linux-user, configure: fix (again) syscall_nr.h dependencies cleanup
[qemu.git] / hw / arm / armsse.c
blob174ca7effc18c49db94e6961c6aee32212ca93ee
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27 IoTKitFormat,
28 SSE200Format,
29 } SysConfigFormat;
31 struct ARMSSEInfo {
32 const char *name;
33 int sram_banks;
34 int num_cpus;
35 uint32_t sys_version;
36 uint32_t cpuwait_rst;
37 SysConfigFormat sys_config_format;
38 bool has_mhus;
39 bool has_ppus;
40 bool has_cachectrl;
41 bool has_cpusecctrl;
42 bool has_cpuid;
43 Property *props;
46 static Property iotkit_properties[] = {
47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48 MemoryRegion *),
49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55 DEFINE_PROP_END_OF_LIST()
58 static Property armsse_properties[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60 MemoryRegion *),
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69 DEFINE_PROP_END_OF_LIST()
72 static const ARMSSEInfo armsse_variants[] = {
74 .name = TYPE_IOTKIT,
75 .sram_banks = 1,
76 .num_cpus = 1,
77 .sys_version = 0x41743,
78 .cpuwait_rst = 0,
79 .sys_config_format = IoTKitFormat,
80 .has_mhus = false,
81 .has_ppus = false,
82 .has_cachectrl = false,
83 .has_cpusecctrl = false,
84 .has_cpuid = false,
85 .props = iotkit_properties,
88 .name = TYPE_SSE200,
89 .sram_banks = 4,
90 .num_cpus = 2,
91 .sys_version = 0x22041743,
92 .cpuwait_rst = 2,
93 .sys_config_format = SSE200Format,
94 .has_mhus = true,
95 .has_ppus = true,
96 .has_cachectrl = true,
97 .has_cpusecctrl = true,
98 .has_cpuid = true,
99 .props = armsse_properties,
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
105 /* Return the SYS_CONFIG value for this SSE */
106 uint32_t sys_config;
108 switch (info->sys_config_format) {
109 case IoTKitFormat:
110 sys_config = 0;
111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113 break;
114 case SSE200Format:
115 sys_config = 0;
116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118 sys_config = deposit32(sys_config, 24, 4, 2);
119 if (info->num_cpus > 1) {
120 sys_config = deposit32(sys_config, 10, 1, 1);
121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122 sys_config = deposit32(sys_config, 28, 4, 2);
124 break;
125 default:
126 g_assert_not_reached();
128 return sys_config;
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136 [0 ... 5] = true,
137 /* 6, 7: per-CPU MHU interrupts */
138 [8 ... 12] = true,
139 /* 13: per-CPU icache interrupt */
140 /* 14: reserved */
141 [15 ... 20] = true,
142 /* 21: reserved */
143 [22 ... 26] = true,
144 /* 27: reserved */
145 /* 28, 29: per-CPU CTI interrupts */
146 /* 30, 31: reserved */
150 * Create an alias region in @container of @size bytes starting at @base
151 * which mirrors the memory starting at @orig.
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154 const char *name, hwaddr base, hwaddr size, hwaddr orig)
156 memory_region_init_alias(mr, NULL, name, container, orig, size);
157 /* The alias is even lower priority than unimplemented_device regions */
158 memory_region_add_subregion_overlap(container, base, mr, -1500);
161 static void irq_status_forwarder(void *opaque, int n, int level)
163 qemu_irq destirq = opaque;
165 qemu_set_irq(destirq, level);
168 static void nsccfg_handler(void *opaque, int n, int level)
170 ARMSSE *s = ARMSSE(opaque);
172 s->nsccfg = level;
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178 * system using the ARMSSE has a collection of control lines which
179 * are provided by the security controller and which we want to
180 * expose as control lines on the ARMSSE device itself, so the
181 * code using the ARMSSE can wire them up to the PPCs.
183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184 DeviceState *armssedev = DEVICE(s);
185 DeviceState *dev_secctl = DEVICE(&s->secctl);
186 DeviceState *dev_splitter = DEVICE(splitter);
187 char *name;
189 name = g_strdup_printf("%s_nonsec", ppcname);
190 qdev_pass_gpios(dev_secctl, armssedev, name);
191 g_free(name);
192 name = g_strdup_printf("%s_ap", ppcname);
193 qdev_pass_gpios(dev_secctl, armssedev, name);
194 g_free(name);
195 name = g_strdup_printf("%s_irq_enable", ppcname);
196 qdev_pass_gpios(dev_secctl, armssedev, name);
197 g_free(name);
198 name = g_strdup_printf("%s_irq_clear", ppcname);
199 qdev_pass_gpios(dev_secctl, armssedev, name);
200 g_free(name);
202 /* irq_status is a little more tricky, because we need to
203 * split it so we can send it both to the security controller
204 * and to our OR gate for the NVIC interrupt line.
205 * Connect up the splitter's outputs, and create a GPIO input
206 * which will pass the line state to the input splitter.
208 name = g_strdup_printf("%s_irq_status", ppcname);
209 qdev_connect_gpio_out(dev_splitter, 0,
210 qdev_get_gpio_in_named(dev_secctl,
211 name, 0));
212 qdev_connect_gpio_out(dev_splitter, 1,
213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216 s->irq_status_in[ppcnum], name, 1);
217 g_free(name);
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
222 /* Forward the 3rd output from the splitter device as a
223 * named GPIO output of the armsse object.
225 DeviceState *dev = DEVICE(s);
226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230 s->sec_resp_cfg, 1);
231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
234 static void armsse_init(Object *obj)
236 ARMSSE *s = ARMSSE(obj);
237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238 const ARMSSEInfo *info = asc->info;
239 int i;
241 assert(info->sram_banks <= MAX_SRAM_BANKS);
242 assert(info->num_cpus <= SSE_MAX_CPUS);
244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
246 for (i = 0; i < info->num_cpus; i++) {
248 * We put each CPU in its own cluster as they are logically
249 * distinct and may be configured differently.
251 char *name;
253 name = g_strdup_printf("cluster%d", i);
254 object_initialize_child(obj, name, &s->cluster[i],
255 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
256 &error_abort, NULL);
257 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
258 g_free(name);
260 name = g_strdup_printf("armv7m%d", i);
261 sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
262 &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
263 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
264 ARM_CPU_TYPE_NAME("cortex-m33"));
265 g_free(name);
266 name = g_strdup_printf("arm-sse-cpu-container%d", i);
267 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
268 g_free(name);
269 if (i > 0) {
270 name = g_strdup_printf("arm-sse-container-alias%d", i);
271 memory_region_init_alias(&s->container_alias[i - 1], obj,
272 name, &s->container, 0, UINT64_MAX);
273 g_free(name);
277 sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
278 TYPE_IOTKIT_SECCTL);
279 sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
280 TYPE_TZ_PPC);
281 sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
282 TYPE_TZ_PPC);
283 for (i = 0; i < info->sram_banks; i++) {
284 char *name = g_strdup_printf("mpc%d", i);
285 sysbus_init_child_obj(obj, name, &s->mpc[i],
286 sizeof(s->mpc[i]), TYPE_TZ_MPC);
287 g_free(name);
289 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
290 sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
291 &error_abort, NULL);
293 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
294 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
295 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
297 object_initialize_child(obj, name, splitter, sizeof(*splitter),
298 TYPE_SPLIT_IRQ, &error_abort, NULL);
299 g_free(name);
301 sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
302 TYPE_CMSDK_APB_TIMER);
303 sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
304 TYPE_CMSDK_APB_TIMER);
305 sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
306 TYPE_CMSDK_APB_TIMER);
307 sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
308 TYPE_CMSDK_APB_DUALTIMER);
309 sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
310 sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
311 sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
312 sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
313 sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
314 sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
315 sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
316 sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
317 sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
318 sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
319 if (info->has_mhus) {
320 sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
321 TYPE_ARMSSE_MHU);
322 sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
323 TYPE_ARMSSE_MHU);
325 if (info->has_ppus) {
326 for (i = 0; i < info->num_cpus; i++) {
327 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
328 int ppuidx = CPU0CORE_PPU + i;
330 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
331 sizeof(s->ppu[ppuidx]),
332 TYPE_UNIMPLEMENTED_DEVICE);
333 g_free(name);
335 sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
336 sizeof(s->ppu[DBG_PPU]),
337 TYPE_UNIMPLEMENTED_DEVICE);
338 for (i = 0; i < info->sram_banks; i++) {
339 char *name = g_strdup_printf("RAM%d_PPU", i);
340 int ppuidx = RAM0_PPU + i;
342 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
343 sizeof(s->ppu[ppuidx]),
344 TYPE_UNIMPLEMENTED_DEVICE);
345 g_free(name);
348 if (info->has_cachectrl) {
349 for (i = 0; i < info->num_cpus; i++) {
350 char *name = g_strdup_printf("cachectrl%d", i);
352 sysbus_init_child_obj(obj, name, &s->cachectrl[i],
353 sizeof(s->cachectrl[i]),
354 TYPE_UNIMPLEMENTED_DEVICE);
355 g_free(name);
358 if (info->has_cpusecctrl) {
359 for (i = 0; i < info->num_cpus; i++) {
360 char *name = g_strdup_printf("cpusecctrl%d", i);
362 sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
363 sizeof(s->cpusecctrl[i]),
364 TYPE_UNIMPLEMENTED_DEVICE);
365 g_free(name);
368 if (info->has_cpuid) {
369 for (i = 0; i < info->num_cpus; i++) {
370 char *name = g_strdup_printf("cpuid%d", i);
372 sysbus_init_child_obj(obj, name, &s->cpuid[i],
373 sizeof(s->cpuid[i]),
374 TYPE_ARMSSE_CPUID);
375 g_free(name);
378 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
379 sizeof(s->nmi_orgate), TYPE_OR_IRQ,
380 &error_abort, NULL);
381 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
382 sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
383 &error_abort, NULL);
384 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
385 sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
386 &error_abort, NULL);
387 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
388 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
389 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
391 object_initialize_child(obj, name, splitter, sizeof(*splitter),
392 TYPE_SPLIT_IRQ, &error_abort, NULL);
393 g_free(name);
395 if (info->num_cpus > 1) {
396 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
397 if (irq_is_common[i]) {
398 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
399 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
401 object_initialize_child(obj, name, splitter, sizeof(*splitter),
402 TYPE_SPLIT_IRQ, &error_abort, NULL);
403 g_free(name);
409 static void armsse_exp_irq(void *opaque, int n, int level)
411 qemu_irq *irqarray = opaque;
413 qemu_set_irq(irqarray[n], level);
416 static void armsse_mpcexp_status(void *opaque, int n, int level)
418 ARMSSE *s = ARMSSE(opaque);
419 qemu_set_irq(s->mpcexp_status_in[n], level);
422 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
425 * Return a qemu_irq which can be used to signal IRQ n to
426 * all CPUs in the SSE.
428 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
429 const ARMSSEInfo *info = asc->info;
431 assert(irq_is_common[irqno]);
433 if (info->num_cpus == 1) {
434 /* Only one CPU -- just connect directly to it */
435 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
436 } else {
437 /* Connect to the splitter which feeds all CPUs */
438 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
442 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
444 /* Map a PPU unimplemented device stub */
445 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
447 qdev_prop_set_string(dev, "name", name);
448 qdev_prop_set_uint64(dev, "size", 0x1000);
449 qdev_init_nofail(dev);
450 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
453 static void armsse_realize(DeviceState *dev, Error **errp)
455 ARMSSE *s = ARMSSE(dev);
456 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
457 const ARMSSEInfo *info = asc->info;
458 int i;
459 MemoryRegion *mr;
460 Error *err = NULL;
461 SysBusDevice *sbd_apb_ppc0;
462 SysBusDevice *sbd_secctl;
463 DeviceState *dev_apb_ppc0;
464 DeviceState *dev_apb_ppc1;
465 DeviceState *dev_secctl;
466 DeviceState *dev_splitter;
467 uint32_t addr_width_max;
469 if (!s->board_memory) {
470 error_setg(errp, "memory property was not set");
471 return;
474 if (!s->mainclk_frq) {
475 error_setg(errp, "MAINCLK property was not set");
476 return;
479 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
480 assert(is_power_of_2(info->sram_banks));
481 addr_width_max = 24 - ctz32(info->sram_banks);
482 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
483 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
484 addr_width_max);
485 return;
488 /* Handling of which devices should be available only to secure
489 * code is usually done differently for M profile than for A profile.
490 * Instead of putting some devices only into the secure address space,
491 * devices exist in both address spaces but with hard-wired security
492 * permissions that will cause the CPU to fault for non-secure accesses.
494 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
495 * which specifies hard-wired security permissions for different
496 * areas of the physical address space. For the ARMSSE IDAU, the
497 * top 4 bits of the physical address are the IDAU region ID, and
498 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
499 * region, otherwise it is an S region.
501 * The various devices and RAMs are generally all mapped twice,
502 * once into a region that the IDAU defines as secure and once
503 * into a non-secure region. They sit behind either a Memory
504 * Protection Controller (for RAM) or a Peripheral Protection
505 * Controller (for devices), which allow a more fine grained
506 * configuration of whether non-secure accesses are permitted.
508 * (The other place that guest software can configure security
509 * permissions is in the architected SAU (Security Attribution
510 * Unit), which is entirely inside the CPU. The IDAU can upgrade
511 * the security attributes for a region to more restrictive than
512 * the SAU specifies, but cannot downgrade them.)
514 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
515 * 0x20000000..0x2007ffff 32KB FPGA block RAM
516 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
517 * 0x40000000..0x4000ffff base peripheral region 1
518 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
519 * 0x40020000..0x4002ffff system control element peripherals
520 * 0x40080000..0x400fffff base peripheral region 2
521 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
524 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
526 for (i = 0; i < info->num_cpus; i++) {
527 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
528 Object *cpuobj = OBJECT(&s->armv7m[i]);
529 int j;
530 char *gpioname;
532 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
534 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
535 * registers in the IoT Kit System Control Register block. In QEMU
536 * we set the initial value here, and also the reset value of the
537 * sysctl register, from this object's QOM init-svtor property.
538 * If the guest changes the INITSVTOR* registers at runtime then the
539 * code in iotkit-sysctl.c will update the CPU init-svtor property
540 * (which will then take effect on the next CPU warm-reset).
542 * Note that typically a board using the SSE-200 will have a system
543 * control processor whose boot firmware initializes the INITSVTOR*
544 * registers before powering up the CPUs. QEMU doesn't emulate
545 * the control processor, so instead we behave in the way that the
546 * firmware does: the initial value should be set by the board code
547 * (using the init-svtor property on the ARMSSE object) to match
548 * whatever its firmware does.
550 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
552 * CPUs start powered down if the corresponding bit in the CPUWAIT
553 * register is 1. In real hardware the CPUWAIT register reset value is
554 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
555 * CPUWAIT1_RST parameters), but since all the boards we care about
556 * start CPU0 and leave CPU1 powered off, we hard-code that in
557 * info->cpuwait_rst for now. We can add QOM properties for this
558 * later if necessary.
560 if (extract32(info->cpuwait_rst, i, 1)) {
561 object_property_set_bool(cpuobj, true, "start-powered-off", &err);
562 if (err) {
563 error_propagate(errp, err);
564 return;
567 if (!s->cpu_fpu[i]) {
568 object_property_set_bool(cpuobj, false, "vfp", &err);
569 if (err) {
570 error_propagate(errp, err);
571 return;
574 if (!s->cpu_dsp[i]) {
575 object_property_set_bool(cpuobj, false, "dsp", &err);
576 if (err) {
577 error_propagate(errp, err);
578 return;
582 if (i > 0) {
583 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
584 &s->container_alias[i - 1], -1);
585 } else {
586 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
587 &s->container, -1);
589 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
590 "memory", &err);
591 if (err) {
592 error_propagate(errp, err);
593 return;
595 object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
596 if (err) {
597 error_propagate(errp, err);
598 return;
600 object_property_set_bool(cpuobj, true, "realized", &err);
601 if (err) {
602 error_propagate(errp, err);
603 return;
606 * The cluster must be realized after the armv7m container, as
607 * the container's CPU object is only created on realize, and the
608 * CPU must exist and have been parented into the cluster before
609 * the cluster is realized.
611 object_property_set_bool(OBJECT(&s->cluster[i]),
612 true, "realized", &err);
613 if (err) {
614 error_propagate(errp, err);
615 return;
618 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
619 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
620 for (j = 0; j < s->exp_numirq; j++) {
621 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
623 if (i == 0) {
624 gpioname = g_strdup("EXP_IRQ");
625 } else {
626 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
628 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
629 s->exp_irqs[i],
630 gpioname, s->exp_numirq);
631 g_free(gpioname);
634 /* Wire up the splitters that connect common IRQs to all CPUs */
635 if (info->num_cpus > 1) {
636 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
637 if (irq_is_common[i]) {
638 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
639 DeviceState *devs = DEVICE(splitter);
640 int cpunum;
642 object_property_set_int(splitter, info->num_cpus,
643 "num-lines", &err);
644 if (err) {
645 error_propagate(errp, err);
646 return;
648 object_property_set_bool(splitter, true, "realized", &err);
649 if (err) {
650 error_propagate(errp, err);
651 return;
653 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
654 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
656 qdev_connect_gpio_out(devs, cpunum,
657 qdev_get_gpio_in(cpudev, i));
663 /* Set up the big aliases first */
664 make_alias(s, &s->alias1, &s->container, "alias 1",
665 0x10000000, 0x10000000, 0x00000000);
666 make_alias(s, &s->alias2, &s->container,
667 "alias 2", 0x30000000, 0x10000000, 0x20000000);
668 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
669 * a few extra devices that only appear there (generally the
670 * control interfaces for the protection controllers).
671 * We implement this by mapping those devices over the top of this
672 * alias MR at a higher priority. Some of the devices in this range
673 * are per-CPU, so we must put this alias in the per-cpu containers.
675 for (i = 0; i < info->num_cpus; i++) {
676 make_alias(s, &s->alias3[i], &s->cpu_container[i],
677 "alias 3", 0x50000000, 0x10000000, 0x40000000);
680 /* Security controller */
681 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
682 if (err) {
683 error_propagate(errp, err);
684 return;
686 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
687 dev_secctl = DEVICE(&s->secctl);
688 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
689 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
691 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
692 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
694 /* The sec_resp_cfg output from the security controller must be split into
695 * multiple lines, one for each of the PPCs within the ARMSSE and one
696 * that will be an output from the ARMSSE to the system.
698 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
699 "num-lines", &err);
700 if (err) {
701 error_propagate(errp, err);
702 return;
704 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
705 "realized", &err);
706 if (err) {
707 error_propagate(errp, err);
708 return;
710 dev_splitter = DEVICE(&s->sec_resp_splitter);
711 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
712 qdev_get_gpio_in(dev_splitter, 0));
714 /* Each SRAM bank lives behind its own Memory Protection Controller */
715 for (i = 0; i < info->sram_banks; i++) {
716 char *ramname = g_strdup_printf("armsse.sram%d", i);
717 SysBusDevice *sbd_mpc;
718 uint32_t sram_bank_size = 1 << s->sram_addr_width;
720 memory_region_init_ram(&s->sram[i], NULL, ramname,
721 sram_bank_size, &err);
722 g_free(ramname);
723 if (err) {
724 error_propagate(errp, err);
725 return;
727 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
728 "downstream", &err);
729 if (err) {
730 error_propagate(errp, err);
731 return;
733 object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
734 if (err) {
735 error_propagate(errp, err);
736 return;
738 /* Map the upstream end of the MPC into the right place... */
739 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
740 memory_region_add_subregion(&s->container,
741 0x20000000 + i * sram_bank_size,
742 sysbus_mmio_get_region(sbd_mpc, 1));
743 /* ...and its register interface */
744 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
745 sysbus_mmio_get_region(sbd_mpc, 0));
748 /* We must OR together lines from the MPC splitters to go to the NVIC */
749 object_property_set_int(OBJECT(&s->mpc_irq_orgate),
750 IOTS_NUM_EXP_MPC + info->sram_banks,
751 "num-lines", &err);
752 if (err) {
753 error_propagate(errp, err);
754 return;
756 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
757 "realized", &err);
758 if (err) {
759 error_propagate(errp, err);
760 return;
762 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
763 armsse_get_common_irq_in(s, 9));
765 /* Devices behind APB PPC0:
766 * 0x40000000: timer0
767 * 0x40001000: timer1
768 * 0x40002000: dual timer
769 * 0x40003000: MHU0 (SSE-200 only)
770 * 0x40004000: MHU1 (SSE-200 only)
771 * We must configure and realize each downstream device and connect
772 * it to the appropriate PPC port; then we can realize the PPC and
773 * map its upstream ends to the right place in the container.
775 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
776 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
777 if (err) {
778 error_propagate(errp, err);
779 return;
781 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
782 armsse_get_common_irq_in(s, 3));
783 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
784 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
785 if (err) {
786 error_propagate(errp, err);
787 return;
790 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
791 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
792 if (err) {
793 error_propagate(errp, err);
794 return;
796 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
797 armsse_get_common_irq_in(s, 4));
798 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
799 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
800 if (err) {
801 error_propagate(errp, err);
802 return;
806 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
807 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
808 if (err) {
809 error_propagate(errp, err);
810 return;
812 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
813 armsse_get_common_irq_in(s, 5));
814 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
815 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
816 if (err) {
817 error_propagate(errp, err);
818 return;
821 if (info->has_mhus) {
823 * An SSE-200 with only one CPU should have only one MHU created,
824 * with the region where the second MHU usually is being RAZ/WI.
825 * We don't implement that SSE-200 config; if we want to support
826 * it then this code needs to be enhanced to handle creating the
827 * RAZ/WI region instead of the second MHU.
829 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
831 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
832 char *port;
833 int cpunum;
834 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
836 object_property_set_bool(OBJECT(&s->mhu[i]), true,
837 "realized", &err);
838 if (err) {
839 error_propagate(errp, err);
840 return;
842 port = g_strdup_printf("port[%d]", i + 3);
843 mr = sysbus_mmio_get_region(mhu_sbd, 0);
844 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
845 port, &err);
846 g_free(port);
847 if (err) {
848 error_propagate(errp, err);
849 return;
853 * Each MHU has an irq line for each CPU:
854 * MHU 0 irq line 0 -> CPU 0 IRQ 6
855 * MHU 0 irq line 1 -> CPU 1 IRQ 6
856 * MHU 1 irq line 0 -> CPU 0 IRQ 7
857 * MHU 1 irq line 1 -> CPU 1 IRQ 7
859 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
860 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
862 sysbus_connect_irq(mhu_sbd, cpunum,
863 qdev_get_gpio_in(cpudev, 6 + i));
868 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
869 if (err) {
870 error_propagate(errp, err);
871 return;
874 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
875 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
877 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
878 memory_region_add_subregion(&s->container, 0x40000000, mr);
879 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
880 memory_region_add_subregion(&s->container, 0x40001000, mr);
881 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
882 memory_region_add_subregion(&s->container, 0x40002000, mr);
883 if (info->has_mhus) {
884 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
885 memory_region_add_subregion(&s->container, 0x40003000, mr);
886 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
887 memory_region_add_subregion(&s->container, 0x40004000, mr);
889 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
890 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
891 qdev_get_gpio_in_named(dev_apb_ppc0,
892 "cfg_nonsec", i));
893 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
894 qdev_get_gpio_in_named(dev_apb_ppc0,
895 "cfg_ap", i));
897 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
898 qdev_get_gpio_in_named(dev_apb_ppc0,
899 "irq_enable", 0));
900 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
901 qdev_get_gpio_in_named(dev_apb_ppc0,
902 "irq_clear", 0));
903 qdev_connect_gpio_out(dev_splitter, 0,
904 qdev_get_gpio_in_named(dev_apb_ppc0,
905 "cfg_sec_resp", 0));
907 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
908 * ones) are sent individually to the security controller, and also
909 * ORed together to give a single combined PPC interrupt to the NVIC.
911 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
912 NUM_PPCS, "num-lines", &err);
913 if (err) {
914 error_propagate(errp, err);
915 return;
917 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
918 "realized", &err);
919 if (err) {
920 error_propagate(errp, err);
921 return;
923 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
924 armsse_get_common_irq_in(s, 10));
927 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
928 * private per-CPU region (all these devices are SSE-200 only):
929 * 0x50010000: L1 icache control registers
930 * 0x50011000: CPUSECCTRL (CPU local security control registers)
931 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
933 if (info->has_cachectrl) {
934 for (i = 0; i < info->num_cpus; i++) {
935 char *name = g_strdup_printf("cachectrl%d", i);
936 MemoryRegion *mr;
938 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
939 g_free(name);
940 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
941 object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
942 "realized", &err);
943 if (err) {
944 error_propagate(errp, err);
945 return;
948 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
949 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
952 if (info->has_cpusecctrl) {
953 for (i = 0; i < info->num_cpus; i++) {
954 char *name = g_strdup_printf("CPUSECCTRL%d", i);
955 MemoryRegion *mr;
957 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
958 g_free(name);
959 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
960 object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
961 "realized", &err);
962 if (err) {
963 error_propagate(errp, err);
964 return;
967 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
968 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
971 if (info->has_cpuid) {
972 for (i = 0; i < info->num_cpus; i++) {
973 MemoryRegion *mr;
975 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
976 object_property_set_bool(OBJECT(&s->cpuid[i]), true,
977 "realized", &err);
978 if (err) {
979 error_propagate(errp, err);
980 return;
983 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
984 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
988 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
989 /* Devices behind APB PPC1:
990 * 0x4002f000: S32K timer
992 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
993 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
994 if (err) {
995 error_propagate(errp, err);
996 return;
998 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
999 armsse_get_common_irq_in(s, 2));
1000 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
1001 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
1002 if (err) {
1003 error_propagate(errp, err);
1004 return;
1007 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
1008 if (err) {
1009 error_propagate(errp, err);
1010 return;
1012 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1013 memory_region_add_subregion(&s->container, 0x4002f000, mr);
1015 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1016 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1017 qdev_get_gpio_in_named(dev_apb_ppc1,
1018 "cfg_nonsec", 0));
1019 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1020 qdev_get_gpio_in_named(dev_apb_ppc1,
1021 "cfg_ap", 0));
1022 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1023 qdev_get_gpio_in_named(dev_apb_ppc1,
1024 "irq_enable", 0));
1025 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1026 qdev_get_gpio_in_named(dev_apb_ppc1,
1027 "irq_clear", 0));
1028 qdev_connect_gpio_out(dev_splitter, 1,
1029 qdev_get_gpio_in_named(dev_apb_ppc1,
1030 "cfg_sec_resp", 0));
1032 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1033 "SYS_VERSION", &err);
1034 if (err) {
1035 error_propagate(errp, err);
1036 return;
1038 object_property_set_int(OBJECT(&s->sysinfo),
1039 armsse_sys_config_value(s, info),
1040 "SYS_CONFIG", &err);
1041 if (err) {
1042 error_propagate(errp, err);
1043 return;
1045 object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1046 if (err) {
1047 error_propagate(errp, err);
1048 return;
1050 /* System information registers */
1051 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1052 /* System control registers */
1053 object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1054 "SYS_VERSION", &err);
1055 object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1056 "CPUWAIT_RST", &err);
1057 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1058 "INITSVTOR0_RST", &err);
1059 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1060 "INITSVTOR1_RST", &err);
1061 object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1062 if (err) {
1063 error_propagate(errp, err);
1064 return;
1066 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1068 if (info->has_ppus) {
1069 /* CPUnCORE_PPU for each CPU */
1070 for (i = 0; i < info->num_cpus; i++) {
1071 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1073 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1075 * We don't support CPU debug so don't create the
1076 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1078 g_free(name);
1080 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1082 for (i = 0; i < info->sram_banks; i++) {
1083 char *name = g_strdup_printf("RAM%d_PPU", i);
1085 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1086 g_free(name);
1090 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1091 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1092 if (err) {
1093 error_propagate(errp, err);
1094 return;
1096 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1097 if (err) {
1098 error_propagate(errp, err);
1099 return;
1101 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1102 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1104 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1105 object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1106 if (err) {
1107 error_propagate(errp, err);
1108 return;
1110 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1111 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1112 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1114 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1116 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1117 object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1118 if (err) {
1119 error_propagate(errp, err);
1120 return;
1122 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1123 armsse_get_common_irq_in(s, 1));
1124 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1126 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1127 object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1128 if (err) {
1129 error_propagate(errp, err);
1130 return;
1132 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1133 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1134 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1136 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1137 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1139 object_property_set_int(splitter, 2, "num-lines", &err);
1140 if (err) {
1141 error_propagate(errp, err);
1142 return;
1144 object_property_set_bool(splitter, true, "realized", &err);
1145 if (err) {
1146 error_propagate(errp, err);
1147 return;
1151 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1152 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1154 armsse_forward_ppc(s, ppcname, i);
1155 g_free(ppcname);
1158 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1159 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1161 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1162 g_free(ppcname);
1165 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1166 /* Wire up IRQ splitter for internal PPCs */
1167 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1168 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1169 i - NUM_EXTERNAL_PPCS);
1170 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1172 qdev_connect_gpio_out(devs, 0,
1173 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1174 qdev_connect_gpio_out(devs, 1,
1175 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1176 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1177 qdev_get_gpio_in(devs, 0));
1178 g_free(gpioname);
1181 /* Wire up the splitters for the MPC IRQs */
1182 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1183 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1184 DeviceState *dev_splitter = DEVICE(splitter);
1186 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1187 if (err) {
1188 error_propagate(errp, err);
1189 return;
1191 object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1192 if (err) {
1193 error_propagate(errp, err);
1194 return;
1197 if (i < IOTS_NUM_EXP_MPC) {
1198 /* Splitter input is from GPIO input line */
1199 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1200 qdev_connect_gpio_out(dev_splitter, 0,
1201 qdev_get_gpio_in_named(dev_secctl,
1202 "mpcexp_status", i));
1203 } else {
1204 /* Splitter input is from our own MPC */
1205 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1206 "irq", 0,
1207 qdev_get_gpio_in(dev_splitter, 0));
1208 qdev_connect_gpio_out(dev_splitter, 0,
1209 qdev_get_gpio_in_named(dev_secctl,
1210 "mpc_status", 0));
1213 qdev_connect_gpio_out(dev_splitter, 1,
1214 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1216 /* Create GPIO inputs which will pass the line state for our
1217 * mpcexp_irq inputs to the correct splitter devices.
1219 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1220 IOTS_NUM_EXP_MPC);
1222 armsse_forward_sec_resp_cfg(s);
1224 /* Forward the MSC related signals */
1225 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1226 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1227 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1228 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1229 armsse_get_common_irq_in(s, 11));
1232 * Expose our container region to the board model; this corresponds
1233 * to the AHB Slave Expansion ports which allow bus master devices
1234 * (eg DMA controllers) in the board model to make transactions into
1235 * devices in the ARMSSE.
1237 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1239 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1242 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1243 int *iregion, bool *exempt, bool *ns, bool *nsc)
1246 * For ARMSSE systems the IDAU responses are simple logical functions
1247 * of the address bits. The NSC attribute is guest-adjustable via the
1248 * NSCCFG register in the security controller.
1250 ARMSSE *s = ARMSSE(ii);
1251 int region = extract32(address, 28, 4);
1253 *ns = !(region & 1);
1254 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1255 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1256 *exempt = (address & 0xeff00000) == 0xe0000000;
1257 *iregion = region;
1260 static const VMStateDescription armsse_vmstate = {
1261 .name = "iotkit",
1262 .version_id = 1,
1263 .minimum_version_id = 1,
1264 .fields = (VMStateField[]) {
1265 VMSTATE_UINT32(nsccfg, ARMSSE),
1266 VMSTATE_END_OF_LIST()
1270 static void armsse_reset(DeviceState *dev)
1272 ARMSSE *s = ARMSSE(dev);
1274 s->nsccfg = 0;
1277 static void armsse_class_init(ObjectClass *klass, void *data)
1279 DeviceClass *dc = DEVICE_CLASS(klass);
1280 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1281 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1282 const ARMSSEInfo *info = data;
1284 dc->realize = armsse_realize;
1285 dc->vmsd = &armsse_vmstate;
1286 device_class_set_props(dc, info->props);
1287 dc->reset = armsse_reset;
1288 iic->check = armsse_idau_check;
1289 asc->info = info;
1292 static const TypeInfo armsse_info = {
1293 .name = TYPE_ARMSSE,
1294 .parent = TYPE_SYS_BUS_DEVICE,
1295 .instance_size = sizeof(ARMSSE),
1296 .instance_init = armsse_init,
1297 .abstract = true,
1298 .interfaces = (InterfaceInfo[]) {
1299 { TYPE_IDAU_INTERFACE },
1304 static void armsse_register_types(void)
1306 int i;
1308 type_register_static(&armsse_info);
1310 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1311 TypeInfo ti = {
1312 .name = armsse_variants[i].name,
1313 .parent = TYPE_ARMSSE,
1314 .class_init = armsse_class_init,
1315 .class_data = (void *)&armsse_variants[i],
1317 type_register(&ti);
1321 type_init(armsse_register_types);