2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/pc-dimm.h"
75 #include "hw/mem/nvdimm.h"
76 #include "hw/acpi/generic_event_device.h"
77 #include "hw/virtio/virtio-iommu.h"
78 #include "hw/char/pl011.h"
80 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
81 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
84 MachineClass *mc = MACHINE_CLASS(oc); \
85 virt_machine_##major##_##minor##_options(mc); \
86 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 static const TypeInfo machvirt_##major##_##minor##_info = { \
92 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
93 .parent = TYPE_VIRT_MACHINE, \
94 .class_init = virt_##major##_##minor##_class_init, \
96 static void machvirt_machine_##major##_##minor##_init(void) \
98 type_register_static(&machvirt_##major##_##minor##_info); \
100 type_init(machvirt_machine_##major##_##minor##_init);
102 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
103 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
104 #define DEFINE_VIRT_MACHINE(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
108 /* Number of external interrupt lines to configure the GIC with */
111 #define PLATFORM_BUS_NUM_IRQS 64
113 /* Legacy RAM limit in GB (< version 4.0) */
114 #define LEGACY_RAMLIMIT_GB 255
115 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
117 /* Addresses and sizes of our components.
118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
119 * 128MB..256MB is used for miscellaneous device I/O.
120 * 256MB..1GB is reserved for possible future PCI support (ie where the
121 * PCI memory window will go if we add a PCI host controller).
122 * 1GB and up is RAM (which may happily spill over into the
123 * high memory region beyond 4GB).
124 * This represents a compromise between how much RAM can be given to
125 * a 32 bit VM and leaving space for expansion and in particular for PCI.
126 * Note that devices should generally be placed at multiples of 0x10000,
127 * to accommodate guests using 64K pages.
129 static const MemMapEntry base_memmap
[] = {
130 /* Space up to 0x8000000 is reserved for a boot ROM */
131 [VIRT_FLASH
] = { 0, 0x08000000 },
132 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
134 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
135 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
136 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
137 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
138 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
139 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
140 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
141 /* This redistributor space allows up to 2*64kB*123 CPUs */
142 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
143 [VIRT_UART
] = { 0x09000000, 0x00001000 },
144 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
145 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
146 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
147 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
148 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
149 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
150 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
151 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
152 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
153 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
154 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
155 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
156 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
157 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
158 /* Actual RAM size depends on initial RAM and device memory settings */
159 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
163 * Highmem IO Regions: This memory map is floating, located after the RAM.
164 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
165 * top of the RAM, so that its base get the same alignment as the size,
166 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
167 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
168 * Note the extended_memmap is sized so that it eventually also includes the
169 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
170 * index of base_memmap).
172 static MemMapEntry extended_memmap
[] = {
173 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
174 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
175 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
176 /* Second PCIe window */
177 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
180 static const int a15irqmap
[] = {
183 [VIRT_PCIE
] = 3, /* ... to 6 */
185 [VIRT_SECURE_UART
] = 8,
187 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
188 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
189 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
190 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
193 static const char *valid_cpus
[] = {
194 ARM_CPU_TYPE_NAME("cortex-a7"),
195 ARM_CPU_TYPE_NAME("cortex-a15"),
196 ARM_CPU_TYPE_NAME("cortex-a53"),
197 ARM_CPU_TYPE_NAME("cortex-a57"),
198 ARM_CPU_TYPE_NAME("cortex-a72"),
199 ARM_CPU_TYPE_NAME("host"),
200 ARM_CPU_TYPE_NAME("max"),
203 static bool cpu_type_valid(const char *cpu
)
207 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
208 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
215 static void create_fdt(VirtMachineState
*vms
)
217 MachineState
*ms
= MACHINE(vms
);
218 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
219 void *fdt
= create_device_tree(&vms
->fdt_size
);
222 error_report("create_device_tree() failed");
229 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
230 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
231 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
233 /* /chosen must exist for load_dtb to fill in necessary properties later */
234 qemu_fdt_add_subnode(fdt
, "/chosen");
236 /* Clock node, for the benefit of the UART. The kernel device tree
237 * binding documentation claims the PL011 node clock properties are
238 * optional but in practice if you omit them the kernel refuses to
239 * probe for the device.
241 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
242 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
243 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
244 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
245 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
246 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
248 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
250 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
251 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
252 uint32_t *matrix
= g_malloc0(size
);
255 for (i
= 0; i
< nb_numa_nodes
; i
++) {
256 for (j
= 0; j
< nb_numa_nodes
; j
++) {
257 idx
= (i
* nb_numa_nodes
+ j
) * 3;
258 matrix
[idx
+ 0] = cpu_to_be32(i
);
259 matrix
[idx
+ 1] = cpu_to_be32(j
);
261 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
265 qemu_fdt_add_subnode(fdt
, "/distance-map");
266 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
267 "numa-distance-map-v1");
268 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
274 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
276 /* On real hardware these interrupts are level-triggered.
277 * On KVM they were edge-triggered before host kernel version 4.4,
278 * and level-triggered afterwards.
279 * On emulated QEMU they are level-triggered.
281 * Getting the DTB info about them wrong is awkward for some
283 * pre-4.8 ignore the DT and leave the interrupt configured
284 * with whatever the GIC reset value (or the bootloader) left it at
285 * 4.8 before rc6 honour the incorrect data by programming it back
286 * into the GIC, causing problems
287 * 4.8rc6 and later ignore the DT and always write "level triggered"
290 * For backwards-compatibility, virt-2.8 and earlier will continue
291 * to say these are edge-triggered, but later machines will report
292 * the correct information.
295 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
296 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
298 if (vmc
->claim_edge_triggered_timers
) {
299 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
302 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
303 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
304 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
305 (1 << vms
->smp_cpus
) - 1);
308 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
310 armcpu
= ARM_CPU(qemu_get_cpu(0));
311 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
312 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
313 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
314 compat
, sizeof(compat
));
316 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
319 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
320 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
321 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
322 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
323 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
324 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
327 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
331 const MachineState
*ms
= MACHINE(vms
);
334 * From Documentation/devicetree/bindings/arm/cpus.txt
335 * On ARM v8 64-bit systems value should be set to 2,
336 * that corresponds to the MPIDR_EL1 register size.
337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338 * in the system, #address-cells can be set to 1, since
339 * MPIDR_EL1[63:32] bits are not used for CPUs
342 * Here we actually don't know whether our system is 32- or 64-bit one.
343 * The simplest way to go is to examine affinity IDs of all our CPUs. If
344 * at least one of them has Aff3 populated, we set #address-cells to 2.
346 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
347 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
349 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
355 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
356 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
357 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
359 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
360 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
361 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
362 CPUState
*cs
= CPU(armcpu
);
364 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
365 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
366 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
367 armcpu
->dtb_compatible
);
369 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
370 && vms
->smp_cpus
> 1) {
371 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
372 "enable-method", "psci");
375 if (addr_cells
== 2) {
376 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
377 armcpu
->mp_affinity
);
379 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
380 armcpu
->mp_affinity
);
383 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
384 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
385 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
392 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
396 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
397 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
398 vms
->memmap
[VIRT_GIC_ITS
].base
);
399 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
400 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
402 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
403 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
404 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
405 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
406 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
410 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
414 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
415 vms
->memmap
[VIRT_GIC_V2M
].base
);
416 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
417 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
418 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
419 "arm,gic-v2m-frame");
420 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
421 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
422 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
423 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
424 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
428 static void fdt_add_gic_node(VirtMachineState
*vms
)
432 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
433 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
435 nodename
= g_strdup_printf("/intc@%" PRIx64
,
436 vms
->memmap
[VIRT_GIC_DIST
].base
);
437 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
438 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
439 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
440 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
441 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
442 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
443 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
444 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
446 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
449 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
450 "#redistributor-regions", nb_redist_regions
);
452 if (nb_redist_regions
== 1) {
453 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
454 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
455 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
456 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
457 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
459 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
460 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
461 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
462 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
463 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
464 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
465 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
469 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
476 "arm,cortex-a15-gic");
478 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
479 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
480 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
481 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
482 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
484 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
485 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
486 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
487 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
488 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
489 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
490 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
491 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
492 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
493 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
494 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
495 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
499 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
503 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
507 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
510 armcpu
= ARM_CPU(cpu
);
511 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
515 if (kvm_irqchip_in_kernel()) {
516 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
518 kvm_arm_pmu_init(cpu
);
522 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
523 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
524 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
525 (1 << vms
->smp_cpus
) - 1);
528 armcpu
= ARM_CPU(qemu_get_cpu(0));
529 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
530 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
531 const char compat
[] = "arm,armv8-pmuv3";
532 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
533 compat
, sizeof(compat
));
534 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
535 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
539 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
542 MachineState
*ms
= MACHINE(vms
);
543 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
544 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
547 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
550 dev
= qdev_create(NULL
, TYPE_ACPI_GED
);
551 qdev_prop_set_uint32(dev
, "ged-event", event
);
553 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
554 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
555 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
557 qdev_init_nofail(dev
);
562 static void create_its(VirtMachineState
*vms
)
564 const char *itsclass
= its_class_name();
568 /* Do nothing if not supported */
572 dev
= qdev_create(NULL
, itsclass
);
574 object_property_set_link(OBJECT(dev
), OBJECT(vms
->gic
), "parent-gicv3",
576 qdev_init_nofail(dev
);
577 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
579 fdt_add_its_gic_node(vms
);
582 static void create_v2m(VirtMachineState
*vms
)
585 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
588 dev
= qdev_create(NULL
, "arm-gicv2m");
589 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
590 qdev_prop_set_uint32(dev
, "base-spi", irq
);
591 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
592 qdev_init_nofail(dev
);
594 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
595 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
596 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
599 fdt_add_v2m_gic_node(vms
);
602 static void create_gic(VirtMachineState
*vms
)
604 MachineState
*ms
= MACHINE(vms
);
605 /* We create a standalone GIC */
606 SysBusDevice
*gicbusdev
;
608 int type
= vms
->gic_version
, i
;
609 unsigned int smp_cpus
= ms
->smp
.cpus
;
610 uint32_t nb_redist_regions
= 0;
612 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
614 vms
->gic
= qdev_create(NULL
, gictype
);
615 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
616 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
617 /* Note that the num-irq property counts both internal and external
618 * interrupts; there are always 32 of the former (mandated by GIC spec).
620 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
621 if (!kvm_irqchip_in_kernel()) {
622 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
626 uint32_t redist0_capacity
=
627 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
628 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
630 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
632 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
634 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
636 if (nb_redist_regions
== 2) {
637 uint32_t redist1_capacity
=
638 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
640 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
641 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
644 if (!kvm_irqchip_in_kernel()) {
645 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
649 qdev_init_nofail(vms
->gic
);
650 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
651 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
653 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
654 if (nb_redist_regions
== 2) {
655 sysbus_mmio_map(gicbusdev
, 2,
656 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
659 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
661 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
662 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
666 /* Wire the outputs from each CPU's generic timer and the GICv3
667 * maintenance interrupt signal to the appropriate GIC PPI inputs,
668 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
670 for (i
= 0; i
< smp_cpus
; i
++) {
671 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
672 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
674 /* Mapping from the output timer irq lines from the CPU to the
675 * GIC PPI inputs we use for the virt board.
677 const int timer_irq
[] = {
678 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
679 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
680 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
681 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
684 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
685 qdev_connect_gpio_out(cpudev
, irq
,
686 qdev_get_gpio_in(vms
->gic
,
687 ppibase
+ timer_irq
[irq
]));
691 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
692 ppibase
+ ARCH_GIC_MAINT_IRQ
);
693 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
695 } else if (vms
->virt
) {
696 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
697 ppibase
+ ARCH_GIC_MAINT_IRQ
);
698 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
701 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
702 qdev_get_gpio_in(vms
->gic
, ppibase
705 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
706 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
707 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
708 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
709 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
710 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
711 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
714 fdt_add_gic_node(vms
);
716 if (type
== 3 && vms
->its
) {
718 } else if (type
== 2) {
723 static void create_uart(const VirtMachineState
*vms
, int uart
,
724 MemoryRegion
*mem
, Chardev
*chr
)
727 hwaddr base
= vms
->memmap
[uart
].base
;
728 hwaddr size
= vms
->memmap
[uart
].size
;
729 int irq
= vms
->irqmap
[uart
];
730 const char compat
[] = "arm,pl011\0arm,primecell";
731 const char clocknames
[] = "uartclk\0apb_pclk";
732 DeviceState
*dev
= qdev_create(NULL
, TYPE_PL011
);
733 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
735 qdev_prop_set_chr(dev
, "chardev", chr
);
736 qdev_init_nofail(dev
);
737 memory_region_add_subregion(mem
, base
,
738 sysbus_mmio_get_region(s
, 0));
739 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
741 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
742 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
743 /* Note that we can't use setprop_string because of the embedded NUL */
744 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
745 compat
, sizeof(compat
));
746 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
748 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
749 GIC_FDT_IRQ_TYPE_SPI
, irq
,
750 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
751 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
752 vms
->clock_phandle
, vms
->clock_phandle
);
753 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
754 clocknames
, sizeof(clocknames
));
756 if (uart
== VIRT_UART
) {
757 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
759 /* Mark as not usable by the normal world */
760 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
761 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
763 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
764 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
771 static void create_rtc(const VirtMachineState
*vms
)
774 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
775 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
776 int irq
= vms
->irqmap
[VIRT_RTC
];
777 const char compat
[] = "arm,pl031\0arm,primecell";
779 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
781 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
782 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
783 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
784 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
786 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
787 GIC_FDT_IRQ_TYPE_SPI
, irq
,
788 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
789 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
790 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
794 static DeviceState
*gpio_key_dev
;
795 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
797 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
800 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
802 /* use gpio Pin 3 for power button event */
803 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
807 static void create_gpio(const VirtMachineState
*vms
)
810 DeviceState
*pl061_dev
;
811 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
812 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
813 int irq
= vms
->irqmap
[VIRT_GPIO
];
814 const char compat
[] = "arm,pl061\0arm,primecell";
816 pl061_dev
= sysbus_create_simple("pl061", base
,
817 qdev_get_gpio_in(vms
->gic
, irq
));
819 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
820 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
821 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
822 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
824 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
825 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
826 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
827 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
828 GIC_FDT_IRQ_TYPE_SPI
, irq
,
829 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
830 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
831 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
832 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
834 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
835 qdev_get_gpio_in(pl061_dev
, 3));
836 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
837 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
838 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
839 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
841 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
842 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
843 "label", "GPIO Key Poweroff");
844 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
846 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
847 "gpios", phandle
, 3, 0);
851 static void create_virtio_devices(const VirtMachineState
*vms
)
854 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
856 /* We create the transports in forwards order. Since qbus_realize()
857 * prepends (not appends) new child buses, the incrementing loop below will
858 * create a list of virtio-mmio buses with decreasing base addresses.
860 * When a -device option is processed from the command line,
861 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
862 * order. The upshot is that -device options in increasing command line
863 * order are mapped to virtio-mmio buses with decreasing base addresses.
865 * When this code was originally written, that arrangement ensured that the
866 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
867 * the first -device on the command line. (The end-to-end order is a
868 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
869 * guest kernel's name-to-address assignment strategy.)
871 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
872 * the message, if not necessarily the code, of commit 70161ff336.
873 * Therefore the loop now establishes the inverse of the original intent.
875 * Unfortunately, we can't counteract the kernel change by reversing the
876 * loop; it would break existing command lines.
878 * In any case, the kernel makes no guarantee about the stability of
879 * enumeration order of virtio devices (as demonstrated by it changing
880 * between kernel versions). For reliable and stable identification
881 * of disks users must use UUIDs or similar mechanisms.
883 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
884 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
885 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
887 sysbus_create_simple("virtio-mmio", base
,
888 qdev_get_gpio_in(vms
->gic
, irq
));
891 /* We add dtb nodes in reverse order so that they appear in the finished
892 * device tree lowest address first.
894 * Note that this mapping is independent of the loop above. The previous
895 * loop influences virtio device to virtio transport assignment, whereas
896 * this loop controls how virtio transports are laid out in the dtb.
898 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
900 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
901 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
903 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
904 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
905 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
906 "compatible", "virtio,mmio");
907 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
909 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
910 GIC_FDT_IRQ_TYPE_SPI
, irq
,
911 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
912 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
917 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
919 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
921 const char *alias_prop_name
)
924 * Create a single flash device. We use the same parameters as
925 * the flash devices on the Versatile Express board.
927 DeviceState
*dev
= qdev_create(NULL
, TYPE_PFLASH_CFI01
);
929 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
930 qdev_prop_set_uint8(dev
, "width", 4);
931 qdev_prop_set_uint8(dev
, "device-width", 2);
932 qdev_prop_set_bit(dev
, "big-endian", false);
933 qdev_prop_set_uint16(dev
, "id0", 0x89);
934 qdev_prop_set_uint16(dev
, "id1", 0x18);
935 qdev_prop_set_uint16(dev
, "id2", 0x00);
936 qdev_prop_set_uint16(dev
, "id3", 0x00);
937 qdev_prop_set_string(dev
, "name", name
);
938 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
),
940 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
941 OBJECT(dev
), "drive", &error_abort
);
942 return PFLASH_CFI01(dev
);
945 static void virt_flash_create(VirtMachineState
*vms
)
947 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
948 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
951 static void virt_flash_map1(PFlashCFI01
*flash
,
952 hwaddr base
, hwaddr size
,
953 MemoryRegion
*sysmem
)
955 DeviceState
*dev
= DEVICE(flash
);
957 assert(size
% VIRT_FLASH_SECTOR_SIZE
== 0);
958 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
959 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
960 qdev_init_nofail(dev
);
962 memory_region_add_subregion(sysmem
, base
,
963 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
967 static void virt_flash_map(VirtMachineState
*vms
,
968 MemoryRegion
*sysmem
,
969 MemoryRegion
*secure_sysmem
)
972 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
973 * sysmem is the system memory space. secure_sysmem is the secure view
974 * of the system, and the first flash device should be made visible only
975 * there. The second flash device is visible to both secure and nonsecure.
976 * If sysmem == secure_sysmem this means there is no separate Secure
977 * address space and both flash devices are generally visible.
979 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
980 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
982 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
984 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
988 static void virt_flash_fdt(VirtMachineState
*vms
,
989 MemoryRegion
*sysmem
,
990 MemoryRegion
*secure_sysmem
)
992 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
993 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
996 if (sysmem
== secure_sysmem
) {
997 /* Report both flash devices as a single node in the DT */
998 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
999 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1000 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1001 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1002 2, flashbase
, 2, flashsize
,
1003 2, flashbase
+ flashsize
, 2, flashsize
);
1004 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1008 * Report the devices as separate nodes so we can mark one as
1009 * only visible to the secure world.
1011 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1012 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1013 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1014 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1015 2, flashbase
, 2, flashsize
);
1016 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1017 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1018 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1021 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1022 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1023 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1024 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1025 2, flashbase
+ flashsize
, 2, flashsize
);
1026 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1031 static bool virt_firmware_init(VirtMachineState
*vms
,
1032 MemoryRegion
*sysmem
,
1033 MemoryRegion
*secure_sysmem
)
1036 BlockBackend
*pflash_blk0
;
1038 /* Map legacy -drive if=pflash to machine properties */
1039 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1040 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1041 drive_get(IF_PFLASH
, 0, i
));
1044 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1046 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1054 error_report("The contents of the first flash device may be "
1055 "specified with -bios or with -drive if=pflash... "
1056 "but you cannot use both options at once");
1060 /* Fall back to -bios */
1062 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1064 error_report("Could not find ROM image '%s'", bios_name
);
1067 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1068 image_size
= load_image_mr(fname
, mr
);
1070 if (image_size
< 0) {
1071 error_report("Could not load ROM image '%s'", bios_name
);
1076 return pflash_blk0
|| bios_name
;
1079 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1081 MachineState
*ms
= MACHINE(vms
);
1082 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1083 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1087 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1088 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1090 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1091 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1092 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1093 "compatible", "qemu,fw-cfg-mmio");
1094 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1096 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1101 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1102 uint32_t gic_phandle
,
1103 int first_irq
, const char *nodename
)
1106 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1107 uint32_t *irq_map
= full_irq_map
;
1109 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1110 for (pin
= 0; pin
< 4; pin
++) {
1111 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1112 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1113 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1117 devfn
<< 8, 0, 0, /* devfn */
1118 pin
+ 1, /* PCI pin */
1119 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1121 /* Convert map to big endian */
1122 for (i
= 0; i
< 10; i
++) {
1123 irq_map
[i
] = cpu_to_be32(map
[i
]);
1129 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1130 full_irq_map
, sizeof(full_irq_map
));
1132 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1133 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1137 static void create_smmu(const VirtMachineState
*vms
,
1141 const char compat
[] = "arm,smmu-v3";
1142 int irq
= vms
->irqmap
[VIRT_SMMU
];
1144 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1145 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1146 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1149 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1153 dev
= qdev_create(NULL
, "arm-smmuv3");
1155 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1157 qdev_init_nofail(dev
);
1158 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1159 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1160 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1161 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1164 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1165 qemu_fdt_add_subnode(vms
->fdt
, node
);
1166 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1167 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1169 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1170 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1171 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1172 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1173 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1175 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1178 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1179 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1180 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1182 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1184 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1188 static void create_virtio_iommu_dt_bindings(VirtMachineState
*vms
, Error
**errp
)
1190 const char compat
[] = "virtio,pci-iommu";
1191 uint16_t bdf
= vms
->virtio_iommu_bdf
;
1194 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1196 node
= g_strdup_printf("%s/virtio_iommu@%d", vms
->pciehb_nodename
, bdf
);
1197 qemu_fdt_add_subnode(vms
->fdt
, node
);
1198 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1199 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg",
1200 1, bdf
<< 8, 1, 0, 1, 0,
1203 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1204 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1207 qemu_fdt_setprop_cells(vms
->fdt
, vms
->pciehb_nodename
, "iommu-map",
1208 0x0, vms
->iommu_phandle
, 0x0, bdf
,
1209 bdf
+ 1, vms
->iommu_phandle
, bdf
+ 1, 0xffff - bdf
);
1212 static void create_pcie(VirtMachineState
*vms
)
1214 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1215 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1216 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1217 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1218 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1219 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1220 hwaddr base_ecam
, size_ecam
;
1221 hwaddr base
= base_mmio
;
1223 int irq
= vms
->irqmap
[VIRT_PCIE
];
1224 MemoryRegion
*mmio_alias
;
1225 MemoryRegion
*mmio_reg
;
1226 MemoryRegion
*ecam_alias
;
1227 MemoryRegion
*ecam_reg
;
1233 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1234 qdev_init_nofail(dev
);
1236 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1237 base_ecam
= vms
->memmap
[ecam_id
].base
;
1238 size_ecam
= vms
->memmap
[ecam_id
].size
;
1239 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1240 /* Map only the first size_ecam bytes of ECAM space */
1241 ecam_alias
= g_new0(MemoryRegion
, 1);
1242 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1243 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1244 ecam_reg
, 0, size_ecam
);
1245 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1247 /* Map the MMIO window into system address space so as to expose
1248 * the section of PCI MMIO space which starts at the same base address
1249 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1252 mmio_alias
= g_new0(MemoryRegion
, 1);
1253 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1254 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1255 mmio_reg
, base_mmio
, size_mmio
);
1256 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1259 /* Map high MMIO space */
1260 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1262 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1263 mmio_reg
, base_mmio_high
, size_mmio_high
);
1264 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1268 /* Map IO port space */
1269 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1271 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1272 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1273 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1274 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1277 pci
= PCI_HOST_BRIDGE(dev
);
1279 for (i
= 0; i
< nb_nics
; i
++) {
1280 NICInfo
*nd
= &nd_table
[i
];
1283 nd
->model
= g_strdup("virtio");
1286 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1290 nodename
= vms
->pciehb_nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1291 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1292 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1293 "compatible", "pci-host-ecam-generic");
1294 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1295 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1296 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1297 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1298 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1300 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1302 if (vms
->msi_phandle
) {
1303 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1307 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1308 2, base_ecam
, 2, size_ecam
);
1311 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1312 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1313 2, base_pio
, 2, size_pio
,
1314 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1315 2, base_mmio
, 2, size_mmio
,
1316 1, FDT_PCI_RANGE_MMIO_64BIT
,
1318 2, base_mmio_high
, 2, size_mmio_high
);
1320 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1321 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1322 2, base_pio
, 2, size_pio
,
1323 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1324 2, base_mmio
, 2, size_mmio
);
1327 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1328 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1331 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1333 switch (vms
->iommu
) {
1334 case VIRT_IOMMU_SMMUV3
:
1335 create_smmu(vms
, pci
->bus
);
1336 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1337 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1340 g_assert_not_reached();
1345 static void create_platform_bus(VirtMachineState
*vms
)
1350 MemoryRegion
*sysmem
= get_system_memory();
1352 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1353 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1354 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1355 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1356 qdev_init_nofail(dev
);
1357 vms
->platform_bus_dev
= dev
;
1359 s
= SYS_BUS_DEVICE(dev
);
1360 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1361 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1362 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1365 memory_region_add_subregion(sysmem
,
1366 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1367 sysbus_mmio_get_region(s
, 0));
1370 static void create_secure_ram(VirtMachineState
*vms
,
1371 MemoryRegion
*secure_sysmem
)
1373 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1375 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1376 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1378 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1380 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1382 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1383 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1384 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1385 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1386 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1387 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1392 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1394 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1397 *fdt_size
= board
->fdt_size
;
1401 static void virt_build_smbios(VirtMachineState
*vms
)
1403 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1404 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1405 uint8_t *smbios_tables
, *smbios_anchor
;
1406 size_t smbios_tables_len
, smbios_anchor_len
;
1407 const char *product
= "QEMU Virtual Machine";
1409 if (kvm_enabled()) {
1410 product
= "KVM Virtual Machine";
1413 smbios_set_defaults("QEMU", product
,
1414 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1415 true, SMBIOS_ENTRY_POINT_30
);
1417 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1418 &smbios_anchor
, &smbios_anchor_len
);
1420 if (smbios_anchor
) {
1421 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1422 smbios_tables
, smbios_tables_len
);
1423 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1424 smbios_anchor
, smbios_anchor_len
);
1429 void virt_machine_done(Notifier
*notifier
, void *data
)
1431 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1433 MachineState
*ms
= MACHINE(vms
);
1434 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1435 struct arm_boot_info
*info
= &vms
->bootinfo
;
1436 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1439 * If the user provided a dtb, we assume the dynamic sysbus nodes
1440 * already are integrated there. This corresponds to a use case where
1441 * the dynamic sysbus nodes are complex and their generation is not yet
1442 * supported. In that case the user can take charge of the guest dt
1443 * while qemu takes charge of the qom stuff.
1445 if (info
->dtb_filename
== NULL
) {
1446 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1447 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1448 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1449 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1451 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1455 virt_acpi_setup(vms
);
1456 virt_build_smbios(vms
);
1459 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1461 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1462 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1464 if (!vmc
->disallow_affinity_adjustment
) {
1465 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1466 * GIC's target-list limitations. 32-bit KVM hosts currently
1467 * always create clusters of 4 CPUs, but that is expected to
1468 * change when they gain support for gicv3. When KVM is enabled
1469 * it will override the changes we make here, therefore our
1470 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1471 * and to improve SGI efficiency.
1473 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1474 clustersz
= GICV3_TARGETLIST_BITS
;
1476 clustersz
= GIC_TARGETLIST_BITS
;
1479 return arm_cpu_mp_affinity(idx
, clustersz
);
1482 static void virt_set_memmap(VirtMachineState
*vms
)
1484 MachineState
*ms
= MACHINE(vms
);
1485 hwaddr base
, device_memory_base
, device_memory_size
;
1488 vms
->memmap
= extended_memmap
;
1490 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1491 vms
->memmap
[i
] = base_memmap
[i
];
1494 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1495 error_report("unsupported number of memory slots: %"PRIu64
,
1501 * We compute the base of the high IO region depending on the
1502 * amount of initial and device memory. The device memory start/size
1503 * is aligned on 1GiB. We never put the high IO region below 256GiB
1504 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1505 * The device region size assumes 1GiB page max alignment per slot.
1507 device_memory_base
=
1508 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1509 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1511 /* Base address of the high IO region */
1512 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1513 if (base
< device_memory_base
) {
1514 error_report("maxmem/slots too huge");
1517 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1518 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1521 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1522 hwaddr size
= extended_memmap
[i
].size
;
1524 base
= ROUND_UP(base
, size
);
1525 vms
->memmap
[i
].base
= base
;
1526 vms
->memmap
[i
].size
= size
;
1529 vms
->highest_gpa
= base
- 1;
1530 if (device_memory_size
> 0) {
1531 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1532 ms
->device_memory
->base
= device_memory_base
;
1533 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1534 "device-memory", device_memory_size
);
1539 * finalize_gic_version - Determines the final gic_version
1540 * according to the gic-version property
1542 * Default GIC type is v2
1544 static void finalize_gic_version(VirtMachineState
*vms
)
1546 unsigned int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1548 if (kvm_enabled()) {
1551 if (!kvm_irqchip_in_kernel()) {
1552 switch (vms
->gic_version
) {
1553 case VIRT_GIC_VERSION_HOST
:
1555 "gic-version=host not relevant with kernel-irqchip=off "
1556 "as only userspace GICv2 is supported. Using v2 ...");
1558 case VIRT_GIC_VERSION_MAX
:
1559 case VIRT_GIC_VERSION_NOSEL
:
1560 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1562 case VIRT_GIC_VERSION_2
:
1564 case VIRT_GIC_VERSION_3
:
1566 "gic-version=3 is not supported with kernel-irqchip=off");
1571 probe_bitmap
= kvm_arm_vgic_probe();
1572 if (!probe_bitmap
) {
1573 error_report("Unable to determine GIC version supported by host");
1577 switch (vms
->gic_version
) {
1578 case VIRT_GIC_VERSION_HOST
:
1579 case VIRT_GIC_VERSION_MAX
:
1580 if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1581 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1583 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1586 case VIRT_GIC_VERSION_NOSEL
:
1587 if ((probe_bitmap
& KVM_ARM_VGIC_V2
) && max_cpus
<= GIC_NCPU
) {
1588 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1589 } else if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1591 * in case the host does not support v2 in-kernel emulation or
1592 * the end-user requested more than 8 VCPUs we now default
1593 * to v3. In any case defaulting to v2 would be broken.
1595 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1596 } else if (max_cpus
> GIC_NCPU
) {
1597 error_report("host only supports in-kernel GICv2 emulation "
1598 "but more than 8 vcpus are requested");
1602 case VIRT_GIC_VERSION_2
:
1603 case VIRT_GIC_VERSION_3
:
1607 /* Check chosen version is effectively supported by the host */
1608 if (vms
->gic_version
== VIRT_GIC_VERSION_2
&&
1609 !(probe_bitmap
& KVM_ARM_VGIC_V2
)) {
1610 error_report("host does not support in-kernel GICv2 emulation");
1612 } else if (vms
->gic_version
== VIRT_GIC_VERSION_3
&&
1613 !(probe_bitmap
& KVM_ARM_VGIC_V3
)) {
1614 error_report("host does not support in-kernel GICv3 emulation");
1621 switch (vms
->gic_version
) {
1622 case VIRT_GIC_VERSION_NOSEL
:
1623 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1625 case VIRT_GIC_VERSION_MAX
:
1626 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1628 case VIRT_GIC_VERSION_HOST
:
1629 error_report("gic-version=host requires KVM");
1631 case VIRT_GIC_VERSION_2
:
1632 case VIRT_GIC_VERSION_3
:
1637 static void machvirt_init(MachineState
*machine
)
1639 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1640 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1641 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1642 const CPUArchIdList
*possible_cpus
;
1643 MemoryRegion
*sysmem
= get_system_memory();
1644 MemoryRegion
*secure_sysmem
= NULL
;
1645 int n
, virt_max_cpus
;
1646 bool firmware_loaded
;
1647 bool aarch64
= true;
1648 bool has_ged
= !vmc
->no_ged
;
1649 unsigned int smp_cpus
= machine
->smp
.cpus
;
1650 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1653 * In accelerated mode, the memory map is computed earlier in kvm_type()
1654 * to create a VM with the right number of IPA bits.
1657 virt_set_memmap(vms
);
1660 /* We can probe only here because during property set
1661 * KVM is not available yet
1663 finalize_gic_version(vms
);
1665 if (!cpu_type_valid(machine
->cpu_type
)) {
1666 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1671 if (kvm_enabled()) {
1672 error_report("mach-virt: KVM does not support Security extensions");
1677 * The Secure view of the world is the same as the NonSecure,
1678 * but with a few extra devices. Create it as a container region
1679 * containing the system memory at low priority; any secure-only
1680 * devices go in at higher priority and take precedence.
1682 secure_sysmem
= g_new(MemoryRegion
, 1);
1683 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1685 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1688 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1689 secure_sysmem
?: sysmem
);
1691 /* If we have an EL3 boot ROM then the assumption is that it will
1692 * implement PSCI itself, so disable QEMU's internal implementation
1693 * so it doesn't get in the way. Instead of starting secondary
1694 * CPUs in PSCI powerdown state we will start them all running and
1695 * let the boot ROM sort them out.
1696 * The usual case is that we do use QEMU's PSCI implementation;
1697 * if the guest has EL2 then we will use SMC as the conduit,
1698 * and otherwise we will use HVC (for backwards compatibility and
1699 * because if we're using KVM then we must use HVC).
1701 if (vms
->secure
&& firmware_loaded
) {
1702 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1703 } else if (vms
->virt
) {
1704 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1706 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1709 /* The maximum number of CPUs depends on the GIC version, or on how
1710 * many redistributors we can fit into the memory map.
1712 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1714 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1716 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1718 virt_max_cpus
= GIC_NCPU
;
1721 if (max_cpus
> virt_max_cpus
) {
1722 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1723 "supported by machine 'mach-virt' (%d)",
1724 max_cpus
, virt_max_cpus
);
1728 vms
->smp_cpus
= smp_cpus
;
1730 if (vms
->virt
&& kvm_enabled()) {
1731 error_report("mach-virt: KVM does not support providing "
1732 "Virtualization extensions to the guest CPU");
1738 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1739 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1743 if (n
>= smp_cpus
) {
1747 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1748 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1749 "mp-affinity", NULL
);
1754 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1757 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1760 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1763 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1764 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1767 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1768 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1769 "psci-conduit", NULL
);
1771 /* Secondary CPUs start in PSCI powered-down state */
1773 object_property_set_bool(cpuobj
, true,
1774 "start-powered-off", NULL
);
1778 if (vmc
->kvm_no_adjvtime
&&
1779 object_property_find(cpuobj
, "kvm-no-adjvtime", NULL
)) {
1780 object_property_set_bool(cpuobj
, true, "kvm-no-adjvtime", NULL
);
1783 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1784 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1787 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1788 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1789 "reset-cbar", &error_abort
);
1792 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1795 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1796 "secure-memory", &error_abort
);
1799 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1800 object_unref(cpuobj
);
1802 fdt_add_timer_nodes(vms
);
1803 fdt_add_cpu_nodes(vms
);
1805 if (!kvm_enabled()) {
1806 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1807 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1809 if (aarch64
&& vms
->highmem
) {
1810 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1812 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1813 if (pamax
< requested_pa_size
) {
1814 error_report("VCPU supports less PA bits (%d) than requested "
1815 "by the memory map (%d)", pamax
, requested_pa_size
);
1821 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1823 if (machine
->device_memory
) {
1824 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1825 &machine
->device_memory
->mr
);
1828 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1832 fdt_add_pmu_nodes(vms
);
1834 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
1837 create_secure_ram(vms
, secure_sysmem
);
1838 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1841 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1847 if (has_ged
&& aarch64
&& firmware_loaded
&& acpi_enabled
) {
1848 vms
->acpi_dev
= create_acpi_ged(vms
);
1853 /* connect powerdown request */
1854 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
1855 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
1857 /* Create mmio transports, so the user can create virtio backends
1858 * (which will be automatically plugged in to the transports). If
1859 * no backend is created the transport will just sit harmlessly idle.
1861 create_virtio_devices(vms
);
1863 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1864 rom_set_fw(vms
->fw_cfg
);
1866 create_platform_bus(vms
);
1868 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1869 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1870 vms
->bootinfo
.board_id
= -1;
1871 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1872 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1873 vms
->bootinfo
.skip_dtb_autoload
= true;
1874 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1875 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
1877 vms
->machine_done
.notify
= virt_machine_done
;
1878 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1881 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1883 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1888 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1890 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1892 vms
->secure
= value
;
1895 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1897 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1902 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1904 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1909 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1911 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1913 return vms
->highmem
;
1916 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1918 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1920 vms
->highmem
= value
;
1923 static bool virt_get_its(Object
*obj
, Error
**errp
)
1925 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1930 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1932 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1937 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1939 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1940 const char *val
= vms
->gic_version
== VIRT_GIC_VERSION_3
? "3" : "2";
1942 return g_strdup(val
);
1945 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1947 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1949 if (!strcmp(value
, "3")) {
1950 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1951 } else if (!strcmp(value
, "2")) {
1952 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1953 } else if (!strcmp(value
, "host")) {
1954 vms
->gic_version
= VIRT_GIC_VERSION_HOST
; /* Will probe later */
1955 } else if (!strcmp(value
, "max")) {
1956 vms
->gic_version
= VIRT_GIC_VERSION_MAX
; /* Will probe later */
1958 error_setg(errp
, "Invalid gic-version value");
1959 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1963 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1965 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1967 switch (vms
->iommu
) {
1968 case VIRT_IOMMU_NONE
:
1969 return g_strdup("none");
1970 case VIRT_IOMMU_SMMUV3
:
1971 return g_strdup("smmuv3");
1973 g_assert_not_reached();
1977 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1979 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1981 if (!strcmp(value
, "smmuv3")) {
1982 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1983 } else if (!strcmp(value
, "none")) {
1984 vms
->iommu
= VIRT_IOMMU_NONE
;
1986 error_setg(errp
, "Invalid iommu value");
1987 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1991 static CpuInstanceProperties
1992 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1994 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1995 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1997 assert(cpu_index
< possible_cpus
->len
);
1998 return possible_cpus
->cpus
[cpu_index
].props
;
2001 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2003 return idx
% ms
->numa_state
->num_nodes
;
2006 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
2009 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2010 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2012 if (ms
->possible_cpus
) {
2013 assert(ms
->possible_cpus
->len
== max_cpus
);
2014 return ms
->possible_cpus
;
2017 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2018 sizeof(CPUArchId
) * max_cpus
);
2019 ms
->possible_cpus
->len
= max_cpus
;
2020 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
2021 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
2022 ms
->possible_cpus
->cpus
[n
].arch_id
=
2023 virt_cpu_mp_affinity(vms
, n
);
2024 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
2025 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
2027 return ms
->possible_cpus
;
2030 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2033 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2034 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2037 error_setg(errp
, "nvdimm is not yet supported");
2041 if (!vms
->acpi_dev
) {
2043 "memory hotplug is not enabled: missing acpi-ged device");
2047 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
2050 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
2051 DeviceState
*dev
, Error
**errp
)
2053 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2054 Error
*local_err
= NULL
;
2056 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
), &local_err
);
2061 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
2065 error_propagate(errp
, local_err
);
2068 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2069 DeviceState
*dev
, Error
**errp
)
2071 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2072 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
2076 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2077 DeviceState
*dev
, Error
**errp
)
2079 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2081 if (vms
->platform_bus_dev
) {
2082 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
2083 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
2084 SYS_BUS_DEVICE(dev
));
2087 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2088 virt_memory_plug(hotplug_dev
, dev
, errp
);
2090 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2091 PCIDevice
*pdev
= PCI_DEVICE(dev
);
2093 vms
->iommu
= VIRT_IOMMU_VIRTIO
;
2094 vms
->virtio_iommu_bdf
= pci_get_bdf(pdev
);
2095 create_virtio_iommu_dt_bindings(vms
, errp
);
2099 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2100 DeviceState
*dev
, Error
**errp
)
2102 error_setg(errp
, "device unplug request for unsupported device"
2103 " type: %s", object_get_typename(OBJECT(dev
)));
2106 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
2109 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
) ||
2110 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
2111 return HOTPLUG_HANDLER(machine
);
2113 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2114 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
2116 if (!vms
->bootinfo
.firmware_loaded
|| !acpi_enabled
) {
2117 return HOTPLUG_HANDLER(machine
);
2124 * for arm64 kvm_type [7-0] encodes the requested number of bits
2125 * in the IPA address space
2127 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2129 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2130 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
2131 int requested_pa_size
;
2133 /* we freeze the memory map to compute the highest gpa */
2134 virt_set_memmap(vms
);
2136 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2138 if (requested_pa_size
> max_vm_pa_size
) {
2139 error_report("-m and ,maxmem option values "
2140 "require an IPA range (%d bits) larger than "
2141 "the one supported by the host (%d bits)",
2142 requested_pa_size
, max_vm_pa_size
);
2146 * By default we return 0 which corresponds to an implicit legacy
2147 * 40b IPA setting. Otherwise we return the actual requested PA
2150 return requested_pa_size
> 40 ? requested_pa_size
: 0;
2153 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2155 MachineClass
*mc
= MACHINE_CLASS(oc
);
2156 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2158 mc
->init
= machvirt_init
;
2159 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2160 * The value may be reduced later when we have more information about the
2161 * configuration of the particular instance.
2164 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2165 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2166 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2167 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2168 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_TPM_TIS_SYSBUS
);
2169 mc
->block_default_type
= IF_VIRTIO
;
2171 mc
->pci_allow_0_address
= true;
2172 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2173 mc
->minimum_page_bits
= 12;
2174 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2175 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2176 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2177 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2178 mc
->kvm_type
= virt_kvm_type
;
2179 assert(!mc
->get_hotplug_handler
);
2180 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2181 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2182 hc
->plug
= virt_machine_device_plug_cb
;
2183 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2184 mc
->numa_mem_supported
= true;
2185 mc
->auto_enable_numa_with_memhp
= true;
2186 mc
->default_ram_id
= "mach-virt.ram";
2189 static void virt_instance_init(Object
*obj
)
2191 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2192 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2194 /* EL3 is disabled by default on virt: this makes us consistent
2195 * between KVM and TCG for this board, and it also allows us to
2196 * boot UEFI blobs which assume no TrustZone support.
2198 vms
->secure
= false;
2199 object_property_add_bool(obj
, "secure", virt_get_secure
,
2200 virt_set_secure
, NULL
);
2201 object_property_set_description(obj
, "secure",
2202 "Set on/off to enable/disable the ARM "
2203 "Security Extensions (TrustZone)",
2206 /* EL2 is also disabled by default, for similar reasons */
2208 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
2209 virt_set_virt
, NULL
);
2210 object_property_set_description(obj
, "virtualization",
2211 "Set on/off to enable/disable emulating a "
2212 "guest CPU which implements the ARM "
2213 "Virtualization Extensions",
2216 /* High memory is enabled by default */
2217 vms
->highmem
= true;
2218 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
2219 virt_set_highmem
, NULL
);
2220 object_property_set_description(obj
, "highmem",
2221 "Set on/off to enable/disable using "
2222 "physical address space above 32 bits",
2224 vms
->gic_version
= VIRT_GIC_VERSION_NOSEL
;
2225 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
2226 virt_set_gic_version
, NULL
);
2227 object_property_set_description(obj
, "gic-version",
2229 "Valid values are 2, 3, host and max",
2232 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2237 /* Default allows ITS instantiation */
2239 object_property_add_bool(obj
, "its", virt_get_its
,
2240 virt_set_its
, NULL
);
2241 object_property_set_description(obj
, "its",
2242 "Set on/off to enable/disable "
2243 "ITS instantiation",
2247 /* Default disallows iommu instantiation */
2248 vms
->iommu
= VIRT_IOMMU_NONE
;
2249 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
2250 object_property_set_description(obj
, "iommu",
2251 "Set the IOMMU type. "
2252 "Valid values are none and smmuv3",
2255 vms
->irqmap
= a15irqmap
;
2257 virt_flash_create(vms
);
2260 static const TypeInfo virt_machine_info
= {
2261 .name
= TYPE_VIRT_MACHINE
,
2262 .parent
= TYPE_MACHINE
,
2264 .instance_size
= sizeof(VirtMachineState
),
2265 .class_size
= sizeof(VirtMachineClass
),
2266 .class_init
= virt_machine_class_init
,
2267 .instance_init
= virt_instance_init
,
2268 .interfaces
= (InterfaceInfo
[]) {
2269 { TYPE_HOTPLUG_HANDLER
},
2274 static void machvirt_machine_init(void)
2276 type_register_static(&virt_machine_info
);
2278 type_init(machvirt_machine_init
);
2280 static void virt_machine_5_0_options(MachineClass
*mc
)
2282 static GlobalProperty compat
[] = {
2283 { TYPE_TPM_TIS_SYSBUS
, "ppi", "false" },
2286 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
2288 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2290 static void virt_machine_4_2_options(MachineClass
*mc
)
2292 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2294 virt_machine_5_0_options(mc
);
2295 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2296 vmc
->kvm_no_adjvtime
= true;
2298 DEFINE_VIRT_MACHINE(4, 2)
2300 static void virt_machine_4_1_options(MachineClass
*mc
)
2302 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2304 virt_machine_4_2_options(mc
);
2305 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2307 mc
->auto_enable_numa_with_memhp
= false;
2309 DEFINE_VIRT_MACHINE(4, 1)
2311 static void virt_machine_4_0_options(MachineClass
*mc
)
2313 virt_machine_4_1_options(mc
);
2314 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2316 DEFINE_VIRT_MACHINE(4, 0)
2318 static void virt_machine_3_1_options(MachineClass
*mc
)
2320 virt_machine_4_0_options(mc
);
2321 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2323 DEFINE_VIRT_MACHINE(3, 1)
2325 static void virt_machine_3_0_options(MachineClass
*mc
)
2327 virt_machine_3_1_options(mc
);
2328 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2330 DEFINE_VIRT_MACHINE(3, 0)
2332 static void virt_machine_2_12_options(MachineClass
*mc
)
2334 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2336 virt_machine_3_0_options(mc
);
2337 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2338 vmc
->no_highmem_ecam
= true;
2341 DEFINE_VIRT_MACHINE(2, 12)
2343 static void virt_machine_2_11_options(MachineClass
*mc
)
2345 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2347 virt_machine_2_12_options(mc
);
2348 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2349 vmc
->smbios_old_sys_ver
= true;
2351 DEFINE_VIRT_MACHINE(2, 11)
2353 static void virt_machine_2_10_options(MachineClass
*mc
)
2355 virt_machine_2_11_options(mc
);
2356 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2357 /* before 2.11 we never faulted accesses to bad addresses */
2358 mc
->ignore_memory_transaction_failures
= true;
2360 DEFINE_VIRT_MACHINE(2, 10)
2362 static void virt_machine_2_9_options(MachineClass
*mc
)
2364 virt_machine_2_10_options(mc
);
2365 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2367 DEFINE_VIRT_MACHINE(2, 9)
2369 static void virt_machine_2_8_options(MachineClass
*mc
)
2371 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2373 virt_machine_2_9_options(mc
);
2374 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2375 /* For 2.8 and earlier we falsely claimed in the DT that
2376 * our timers were edge-triggered, not level-triggered.
2378 vmc
->claim_edge_triggered_timers
= true;
2380 DEFINE_VIRT_MACHINE(2, 8)
2382 static void virt_machine_2_7_options(MachineClass
*mc
)
2384 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2386 virt_machine_2_8_options(mc
);
2387 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2388 /* ITS was introduced with 2.8 */
2390 /* Stick with 1K pages for migration compatibility */
2391 mc
->minimum_page_bits
= 0;
2393 DEFINE_VIRT_MACHINE(2, 7)
2395 static void virt_machine_2_6_options(MachineClass
*mc
)
2397 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2399 virt_machine_2_7_options(mc
);
2400 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2401 vmc
->disallow_affinity_adjustment
= true;
2402 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2405 DEFINE_VIRT_MACHINE(2, 6)