETState),
344 VMSTATE_UINT8_V(num_timers, HPETState, 2),
345 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
346 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
347 vmstate_hpet_timer, HPETTimer),
348 VMSTATE_END_OF_LIST()
350 .subsections = (const VMStateDescription*[]) {
351 &vmstate_hpet_rtc_irq_level,
352 &vmstate_hpet_offset,
353 NULL
358 * timer expiration callback
360 static void hpet_timer(void *opaque)
362 HPETTimer *t = opaque;
363 uint64_t diff;
365 uint64_t period = t->period;
366 uint64_t cur_tick = hpet_get_ticks(t->state);
368 if (timer_is_periodic(t) && period != 0) {
369 if (t->config & HPET_TN_32BIT) {
370 while (hpet_time_after(cur_tick, t->cmp)) {
371 t->cmp = (uint32_t)(t->cmp + t->period);
373 } else {
374 while (hpet_time_after64(cur_tick, t->cmp)) {
375 t->cmp += period;
378 diff = hpet_calculate_diff(t, cur_tick);
379 timer_mod(t->qemu_timer,
380 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
381 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
382 if (t->wrap_flag) {
383 diff = hpet_calculate_diff(t, cur_tick);
384 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
385 (int64_t)ticks_to_ns(diff));
386 t->wrap_flag = 0;
389 update_irq(t, 1);
392 static void hpet_set_timer(HPETTimer *t)
394 uint64_t diff;
395 uint32_t wrap_diff; /* how many ticks until we wrap? */
396 uint64_t cur_tick = hpet_get_ticks(t->state);
398 /* whenever new timer is being set up, make sure wrap_flag is 0 */
399 t->wrap_flag = 0;
400 diff = hpet_calculate_diff(t, cur_tick);
402 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
403 * counter wraps in addition to an interrupt with comparator match.
405 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
406 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
407 if (wrap_diff < (uint32_t)diff) {
408 diff = wrap_diff;
409 t->wrap_flag = 1;
412 timer_mod(t->qemu_timer,
413 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
416 static void hpet_del_timer(HPETTimer *t)
418 timer_del(t->qemu_timer);
419 update_irq(t, 0);
422 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
423 unsigned size)
425 HPETState *s = opaque;
426 uint64_t cur_tick, index;
428 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
429 index = addr;
430 /*address range of all TN regs*/
431 if (index >= 0x100 && index <= 0x3ff) {
432 uint8_t timer_id = (addr - 0x100) / 0x20;
433 HPETTimer *timer = &s->timer[timer_id];
435 if (timer_id > s->num_timers) {
436 DPRINTF("qemu: timer id out of range\n");
437 return 0;
440 switch ((addr - 0x100) % 0x20) {
441 case HPET_TN_CFG:
442 return timer->config;
443 case HPET_TN_CFG + 4: // Interrupt capabilities
444 return timer->config >> 32;
445 case HPET_TN_CMP: // comparator register
446 return timer->cmp;
447 case HPET_TN_CMP + 4:
448 return timer->cmp >> 32;
449 case HPET_TN_ROUTE:
450 return timer->fsb;
451 case HPET_TN_ROUTE + 4:
452 return timer->fsb >> 32;
453 default:
454 DPRINTF("qemu: invalid hpet_ram_readl\n");
455 break;
457 } else {
458 switch (index) {
459 case HPET_ID:
460 return s->capability;
461 case HPET_PERIOD:
462 return s->capability >> 32;
463 case HPET_CFG:
464 return s->config;
465 case HPET_CFG + 4:
466 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
467 return 0;
468 case HPET_COUNTER:
469 if (hpet_enabled(s)) {
470 cur_tick = hpet_get_ticks(s);
471 } else {
472 cur_tick = s->hpet_counter;
474 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
475 return cur_tick;
476 case HPET_COUNTER + 4:
477 if (hpet_enabled(s)) {
478 cur_tick = hpet_get_ticks(s);
479 } else {
480 cur_tick = s->hpet_counter;
482 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
483 return cur_tick >> 32;
484 case HPET_STATUS:
485 return s->isr;
486 default:
487 DPRINTF("qemu: invalid hpet_ram_readl\n");
488 break;
491 return 0;
494 static void hpet_ram_write(void *opaque, hwaddr addr,
495 uint64_t value, unsigned size)
497 int i;
498 HPETState *s = opaque;
499 uint64_t old_val, new_val, val, index;
501 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = 0x%" PRIx64 "\n",
502 addr, value);
503 index = addr;
504 old_val = hpet_ram_read(opaque, addr, 4);
505 new_val = value;
507 /*address range of all TN regs*/
508 if (index >= 0x100 && index <= 0x3ff) {
509 uint8_t timer_id = (addr - 0x100) / 0x20;
510 HPETTimer *timer = &s->timer[timer_id];
512 DPRINTF("qemu: hpet_ram_writel timer_id = 0x%x\n", timer_id);
513 if (timer_id > s->num_timers) {
514 DPRINTF("qemu: timer id out of range\n");
515 return;
517 switch ((addr - 0x100) % 0x20) {
518 case HPET_TN_CFG:
519 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
520 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
521 update_irq(timer, 0);
523 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
524 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
525 if (new_val & HPET_TN_32BIT) {
526 timer->cmp = (uint32_t)timer->cmp;
527 timer->period = (uint32_t)timer->period;
529 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
530 hpet_enabled(s)) {
531 hpet_set_timer(timer);
532 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
533 hpet_del_timer(timer);
535 break;
536 case HPET_TN_CFG + 4: // Interrupt capabilities
537 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
538 break;
539 case HPET_TN_CMP: // comparator register
540 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
541 if (timer->config & HPET_TN_32BIT) {
542 new_val = (uint32_t)new_val;
544 if (!timer_is_periodic(timer)
545 || (timer->config & HPET_TN_SETVAL)) {
546 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
548 if (timer_is_periodic(timer)) {
550 * FIXME: Clamp period to reasonable min value?
551 * Clamp period to reasonable max value
553 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
554 timer->period =
555 (timer->period & 0xffffffff00000000ULL) | new_val;
557 timer->config &= ~HPET_TN_SETVAL;
558 if (hpet_enabled(s)) {
559 hpet_set_timer(timer);
561 break;
562 case HPET_TN_CMP + 4: // comparator register high order
563 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
564 if (!timer_is_periodic(timer)
565 || (timer->config & HPET_TN_SETVAL)) {
566 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
567 } else {
569 * FIXME: Clamp period to reasonable min value?
570 * Clamp period to reasonable max value
572 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
573 timer->period =
574 (timer->period & 0xffffffffULL) | new_val << 32;
576 timer->config &= ~HPET_TN_SETVAL;
577 if (hpet_enabled(s)) {
578 hpet_set_timer(timer);
580 break;
581 case HPET_TN_ROUTE:
582 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
583 break;
584 case HPET_TN_ROUTE + 4:
585 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
586 break;
587 default:
588 DPRINTF("qemu: invalid hpet_ram_writel\n");
589 break;
591 return;
592 } else {
593 switch (index) {
594 case HPET_ID:
595 return;
596 case HPET_CFG:
597 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
598 s->config = (s->config & 0xffffffff00000000ULL) | val;
599 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
600 /* Enable main counter and interrupt generation. */
601 s->hpet_offset =
602 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
603 for (i = 0; i < s->num_timers; i++) {
604 if ((&s->timer[i])->cmp != ~0ULL) {
605 hpet_set_timer(&s->timer[i]);
608 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
609 /* Halt main counter and disable interrupt generation. */
610 s->hpet_counter = hpet_get_ticks(s);
611 for (i = 0; i < s->num_timers; i++) {
612 hpet_del_timer(&s->timer[i]);
615 /* i8254 and RTC output pins are disabled
616 * when HPET is in legacy mode */
617 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
618 qemu_set_irq(s->pit_enabled, 0);
619 qemu_irq_lower(s->irqs[0]);
620 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
621 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
622 qemu_irq_lower(s->irqs[0]);
623 qemu_set_irq(s->pit_enabled, 1);
624 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
626 break;
627 case HPET_CFG + 4:
628 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
629 break;
630 case HPET_STATUS:
631 val = new_val & s->isr;
632 for (i = 0; i < s->num_timers; i++) {
633 if (val & (1 << i)) {
634 update_irq(&s->timer[i], 0);
637 break;
638 case HPET_COUNTER:
639 if (hpet_enabled(s)) {
640 DPRINTF("qemu: Writing counter while HPET enabled!\n");
642 s->hpet_counter =
643 (s->hpet_counter & 0xffffffff00000000ULL) | value;
644 DPRINTF("qemu: HPET counter written. ctr = 0x%" PRIx64 " -> "
645 "%" PRIx64 "\n", value, s->hpet_counter);
646 break;
647 case HPET_COUNTER + 4:
648 if (hpet_enabled(s)) {
649 DPRINTF("qemu: Writing counter while HPET enabled!\n");
651 s->hpet_counter =
652 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
653 DPRINTF("qemu: HPET counter + 4 written. ctr = 0x%" PRIx64 " -> "
654 "%" PRIx64 "\n", value, s->hpet_counter);
655 break;
656 default:
657 DPRINTF("qemu: invalid hpet_ram_writel\n");
658 break;
663 static const MemoryRegionOps hpet_ram_ops = {
664 .read = hpet_ram_read,
665 .write = hpet_ram_write,
666 .valid = {
667 .min_access_size = 4,
668 .max_access_size = 4,
670 .endianness = DEVICE_NATIVE_ENDIAN,
673 static void hpet_reset(DeviceState *d)
675 HPETState *s = HPET(d);
676 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
677 int i;
679 for (i = 0; i < s->num_timers; i++) {
680 HPETTimer *timer = &s->timer[i];
682 hpet_del_timer(timer);
683 timer->cmp = ~0ULL;
684 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
685 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
686 timer->config |= HPET_TN_FSB_CAP;
688 /* advertise availability of ioapic int */
689 timer->config |= (uint64_t)s->intcap << 32;
690 timer->period = 0ULL;
691 timer->wrap_flag = 0;
694 qemu_set_irq(s->pit_enabled, 1);
695 s->hpet_counter = 0ULL;
696 s->hpet_offset = 0ULL;
697 s->config = 0ULL;
698 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
699 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
701 /* to document that the RTC lowers its output on reset as well */
702 s->rtc_irq_level = 0;
705 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
707 HPETState *s = HPET(opaque);
709 if (n == HPET_LEGACY_PIT_INT) {
710 if (!hpet_in_legacy_mode(s)) {
711 qemu_set_irq(s->irqs[0], level);
713 } else {
714 s->rtc_irq_level = level;
715 if (!hpet_in_legacy_mode(s)) {
716 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
721 static void hpet_init(Object *obj)
723 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
724 HPETState *s = HPET(obj);
726 /* HPET Area */
727 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
728 sysbus_init_mmio(sbd, &s->iomem);
731 static void hpet_realize(DeviceState *dev, Error **errp)
733 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
734 HPETState *s = HPET(dev);
735 int i;
736 HPETTimer *timer;
738 if (!s->intcap) {
739 warn_report("Hpet's intcap not initialized");
741 if (hpet_cfg.count == UINT8_MAX) {
742 /* first instance */
743 hpet_cfg.count = 0;
746 if (hpet_cfg.count == 8) {
747 error_setg(errp, "Only 8 instances of HPET is allowed");
748 return;
751 s->hpet_id = hpet_cfg.count++;
753 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
754 sysbus_init_irq(sbd, &s->irqs[i]);
757 if (s->num_timers < HPET_MIN_TIMERS) {
758 s->num_timers = HPET_MIN_TIMERS;
759 } else if (s->num_timers > HPET_MAX_TIMERS) {
760 s->num_timers = HPET_MAX_TIMERS;
762 for (i = 0; i < HPET_MAX_TIMERS; i++) {
763 timer = &s->timer[i];
764 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
765 timer->tn = i;
766 timer->state = s;
769 /* 64-bit main counter; LegacyReplacementRoute. */
770 s->capability = 0x8086a001ULL;
771 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
772 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
774 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
775 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
778 static Property hpet_device_properties[] = {
779 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
780 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
781 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
782 DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
783 DEFINE_PROP_END_OF_LIST(),
786 static void hpet_device_class_init(ObjectClass *klass, void *data)
788 DeviceClass *dc = DEVICE_CLASS(klass);
790 dc->realize = hpet_realize;
791 dc->reset = hpet_reset;
792 dc->vmsd = &vmstate_hpet;
793 device_class_set_props(dc, hpet_device_properties);
796 static const TypeInfo hpet_device_info = {
797 .name = TYPE_HPET,
798 .parent = TYPE_SYS_BUS_DEVICE,
799 .instance_size = sizeof(HPETState),
800 .instance_init = hpet_init,
801 .class_init = hpet_device_class_init,
804 static void hpet_register_types(void)
806 type_register_static(&hpet_device_info);
809 type_init(hpet_register_types)