qapi/qom: Add ObjectOptions for memory-backend-*
[qemu.git] / semihosting / arm-compat-semi.c
blob94950b6c56d94863e3a98e0106386f80d6e9aba7
1 /*
2 * Semihosting support for systems modeled on the Arm "Angel"
3 * semihosting syscalls design. This includes Arm and RISC-V processors
5 * Copyright (c) 2005, 2007 CodeSourcery.
6 * Copyright (c) 2019 Linaro
7 * Written by Paul Brook.
9 * Copyright © 2020 by Keith Packard <keithp@keithp.com>
10 * Adapted for systems other than ARM, including RISC-V, by Keith Packard
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 * ARM Semihosting is documented in:
26 * Semihosting for AArch32 and AArch64 Release 2.0
27 * https://static.docs.arm.com/100863/0200/semihosting.pdf
29 * RISC-V Semihosting is documented in:
30 * RISC-V Semihosting
31 * https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
34 #include "qemu/osdep.h"
36 #include "cpu.h"
37 #include "semihosting/semihost.h"
38 #include "semihosting/console.h"
39 #include "semihosting/common-semi.h"
40 #include "qemu/log.h"
41 #include "qemu/timer.h"
42 #ifdef CONFIG_USER_ONLY
43 #include "qemu.h"
45 #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
46 #else
47 #include "exec/gdbstub.h"
48 #include "qemu/cutils.h"
49 #ifdef TARGET_ARM
50 #include "hw/arm/boot.h"
51 #endif
52 #include "hw/boards.h"
53 #endif
55 #define TARGET_SYS_OPEN 0x01
56 #define TARGET_SYS_CLOSE 0x02
57 #define TARGET_SYS_WRITEC 0x03
58 #define TARGET_SYS_WRITE0 0x04
59 #define TARGET_SYS_WRITE 0x05
60 #define TARGET_SYS_READ 0x06
61 #define TARGET_SYS_READC 0x07
62 #define TARGET_SYS_ISERROR 0x08
63 #define TARGET_SYS_ISTTY 0x09
64 #define TARGET_SYS_SEEK 0x0a
65 #define TARGET_SYS_FLEN 0x0c
66 #define TARGET_SYS_TMPNAM 0x0d
67 #define TARGET_SYS_REMOVE 0x0e
68 #define TARGET_SYS_RENAME 0x0f
69 #define TARGET_SYS_CLOCK 0x10
70 #define TARGET_SYS_TIME 0x11
71 #define TARGET_SYS_SYSTEM 0x12
72 #define TARGET_SYS_ERRNO 0x13
73 #define TARGET_SYS_GET_CMDLINE 0x15
74 #define TARGET_SYS_HEAPINFO 0x16
75 #define TARGET_SYS_EXIT 0x18
76 #define TARGET_SYS_SYNCCACHE 0x19
77 #define TARGET_SYS_EXIT_EXTENDED 0x20
78 #define TARGET_SYS_ELAPSED 0x30
79 #define TARGET_SYS_TICKFREQ 0x31
81 /* ADP_Stopped_ApplicationExit is used for exit(0),
82 * anything else is implemented as exit(1) */
83 #define ADP_Stopped_ApplicationExit (0x20026)
85 #ifndef O_BINARY
86 #define O_BINARY 0
87 #endif
89 #define GDB_O_RDONLY 0x000
90 #define GDB_O_WRONLY 0x001
91 #define GDB_O_RDWR 0x002
92 #define GDB_O_APPEND 0x008
93 #define GDB_O_CREAT 0x200
94 #define GDB_O_TRUNC 0x400
95 #define GDB_O_BINARY 0
97 static int gdb_open_modeflags[12] = {
98 GDB_O_RDONLY,
99 GDB_O_RDONLY | GDB_O_BINARY,
100 GDB_O_RDWR,
101 GDB_O_RDWR | GDB_O_BINARY,
102 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
103 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
104 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
105 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
106 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
107 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY,
108 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
109 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY
112 static int open_modeflags[12] = {
113 O_RDONLY,
114 O_RDONLY | O_BINARY,
115 O_RDWR,
116 O_RDWR | O_BINARY,
117 O_WRONLY | O_CREAT | O_TRUNC,
118 O_WRONLY | O_CREAT | O_TRUNC | O_BINARY,
119 O_RDWR | O_CREAT | O_TRUNC,
120 O_RDWR | O_CREAT | O_TRUNC | O_BINARY,
121 O_WRONLY | O_CREAT | O_APPEND,
122 O_WRONLY | O_CREAT | O_APPEND | O_BINARY,
123 O_RDWR | O_CREAT | O_APPEND,
124 O_RDWR | O_CREAT | O_APPEND | O_BINARY
127 typedef enum GuestFDType {
128 GuestFDUnused = 0,
129 GuestFDHost = 1,
130 GuestFDGDB = 2,
131 GuestFDFeatureFile = 3,
132 } GuestFDType;
135 * Guest file descriptors are integer indexes into an array of
136 * these structures (we will dynamically resize as necessary).
138 typedef struct GuestFD {
139 GuestFDType type;
140 union {
141 int hostfd;
142 target_ulong featurefile_offset;
144 } GuestFD;
146 static GArray *guestfd_array;
148 #ifndef CONFIG_USER_ONLY
149 #include "exec/address-spaces.h"
151 * Find the base of a RAM region containing the specified address
153 static inline hwaddr
154 common_semi_find_region_base(hwaddr addr)
156 MemoryRegion *subregion;
159 * Find the chunk of R/W memory containing the address. This is
160 * used for the SYS_HEAPINFO semihosting call, which should
161 * probably be using information from the loaded application.
163 QTAILQ_FOREACH(subregion, &get_system_memory()->subregions,
164 subregions_link) {
165 if (subregion->ram && !subregion->readonly) {
166 Int128 top128 = int128_add(int128_make64(subregion->addr),
167 subregion->size);
168 Int128 addr128 = int128_make64(addr);
169 if (subregion->addr <= addr && int128_lt(addr128, top128)) {
170 return subregion->addr;
174 return 0;
176 #endif
178 #ifdef TARGET_ARM
179 static inline target_ulong
180 common_semi_arg(CPUState *cs, int argno)
182 ARMCPU *cpu = ARM_CPU(cs);
183 CPUARMState *env = &cpu->env;
184 if (is_a64(env)) {
185 return env->xregs[argno];
186 } else {
187 return env->regs[argno];
191 static inline void
192 common_semi_set_ret(CPUState *cs, target_ulong ret)
194 ARMCPU *cpu = ARM_CPU(cs);
195 CPUARMState *env = &cpu->env;
196 if (is_a64(env)) {
197 env->xregs[0] = ret;
198 } else {
199 env->regs[0] = ret;
203 static inline bool
204 common_semi_sys_exit_extended(CPUState *cs, int nr)
206 return (nr == TARGET_SYS_EXIT_EXTENDED || is_a64(cs->env_ptr));
209 #ifndef CONFIG_USER_ONLY
210 #include "hw/arm/boot.h"
211 static inline target_ulong
212 common_semi_rambase(CPUState *cs)
214 CPUArchState *env = cs->env_ptr;
215 const struct arm_boot_info *info = env->boot_info;
216 target_ulong sp;
218 if (info) {
219 return info->loader_start;
222 if (is_a64(env)) {
223 sp = env->xregs[31];
224 } else {
225 sp = env->regs[13];
227 return common_semi_find_region_base(sp);
229 #endif
231 #endif /* TARGET_ARM */
233 #ifdef TARGET_RISCV
234 static inline target_ulong
235 common_semi_arg(CPUState *cs, int argno)
237 RISCVCPU *cpu = RISCV_CPU(cs);
238 CPURISCVState *env = &cpu->env;
239 return env->gpr[xA0 + argno];
242 static inline void
243 common_semi_set_ret(CPUState *cs, target_ulong ret)
245 RISCVCPU *cpu = RISCV_CPU(cs);
246 CPURISCVState *env = &cpu->env;
247 env->gpr[xA0] = ret;
250 static inline bool
251 common_semi_sys_exit_extended(CPUState *cs, int nr)
253 return (nr == TARGET_SYS_EXIT_EXTENDED || sizeof(target_ulong) == 8);
256 #ifndef CONFIG_USER_ONLY
258 static inline target_ulong
259 common_semi_rambase(CPUState *cs)
261 RISCVCPU *cpu = RISCV_CPU(cs);
262 CPURISCVState *env = &cpu->env;
263 return common_semi_find_region_base(env->gpr[xSP]);
265 #endif
267 #endif
270 * Allocate a new guest file descriptor and return it; if we
271 * couldn't allocate a new fd then return -1.
272 * This is a fairly simplistic implementation because we don't
273 * expect that most semihosting guest programs will make very
274 * heavy use of opening and closing fds.
276 static int alloc_guestfd(void)
278 guint i;
280 if (!guestfd_array) {
281 /* New entries zero-initialized, i.e. type GuestFDUnused */
282 guestfd_array = g_array_new(FALSE, TRUE, sizeof(GuestFD));
285 /* SYS_OPEN should return nonzero handle on success. Start guestfd from 1 */
286 for (i = 1; i < guestfd_array->len; i++) {
287 GuestFD *gf = &g_array_index(guestfd_array, GuestFD, i);
289 if (gf->type == GuestFDUnused) {
290 return i;
294 /* All elements already in use: expand the array */
295 g_array_set_size(guestfd_array, i + 1);
296 return i;
300 * Look up the guestfd in the data structure; return NULL
301 * for out of bounds, but don't check whether the slot is unused.
302 * This is used internally by the other guestfd functions.
304 static GuestFD *do_get_guestfd(int guestfd)
306 if (!guestfd_array) {
307 return NULL;
310 if (guestfd <= 0 || guestfd >= guestfd_array->len) {
311 return NULL;
314 return &g_array_index(guestfd_array, GuestFD, guestfd);
318 * Associate the specified guest fd (which must have been
319 * allocated via alloc_fd() and not previously used) with
320 * the specified host/gdb fd.
322 static void associate_guestfd(int guestfd, int hostfd)
324 GuestFD *gf = do_get_guestfd(guestfd);
326 assert(gf);
327 gf->type = use_gdb_syscalls() ? GuestFDGDB : GuestFDHost;
328 gf->hostfd = hostfd;
332 * Deallocate the specified guest file descriptor. This doesn't
333 * close the host fd, it merely undoes the work of alloc_fd().
335 static void dealloc_guestfd(int guestfd)
337 GuestFD *gf = do_get_guestfd(guestfd);
339 assert(gf);
340 gf->type = GuestFDUnused;
344 * Given a guest file descriptor, get the associated struct.
345 * If the fd is not valid, return NULL. This is the function
346 * used by the various semihosting calls to validate a handle
347 * from the guest.
348 * Note: calling alloc_guestfd() or dealloc_guestfd() will
349 * invalidate any GuestFD* obtained by calling this function.
351 static GuestFD *get_guestfd(int guestfd)
353 GuestFD *gf = do_get_guestfd(guestfd);
355 if (!gf || gf->type == GuestFDUnused) {
356 return NULL;
358 return gf;
362 * The semihosting API has no concept of its errno being thread-safe,
363 * as the API design predates SMP CPUs and was intended as a simple
364 * real-hardware set of debug functionality. For QEMU, we make the
365 * errno be per-thread in linux-user mode; in softmmu it is a simple
366 * global, and we assume that the guest takes care of avoiding any races.
368 #ifndef CONFIG_USER_ONLY
369 static target_ulong syscall_err;
371 #include "exec/softmmu-semi.h"
372 #endif
374 static inline uint32_t set_swi_errno(CPUState *cs, uint32_t code)
376 if (code == (uint32_t)-1) {
377 #ifdef CONFIG_USER_ONLY
378 TaskState *ts = cs->opaque;
380 ts->swi_errno = errno;
381 #else
382 syscall_err = errno;
383 #endif
385 return code;
388 static inline uint32_t get_swi_errno(CPUState *cs)
390 #ifdef CONFIG_USER_ONLY
391 TaskState *ts = cs->opaque;
393 return ts->swi_errno;
394 #else
395 return syscall_err;
396 #endif
399 static target_ulong common_semi_syscall_len;
401 static void common_semi_cb(CPUState *cs, target_ulong ret, target_ulong err)
403 target_ulong reg0 = common_semi_arg(cs, 0);
405 if (ret == (target_ulong)-1) {
406 errno = err;
407 set_swi_errno(cs, -1);
408 reg0 = ret;
409 } else {
410 /* Fixup syscalls that use nonstardard return conventions. */
411 switch (reg0) {
412 case TARGET_SYS_WRITE:
413 case TARGET_SYS_READ:
414 reg0 = common_semi_syscall_len - ret;
415 break;
416 case TARGET_SYS_SEEK:
417 reg0 = 0;
418 break;
419 default:
420 reg0 = ret;
421 break;
424 common_semi_set_ret(cs, reg0);
427 static target_ulong common_semi_flen_buf(CPUState *cs)
429 target_ulong sp;
430 #ifdef TARGET_ARM
431 /* Return an address in target memory of 64 bytes where the remote
432 * gdb should write its stat struct. (The format of this structure
433 * is defined by GDB's remote protocol and is not target-specific.)
434 * We put this on the guest's stack just below SP.
436 ARMCPU *cpu = ARM_CPU(cs);
437 CPUARMState *env = &cpu->env;
439 if (is_a64(env)) {
440 sp = env->xregs[31];
441 } else {
442 sp = env->regs[13];
444 #endif
445 #ifdef TARGET_RISCV
446 RISCVCPU *cpu = RISCV_CPU(cs);
447 CPURISCVState *env = &cpu->env;
449 sp = env->gpr[xSP];
450 #endif
452 return sp - 64;
455 static void
456 common_semi_flen_cb(CPUState *cs, target_ulong ret, target_ulong err)
458 /* The size is always stored in big-endian order, extract
459 the value. We assume the size always fit in 32 bits. */
460 uint32_t size;
461 cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) + 32,
462 (uint8_t *)&size, 4, 0);
463 size = be32_to_cpu(size);
464 common_semi_set_ret(cs, size);
465 errno = err;
466 set_swi_errno(cs, -1);
469 static int common_semi_open_guestfd;
471 static void
472 common_semi_open_cb(CPUState *cs, target_ulong ret, target_ulong err)
474 if (ret == (target_ulong)-1) {
475 errno = err;
476 set_swi_errno(cs, -1);
477 dealloc_guestfd(common_semi_open_guestfd);
478 } else {
479 associate_guestfd(common_semi_open_guestfd, ret);
480 ret = common_semi_open_guestfd;
482 common_semi_set_ret(cs, ret);
485 static target_ulong
486 common_semi_gdb_syscall(CPUState *cs, gdb_syscall_complete_cb cb,
487 const char *fmt, ...)
489 va_list va;
491 va_start(va, fmt);
492 gdb_do_syscallv(cb, fmt, va);
493 va_end(va);
496 * FIXME: in softmmu mode, the gdbstub will schedule our callback
497 * to occur, but will not actually call it to complete the syscall
498 * until after this function has returned and we are back in the
499 * CPU main loop. Therefore callers to this function must not
500 * do anything with its return value, because it is not necessarily
501 * the result of the syscall, but could just be the old value of X0.
502 * The only thing safe to do with this is that the callers of
503 * do_common_semihosting() will write it straight back into X0.
504 * (In linux-user mode, the callback will have happened before
505 * gdb_do_syscallv() returns.)
507 * We should tidy this up so neither this function nor
508 * do_common_semihosting() return a value, so the mistake of
509 * doing something with the return value is not possible to make.
512 return common_semi_arg(cs, 0);
516 * Types for functions implementing various semihosting calls
517 * for specific types of guest file descriptor. These must all
518 * do the work and return the required return value for the guest,
519 * setting the guest errno if appropriate.
521 typedef uint32_t sys_closefn(CPUState *cs, GuestFD *gf);
522 typedef uint32_t sys_writefn(CPUState *cs, GuestFD *gf,
523 target_ulong buf, uint32_t len);
524 typedef uint32_t sys_readfn(CPUState *cs, GuestFD *gf,
525 target_ulong buf, uint32_t len);
526 typedef uint32_t sys_isattyfn(CPUState *cs, GuestFD *gf);
527 typedef uint32_t sys_seekfn(CPUState *cs, GuestFD *gf,
528 target_ulong offset);
529 typedef uint32_t sys_flenfn(CPUState *cs, GuestFD *gf);
531 static uint32_t host_closefn(CPUState *cs, GuestFD *gf)
534 * Only close the underlying host fd if it's one we opened on behalf
535 * of the guest in SYS_OPEN.
537 if (gf->hostfd == STDIN_FILENO ||
538 gf->hostfd == STDOUT_FILENO ||
539 gf->hostfd == STDERR_FILENO) {
540 return 0;
542 return set_swi_errno(cs, close(gf->hostfd));
545 static uint32_t host_writefn(CPUState *cs, GuestFD *gf,
546 target_ulong buf, uint32_t len)
548 CPUArchState *env = cs->env_ptr;
549 uint32_t ret;
550 char *s = lock_user(VERIFY_READ, buf, len, 1);
551 (void) env; /* Used in arm softmmu lock_user implicitly */
552 if (!s) {
553 /* Return bytes not written on error */
554 return len;
556 ret = set_swi_errno(cs, write(gf->hostfd, s, len));
557 unlock_user(s, buf, 0);
558 if (ret == (uint32_t)-1) {
559 ret = 0;
561 /* Return bytes not written */
562 return len - ret;
565 static uint32_t host_readfn(CPUState *cs, GuestFD *gf,
566 target_ulong buf, uint32_t len)
568 CPUArchState *env = cs->env_ptr;
569 uint32_t ret;
570 char *s = lock_user(VERIFY_WRITE, buf, len, 0);
571 (void) env; /* Used in arm softmmu lock_user implicitly */
572 if (!s) {
573 /* return bytes not read */
574 return len;
576 do {
577 ret = set_swi_errno(cs, read(gf->hostfd, s, len));
578 } while (ret == -1 && errno == EINTR);
579 unlock_user(s, buf, len);
580 if (ret == (uint32_t)-1) {
581 ret = 0;
583 /* Return bytes not read */
584 return len - ret;
587 static uint32_t host_isattyfn(CPUState *cs, GuestFD *gf)
589 return isatty(gf->hostfd);
592 static uint32_t host_seekfn(CPUState *cs, GuestFD *gf, target_ulong offset)
594 uint32_t ret = set_swi_errno(cs, lseek(gf->hostfd, offset, SEEK_SET));
595 if (ret == (uint32_t)-1) {
596 return -1;
598 return 0;
601 static uint32_t host_flenfn(CPUState *cs, GuestFD *gf)
603 struct stat buf;
604 uint32_t ret = set_swi_errno(cs, fstat(gf->hostfd, &buf));
605 if (ret == (uint32_t)-1) {
606 return -1;
608 return buf.st_size;
611 static uint32_t gdb_closefn(CPUState *cs, GuestFD *gf)
613 return common_semi_gdb_syscall(cs, common_semi_cb, "close,%x", gf->hostfd);
616 static uint32_t gdb_writefn(CPUState *cs, GuestFD *gf,
617 target_ulong buf, uint32_t len)
619 common_semi_syscall_len = len;
620 return common_semi_gdb_syscall(cs, common_semi_cb, "write,%x,%x,%x",
621 gf->hostfd, buf, len);
624 static uint32_t gdb_readfn(CPUState *cs, GuestFD *gf,
625 target_ulong buf, uint32_t len)
627 common_semi_syscall_len = len;
628 return common_semi_gdb_syscall(cs, common_semi_cb, "read,%x,%x,%x",
629 gf->hostfd, buf, len);
632 static uint32_t gdb_isattyfn(CPUState *cs, GuestFD *gf)
634 return common_semi_gdb_syscall(cs, common_semi_cb, "isatty,%x", gf->hostfd);
637 static uint32_t gdb_seekfn(CPUState *cs, GuestFD *gf, target_ulong offset)
639 return common_semi_gdb_syscall(cs, common_semi_cb, "lseek,%x,%x,0",
640 gf->hostfd, offset);
643 static uint32_t gdb_flenfn(CPUState *cs, GuestFD *gf)
645 return common_semi_gdb_syscall(cs, common_semi_flen_cb, "fstat,%x,%x",
646 gf->hostfd, common_semi_flen_buf(cs));
649 #define SHFB_MAGIC_0 0x53
650 #define SHFB_MAGIC_1 0x48
651 #define SHFB_MAGIC_2 0x46
652 #define SHFB_MAGIC_3 0x42
654 /* Feature bits reportable in feature byte 0 */
655 #define SH_EXT_EXIT_EXTENDED (1 << 0)
656 #define SH_EXT_STDOUT_STDERR (1 << 1)
658 static const uint8_t featurefile_data[] = {
659 SHFB_MAGIC_0,
660 SHFB_MAGIC_1,
661 SHFB_MAGIC_2,
662 SHFB_MAGIC_3,
663 SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
666 static void init_featurefile_guestfd(int guestfd)
668 GuestFD *gf = do_get_guestfd(guestfd);
670 assert(gf);
671 gf->type = GuestFDFeatureFile;
672 gf->featurefile_offset = 0;
675 static uint32_t featurefile_closefn(CPUState *cs, GuestFD *gf)
677 /* Nothing to do */
678 return 0;
681 static uint32_t featurefile_writefn(CPUState *cs, GuestFD *gf,
682 target_ulong buf, uint32_t len)
684 /* This fd can never be open for writing */
686 errno = EBADF;
687 return set_swi_errno(cs, -1);
690 static uint32_t featurefile_readfn(CPUState *cs, GuestFD *gf,
691 target_ulong buf, uint32_t len)
693 CPUArchState *env = cs->env_ptr;
694 uint32_t i;
695 char *s;
697 (void) env; /* Used in arm softmmu lock_user implicitly */
698 s = lock_user(VERIFY_WRITE, buf, len, 0);
699 if (!s) {
700 return len;
703 for (i = 0; i < len; i++) {
704 if (gf->featurefile_offset >= sizeof(featurefile_data)) {
705 break;
707 s[i] = featurefile_data[gf->featurefile_offset];
708 gf->featurefile_offset++;
711 unlock_user(s, buf, len);
713 /* Return number of bytes not read */
714 return len - i;
717 static uint32_t featurefile_isattyfn(CPUState *cs, GuestFD *gf)
719 return 0;
722 static uint32_t featurefile_seekfn(CPUState *cs, GuestFD *gf,
723 target_ulong offset)
725 gf->featurefile_offset = offset;
726 return 0;
729 static uint32_t featurefile_flenfn(CPUState *cs, GuestFD *gf)
731 return sizeof(featurefile_data);
734 typedef struct GuestFDFunctions {
735 sys_closefn *closefn;
736 sys_writefn *writefn;
737 sys_readfn *readfn;
738 sys_isattyfn *isattyfn;
739 sys_seekfn *seekfn;
740 sys_flenfn *flenfn;
741 } GuestFDFunctions;
743 static const GuestFDFunctions guestfd_fns[] = {
744 [GuestFDHost] = {
745 .closefn = host_closefn,
746 .writefn = host_writefn,
747 .readfn = host_readfn,
748 .isattyfn = host_isattyfn,
749 .seekfn = host_seekfn,
750 .flenfn = host_flenfn,
752 [GuestFDGDB] = {
753 .closefn = gdb_closefn,
754 .writefn = gdb_writefn,
755 .readfn = gdb_readfn,
756 .isattyfn = gdb_isattyfn,
757 .seekfn = gdb_seekfn,
758 .flenfn = gdb_flenfn,
760 [GuestFDFeatureFile] = {
761 .closefn = featurefile_closefn,
762 .writefn = featurefile_writefn,
763 .readfn = featurefile_readfn,
764 .isattyfn = featurefile_isattyfn,
765 .seekfn = featurefile_seekfn,
766 .flenfn = featurefile_flenfn,
770 /* Read the input value from the argument block; fail the semihosting
771 * call if the memory read fails.
773 #ifdef TARGET_ARM
774 #define GET_ARG(n) do { \
775 if (is_a64(env)) { \
776 if (get_user_u64(arg ## n, args + (n) * 8)) { \
777 errno = EFAULT; \
778 return set_swi_errno(cs, -1); \
780 } else { \
781 if (get_user_u32(arg ## n, args + (n) * 4)) { \
782 errno = EFAULT; \
783 return set_swi_errno(cs, -1); \
786 } while (0)
788 #define SET_ARG(n, val) \
789 (is_a64(env) ? \
790 put_user_u64(val, args + (n) * 8) : \
791 put_user_u32(val, args + (n) * 4))
792 #endif
794 #ifdef TARGET_RISCV
797 * get_user_ual is defined as get_user_u32 in softmmu-semi.h,
798 * we need a macro that fetches a target_ulong
800 #define get_user_utl(arg, p) \
801 ((sizeof(target_ulong) == 8) ? \
802 get_user_u64(arg, p) : \
803 get_user_u32(arg, p))
806 * put_user_ual is defined as put_user_u32 in softmmu-semi.h,
807 * we need a macro that stores a target_ulong
809 #define put_user_utl(arg, p) \
810 ((sizeof(target_ulong) == 8) ? \
811 put_user_u64(arg, p) : \
812 put_user_u32(arg, p))
814 #define GET_ARG(n) do { \
815 if (get_user_utl(arg ## n, args + (n) * sizeof(target_ulong))) { \
816 errno = EFAULT; \
817 return set_swi_errno(cs, -1); \
819 } while (0)
821 #define SET_ARG(n, val) \
822 put_user_utl(val, args + (n) * sizeof(target_ulong))
823 #endif
826 * Do a semihosting call.
828 * The specification always says that the "return register" either
829 * returns a specific value or is corrupted, so we don't need to
830 * report to our caller whether we are returning a value or trying to
831 * leave the register unchanged. We use 0xdeadbeef as the return value
832 * when there isn't a defined return value for the call.
834 target_ulong do_common_semihosting(CPUState *cs)
836 CPUArchState *env = cs->env_ptr;
837 target_ulong args;
838 target_ulong arg0, arg1, arg2, arg3;
839 target_ulong ul_ret;
840 char * s;
841 int nr;
842 uint32_t ret;
843 uint32_t len;
844 GuestFD *gf;
845 int64_t elapsed;
847 (void) env; /* Used implicitly by arm lock_user macro */
848 nr = common_semi_arg(cs, 0) & 0xffffffffU;
849 args = common_semi_arg(cs, 1);
851 switch (nr) {
852 case TARGET_SYS_OPEN:
854 int guestfd;
856 GET_ARG(0);
857 GET_ARG(1);
858 GET_ARG(2);
859 s = lock_user_string(arg0);
860 if (!s) {
861 errno = EFAULT;
862 return set_swi_errno(cs, -1);
864 if (arg1 >= 12) {
865 unlock_user(s, arg0, 0);
866 errno = EINVAL;
867 return set_swi_errno(cs, -1);
870 guestfd = alloc_guestfd();
871 if (guestfd < 0) {
872 unlock_user(s, arg0, 0);
873 errno = EMFILE;
874 return set_swi_errno(cs, -1);
877 if (strcmp(s, ":tt") == 0) {
878 int result_fileno;
881 * We implement SH_EXT_STDOUT_STDERR, so:
882 * open for read == stdin
883 * open for write == stdout
884 * open for append == stderr
886 if (arg1 < 4) {
887 result_fileno = STDIN_FILENO;
888 } else if (arg1 < 8) {
889 result_fileno = STDOUT_FILENO;
890 } else {
891 result_fileno = STDERR_FILENO;
893 associate_guestfd(guestfd, result_fileno);
894 unlock_user(s, arg0, 0);
895 return guestfd;
897 if (strcmp(s, ":semihosting-features") == 0) {
898 unlock_user(s, arg0, 0);
899 /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
900 if (arg1 != 0 && arg1 != 1) {
901 dealloc_guestfd(guestfd);
902 errno = EACCES;
903 return set_swi_errno(cs, -1);
905 init_featurefile_guestfd(guestfd);
906 return guestfd;
909 if (use_gdb_syscalls()) {
910 common_semi_open_guestfd = guestfd;
911 ret = common_semi_gdb_syscall(cs, common_semi_open_cb,
912 "open,%s,%x,1a4", arg0, (int)arg2 + 1,
913 gdb_open_modeflags[arg1]);
914 } else {
915 ret = set_swi_errno(cs, open(s, open_modeflags[arg1], 0644));
916 if (ret == (uint32_t)-1) {
917 dealloc_guestfd(guestfd);
918 } else {
919 associate_guestfd(guestfd, ret);
920 ret = guestfd;
923 unlock_user(s, arg0, 0);
924 return ret;
926 case TARGET_SYS_CLOSE:
927 GET_ARG(0);
929 gf = get_guestfd(arg0);
930 if (!gf) {
931 errno = EBADF;
932 return set_swi_errno(cs, -1);
935 ret = guestfd_fns[gf->type].closefn(cs, gf);
936 dealloc_guestfd(arg0);
937 return ret;
938 case TARGET_SYS_WRITEC:
939 qemu_semihosting_console_outc(cs->env_ptr, args);
940 return 0xdeadbeef;
941 case TARGET_SYS_WRITE0:
942 return qemu_semihosting_console_outs(cs->env_ptr, args);
943 case TARGET_SYS_WRITE:
944 GET_ARG(0);
945 GET_ARG(1);
946 GET_ARG(2);
947 len = arg2;
949 gf = get_guestfd(arg0);
950 if (!gf) {
951 errno = EBADF;
952 return set_swi_errno(cs, -1);
955 return guestfd_fns[gf->type].writefn(cs, gf, arg1, len);
956 case TARGET_SYS_READ:
957 GET_ARG(0);
958 GET_ARG(1);
959 GET_ARG(2);
960 len = arg2;
962 gf = get_guestfd(arg0);
963 if (!gf) {
964 errno = EBADF;
965 return set_swi_errno(cs, -1);
968 return guestfd_fns[gf->type].readfn(cs, gf, arg1, len);
969 case TARGET_SYS_READC:
970 return qemu_semihosting_console_inc(cs->env_ptr);
971 case TARGET_SYS_ISERROR:
972 GET_ARG(0);
973 return (target_long) arg0 < 0 ? 1 : 0;
974 case TARGET_SYS_ISTTY:
975 GET_ARG(0);
977 gf = get_guestfd(arg0);
978 if (!gf) {
979 errno = EBADF;
980 return set_swi_errno(cs, -1);
983 return guestfd_fns[gf->type].isattyfn(cs, gf);
984 case TARGET_SYS_SEEK:
985 GET_ARG(0);
986 GET_ARG(1);
988 gf = get_guestfd(arg0);
989 if (!gf) {
990 errno = EBADF;
991 return set_swi_errno(cs, -1);
994 return guestfd_fns[gf->type].seekfn(cs, gf, arg1);
995 case TARGET_SYS_FLEN:
996 GET_ARG(0);
998 gf = get_guestfd(arg0);
999 if (!gf) {
1000 errno = EBADF;
1001 return set_swi_errno(cs, -1);
1004 return guestfd_fns[gf->type].flenfn(cs, gf);
1005 case TARGET_SYS_TMPNAM:
1006 GET_ARG(0);
1007 GET_ARG(1);
1008 GET_ARG(2);
1009 if (asprintf(&s, "/tmp/qemu-%x%02x", getpid(),
1010 (int) (arg1 & 0xff)) < 0) {
1011 return -1;
1013 ul_ret = (target_ulong) -1;
1015 /* Make sure there's enough space in the buffer */
1016 if (strlen(s) < arg2) {
1017 char *output = lock_user(VERIFY_WRITE, arg0, arg2, 0);
1018 strcpy(output, s);
1019 unlock_user(output, arg0, arg2);
1020 ul_ret = 0;
1022 free(s);
1023 return ul_ret;
1024 case TARGET_SYS_REMOVE:
1025 GET_ARG(0);
1026 GET_ARG(1);
1027 if (use_gdb_syscalls()) {
1028 ret = common_semi_gdb_syscall(cs, common_semi_cb, "unlink,%s",
1029 arg0, (int)arg1 + 1);
1030 } else {
1031 s = lock_user_string(arg0);
1032 if (!s) {
1033 errno = EFAULT;
1034 return set_swi_errno(cs, -1);
1036 ret = set_swi_errno(cs, remove(s));
1037 unlock_user(s, arg0, 0);
1039 return ret;
1040 case TARGET_SYS_RENAME:
1041 GET_ARG(0);
1042 GET_ARG(1);
1043 GET_ARG(2);
1044 GET_ARG(3);
1045 if (use_gdb_syscalls()) {
1046 return common_semi_gdb_syscall(cs, common_semi_cb, "rename,%s,%s",
1047 arg0, (int)arg1 + 1, arg2,
1048 (int)arg3 + 1);
1049 } else {
1050 char *s2;
1051 s = lock_user_string(arg0);
1052 s2 = lock_user_string(arg2);
1053 if (!s || !s2) {
1054 errno = EFAULT;
1055 ret = set_swi_errno(cs, -1);
1056 } else {
1057 ret = set_swi_errno(cs, rename(s, s2));
1059 if (s2)
1060 unlock_user(s2, arg2, 0);
1061 if (s)
1062 unlock_user(s, arg0, 0);
1063 return ret;
1065 case TARGET_SYS_CLOCK:
1066 return clock() / (CLOCKS_PER_SEC / 100);
1067 case TARGET_SYS_TIME:
1068 return set_swi_errno(cs, time(NULL));
1069 case TARGET_SYS_SYSTEM:
1070 GET_ARG(0);
1071 GET_ARG(1);
1072 if (use_gdb_syscalls()) {
1073 return common_semi_gdb_syscall(cs, common_semi_cb, "system,%s",
1074 arg0, (int)arg1 + 1);
1075 } else {
1076 s = lock_user_string(arg0);
1077 if (!s) {
1078 errno = EFAULT;
1079 return set_swi_errno(cs, -1);
1081 ret = set_swi_errno(cs, system(s));
1082 unlock_user(s, arg0, 0);
1083 return ret;
1085 case TARGET_SYS_ERRNO:
1086 return get_swi_errno(cs);
1087 case TARGET_SYS_GET_CMDLINE:
1089 /* Build a command-line from the original argv.
1091 * The inputs are:
1092 * * arg0, pointer to a buffer of at least the size
1093 * specified in arg1.
1094 * * arg1, size of the buffer pointed to by arg0 in
1095 * bytes.
1097 * The outputs are:
1098 * * arg0, pointer to null-terminated string of the
1099 * command line.
1100 * * arg1, length of the string pointed to by arg0.
1103 char *output_buffer;
1104 size_t input_size;
1105 size_t output_size;
1106 int status = 0;
1107 #if !defined(CONFIG_USER_ONLY)
1108 const char *cmdline;
1109 #else
1110 TaskState *ts = cs->opaque;
1111 #endif
1112 GET_ARG(0);
1113 GET_ARG(1);
1114 input_size = arg1;
1115 /* Compute the size of the output string. */
1116 #if !defined(CONFIG_USER_ONLY)
1117 cmdline = semihosting_get_cmdline();
1118 if (cmdline == NULL) {
1119 cmdline = ""; /* Default to an empty line. */
1121 output_size = strlen(cmdline) + 1; /* Count terminating 0. */
1122 #else
1123 unsigned int i;
1125 output_size = ts->info->arg_end - ts->info->arg_start;
1126 if (!output_size) {
1128 * We special-case the "empty command line" case (argc==0).
1129 * Just provide the terminating 0.
1131 output_size = 1;
1133 #endif
1135 if (output_size > input_size) {
1136 /* Not enough space to store command-line arguments. */
1137 errno = E2BIG;
1138 return set_swi_errno(cs, -1);
1141 /* Adjust the command-line length. */
1142 if (SET_ARG(1, output_size - 1)) {
1143 /* Couldn't write back to argument block */
1144 errno = EFAULT;
1145 return set_swi_errno(cs, -1);
1148 /* Lock the buffer on the ARM side. */
1149 output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
1150 if (!output_buffer) {
1151 errno = EFAULT;
1152 return set_swi_errno(cs, -1);
1155 /* Copy the command-line arguments. */
1156 #if !defined(CONFIG_USER_ONLY)
1157 pstrcpy(output_buffer, output_size, cmdline);
1158 #else
1159 if (output_size == 1) {
1160 /* Empty command-line. */
1161 output_buffer[0] = '\0';
1162 goto out;
1165 if (copy_from_user(output_buffer, ts->info->arg_start,
1166 output_size)) {
1167 errno = EFAULT;
1168 status = set_swi_errno(cs, -1);
1169 goto out;
1172 /* Separate arguments by white spaces. */
1173 for (i = 0; i < output_size - 1; i++) {
1174 if (output_buffer[i] == 0) {
1175 output_buffer[i] = ' ';
1178 out:
1179 #endif
1180 /* Unlock the buffer on the ARM side. */
1181 unlock_user(output_buffer, arg0, output_size);
1183 return status;
1185 case TARGET_SYS_HEAPINFO:
1187 target_ulong retvals[4];
1188 target_ulong limit;
1189 int i;
1190 #ifdef CONFIG_USER_ONLY
1191 TaskState *ts = cs->opaque;
1192 #else
1193 target_ulong rambase = common_semi_rambase(cs);
1194 #endif
1196 GET_ARG(0);
1198 #ifdef CONFIG_USER_ONLY
1200 * Some C libraries assume the heap immediately follows .bss, so
1201 * allocate it using sbrk.
1203 if (!ts->heap_limit) {
1204 abi_ulong ret;
1206 ts->heap_base = do_brk(0);
1207 limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
1208 /* Try a big heap, and reduce the size if that fails. */
1209 for (;;) {
1210 ret = do_brk(limit);
1211 if (ret >= limit) {
1212 break;
1214 limit = (ts->heap_base >> 1) + (limit >> 1);
1216 ts->heap_limit = limit;
1219 retvals[0] = ts->heap_base;
1220 retvals[1] = ts->heap_limit;
1221 retvals[2] = ts->stack_base;
1222 retvals[3] = 0; /* Stack limit. */
1223 #else
1224 limit = current_machine->ram_size;
1225 /* TODO: Make this use the limit of the loaded application. */
1226 retvals[0] = rambase + limit / 2;
1227 retvals[1] = rambase + limit;
1228 retvals[2] = rambase + limit; /* Stack base */
1229 retvals[3] = rambase; /* Stack limit. */
1230 #endif
1232 for (i = 0; i < ARRAY_SIZE(retvals); i++) {
1233 bool fail;
1235 fail = SET_ARG(i, retvals[i]);
1237 if (fail) {
1238 /* Couldn't write back to argument block */
1239 errno = EFAULT;
1240 return set_swi_errno(cs, -1);
1243 return 0;
1245 case TARGET_SYS_EXIT:
1246 case TARGET_SYS_EXIT_EXTENDED:
1247 if (common_semi_sys_exit_extended(cs, nr)) {
1249 * The A64 version of SYS_EXIT takes a parameter block,
1250 * so the application-exit type can return a subcode which
1251 * is the exit status code from the application.
1252 * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
1253 * which allows A32/T32 guests to also provide a status code.
1255 GET_ARG(0);
1256 GET_ARG(1);
1258 if (arg0 == ADP_Stopped_ApplicationExit) {
1259 ret = arg1;
1260 } else {
1261 ret = 1;
1263 } else {
1265 * The A32/T32 version of SYS_EXIT specifies only
1266 * Stopped_ApplicationExit as normal exit, but does not
1267 * allow the guest to specify the exit status code.
1268 * Everything else is considered an error.
1270 ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
1272 gdb_exit(ret);
1273 exit(ret);
1274 case TARGET_SYS_ELAPSED:
1275 elapsed = get_clock() - clock_start;
1276 if (sizeof(target_ulong) == 8) {
1277 SET_ARG(0, elapsed);
1278 } else {
1279 SET_ARG(0, (uint32_t) elapsed);
1280 SET_ARG(1, (uint32_t) (elapsed >> 32));
1282 return 0;
1283 case TARGET_SYS_TICKFREQ:
1284 /* qemu always uses nsec */
1285 return 1000000000;
1286 case TARGET_SYS_SYNCCACHE:
1288 * Clean the D-cache and invalidate the I-cache for the specified
1289 * virtual address range. This is a nop for us since we don't
1290 * implement caches. This is only present on A64.
1292 #ifdef TARGET_ARM
1293 if (is_a64(cs->env_ptr)) {
1294 return 0;
1296 #endif
1297 #ifdef TARGET_RISCV
1298 return 0;
1299 #endif
1300 /* fall through -- invalid for A32/T32 */
1301 default:
1302 fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
1303 cpu_dump_state(cs, stderr, 0);
1304 abort();