ppc/hash64: Add proper real mode translation support
[qemu.git] / target-ppc / mmu-hash64.c
blob7f314442ca700fa616cd4e6f055c0be3dce0e95b
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/error-report.h"
28 #include "kvm_ppc.h"
29 #include "mmu-hash64.h"
30 #include "exec/log.h"
32 //#define DEBUG_SLB
34 #ifdef DEBUG_SLB
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 # define LOG_SLB(...) do { } while (0)
38 #endif
41 * Used to indicate that a CPU has its hash page table (HPT) managed
42 * within the host kernel
44 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
47 * SLB handling
50 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
52 CPUPPCState *env = &cpu->env;
53 uint64_t esid_256M, esid_1T;
54 int n;
56 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
58 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
59 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
61 for (n = 0; n < env->slb_nr; n++) {
62 ppc_slb_t *slb = &env->slb[n];
64 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
65 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
66 /* We check for 1T matches on all MMUs here - if the MMU
67 * doesn't have 1T segment support, we will have prevented 1T
68 * entries from being inserted in the slbmte code. */
69 if (((slb->esid == esid_256M) &&
70 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
71 || ((slb->esid == esid_1T) &&
72 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
73 return slb;
77 return NULL;
80 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
82 CPUPPCState *env = &cpu->env;
83 int i;
84 uint64_t slbe, slbv;
86 cpu_synchronize_state(CPU(cpu));
88 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
89 for (i = 0; i < env->slb_nr; i++) {
90 slbe = env->slb[i].esid;
91 slbv = env->slb[i].vsid;
92 if (slbe == 0 && slbv == 0) {
93 continue;
95 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
96 i, slbe, slbv);
100 void helper_slbia(CPUPPCState *env)
102 int n;
104 /* XXX: Warning: slbia never invalidates the first segment */
105 for (n = 1; n < env->slb_nr; n++) {
106 ppc_slb_t *slb = &env->slb[n];
108 if (slb->esid & SLB_ESID_V) {
109 slb->esid &= ~SLB_ESID_V;
110 /* XXX: given the fact that segment size is 256 MB or 1TB,
111 * and we still don't have a tlb_flush_mask(env, n, mask)
112 * in QEMU, we just invalidate all TLBs
114 env->tlb_need_flush = 1;
119 void helper_slbie(CPUPPCState *env, target_ulong addr)
121 PowerPCCPU *cpu = ppc_env_get_cpu(env);
122 ppc_slb_t *slb;
124 slb = slb_lookup(cpu, addr);
125 if (!slb) {
126 return;
129 if (slb->esid & SLB_ESID_V) {
130 slb->esid &= ~SLB_ESID_V;
132 /* XXX: given the fact that segment size is 256 MB or 1TB,
133 * and we still don't have a tlb_flush_mask(env, n, mask)
134 * in QEMU, we just invalidate all TLBs
136 env->tlb_need_flush = 1;
140 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
141 target_ulong esid, target_ulong vsid)
143 CPUPPCState *env = &cpu->env;
144 ppc_slb_t *slb = &env->slb[slot];
145 const struct ppc_one_seg_page_size *sps = NULL;
146 int i;
148 if (slot >= env->slb_nr) {
149 return -1; /* Bad slot number */
151 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
152 return -1; /* Reserved bits set */
154 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
155 return -1; /* Bad segment size */
157 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
158 return -1; /* 1T segment on MMU that doesn't support it */
161 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
162 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
164 if (!sps1->page_shift) {
165 break;
168 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
169 sps = sps1;
170 break;
174 if (!sps) {
175 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
176 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
177 slot, esid, vsid);
178 return -1;
181 slb->esid = esid;
182 slb->vsid = vsid;
183 slb->sps = sps;
185 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
186 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
187 slb->esid, slb->vsid);
189 return 0;
192 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
193 target_ulong *rt)
195 CPUPPCState *env = &cpu->env;
196 int slot = rb & 0xfff;
197 ppc_slb_t *slb = &env->slb[slot];
199 if (slot >= env->slb_nr) {
200 return -1;
203 *rt = slb->esid;
204 return 0;
207 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
208 target_ulong *rt)
210 CPUPPCState *env = &cpu->env;
211 int slot = rb & 0xfff;
212 ppc_slb_t *slb = &env->slb[slot];
214 if (slot >= env->slb_nr) {
215 return -1;
218 *rt = slb->vsid;
219 return 0;
222 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
223 target_ulong *rt)
225 CPUPPCState *env = &cpu->env;
226 ppc_slb_t *slb;
228 if (!msr_is_64bit(env, env->msr)) {
229 rb &= 0xffffffff;
231 slb = slb_lookup(cpu, rb);
232 if (slb == NULL) {
233 *rt = (target_ulong)-1ul;
234 } else {
235 *rt = slb->vsid;
237 return 0;
240 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
242 PowerPCCPU *cpu = ppc_env_get_cpu(env);
244 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
245 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
246 POWERPC_EXCP_INVAL);
250 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
252 PowerPCCPU *cpu = ppc_env_get_cpu(env);
253 target_ulong rt = 0;
255 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
256 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
257 POWERPC_EXCP_INVAL);
259 return rt;
262 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
264 PowerPCCPU *cpu = ppc_env_get_cpu(env);
265 target_ulong rt = 0;
267 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
268 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
269 POWERPC_EXCP_INVAL);
271 return rt;
274 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
276 PowerPCCPU *cpu = ppc_env_get_cpu(env);
277 target_ulong rt = 0;
279 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
280 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
281 POWERPC_EXCP_INVAL);
283 return rt;
287 * 64-bit hash table MMU handling
289 void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
290 Error **errp)
292 CPUPPCState *env = &cpu->env;
293 target_ulong htabsize = value & SDR_64_HTABSIZE;
295 env->spr[SPR_SDR1] = value;
296 if (htabsize > 28) {
297 error_setg(errp,
298 "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
299 htabsize);
300 htabsize = 28;
302 env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
303 env->htab_base = value & SDR_64_HTABORG;
306 void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
307 Error **errp)
309 CPUPPCState *env = &cpu->env;
310 Error *local_err = NULL;
312 if (hpt) {
313 env->external_htab = hpt;
314 } else {
315 env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
317 ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
318 &local_err);
319 if (local_err) {
320 error_propagate(errp, local_err);
321 return;
324 /* Not strictly necessary, but makes it clearer that an external
325 * htab is in use when debugging */
326 env->htab_base = -1;
328 if (kvm_enabled()) {
329 if (kvmppc_put_books_sregs(cpu) < 0) {
330 error_setg(errp, "Unable to update SDR1 in KVM");
335 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
336 ppc_slb_t *slb, ppc_hash_pte64_t pte)
338 CPUPPCState *env = &cpu->env;
339 unsigned pp, key;
340 /* Some pp bit combinations have undefined behaviour, so default
341 * to no access in those cases */
342 int prot = 0;
344 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
345 : (slb->vsid & SLB_VSID_KS));
346 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
348 if (key == 0) {
349 switch (pp) {
350 case 0x0:
351 case 0x1:
352 case 0x2:
353 prot = PAGE_READ | PAGE_WRITE;
354 break;
356 case 0x3:
357 case 0x6:
358 prot = PAGE_READ;
359 break;
361 } else {
362 switch (pp) {
363 case 0x0:
364 case 0x6:
365 prot = 0;
366 break;
368 case 0x1:
369 case 0x3:
370 prot = PAGE_READ;
371 break;
373 case 0x2:
374 prot = PAGE_READ | PAGE_WRITE;
375 break;
379 /* No execute if either noexec or guarded bits set */
380 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
381 || (slb->vsid & SLB_VSID_N)) {
382 prot |= PAGE_EXEC;
385 return prot;
388 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
390 CPUPPCState *env = &cpu->env;
391 int key, amrbits;
392 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
394 /* Only recent MMUs implement Virtual Page Class Key Protection */
395 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
396 return prot;
399 key = HPTE64_R_KEY(pte.pte1);
400 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
402 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
403 /* env->spr[SPR_AMR]); */
406 * A store is permitted if the AMR bit is 0. Remove write
407 * protection if it is set.
409 if (amrbits & 0x2) {
410 prot &= ~PAGE_WRITE;
413 * A load is permitted if the AMR bit is 0. Remove read
414 * protection if it is set.
416 if (amrbits & 0x1) {
417 prot &= ~PAGE_READ;
420 return prot;
423 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
425 uint64_t token = 0;
426 hwaddr pte_offset;
428 pte_offset = pte_index * HASH_PTE_SIZE_64;
429 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
431 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
433 token = kvmppc_hash64_read_pteg(cpu, pte_index);
434 } else if (cpu->env.external_htab) {
436 * HTAB is controlled by QEMU. Just point to the internally
437 * accessible PTEG.
439 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
440 } else if (cpu->env.htab_base) {
441 token = cpu->env.htab_base + pte_offset;
443 return token;
446 void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
448 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
449 kvmppc_hash64_free_pteg(token);
453 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
454 uint64_t pte0, uint64_t pte1)
456 int i;
458 if (!(pte0 & HPTE64_V_LARGE)) {
459 if (sps->page_shift != 12) {
460 /* 4kiB page in a non 4kiB segment */
461 return 0;
463 /* Normal 4kiB page */
464 return 12;
467 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
468 const struct ppc_one_page_size *ps = &sps->enc[i];
469 uint64_t mask;
471 if (!ps->page_shift) {
472 break;
475 if (ps->page_shift == 12) {
476 /* L bit is set so this can't be a 4kiB page */
477 continue;
480 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
482 if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
483 return ps->page_shift;
487 return 0; /* Bad page size encoding */
490 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
491 ppc_slb_t *slb, target_ulong ptem,
492 ppc_hash_pte64_t *pte, unsigned *pshift)
494 CPUPPCState *env = &cpu->env;
495 int i;
496 uint64_t token;
497 target_ulong pte0, pte1;
498 target_ulong pte_index;
500 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
501 token = ppc_hash64_start_access(cpu, pte_index);
502 if (!token) {
503 return -1;
505 for (i = 0; i < HPTES_PER_GROUP; i++) {
506 pte0 = ppc_hash64_load_hpte0(cpu, token, i);
507 pte1 = ppc_hash64_load_hpte1(cpu, token, i);
509 /* This compares V, B, H (secondary) and the AVPN */
510 if (HPTE64_V_COMPARE(pte0, ptem)) {
511 *pshift = hpte_page_shift(slb->sps, pte0, pte1);
513 * If there is no match, ignore the PTE, it could simply
514 * be for a different segment size encoding and the
515 * architecture specifies we should not match. Linux will
516 * potentially leave behind PTEs for the wrong base page
517 * size when demoting segments.
519 if (*pshift == 0) {
520 continue;
522 /* We don't do anything with pshift yet as qemu TLB only deals
523 * with 4K pages anyway
525 pte->pte0 = pte0;
526 pte->pte1 = pte1;
527 ppc_hash64_stop_access(cpu, token);
528 return (pte_index + i) * HASH_PTE_SIZE_64;
531 ppc_hash64_stop_access(cpu, token);
533 * We didn't find a valid entry.
535 return -1;
538 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
539 ppc_slb_t *slb, target_ulong eaddr,
540 ppc_hash_pte64_t *pte, unsigned *pshift)
542 CPUPPCState *env = &cpu->env;
543 hwaddr pte_offset;
544 hwaddr hash;
545 uint64_t vsid, epnmask, epn, ptem;
547 /* The SLB store path should prevent any bad page size encodings
548 * getting in there, so: */
549 assert(slb->sps);
551 epnmask = ~((1ULL << slb->sps->page_shift) - 1);
553 if (slb->vsid & SLB_VSID_B) {
554 /* 1TB segment */
555 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
556 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
557 hash = vsid ^ (vsid << 25) ^ (epn >> slb->sps->page_shift);
558 } else {
559 /* 256M segment */
560 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
561 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
562 hash = vsid ^ (epn >> slb->sps->page_shift);
564 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
565 ptem |= HPTE64_V_VALID;
567 /* Page address translation */
568 qemu_log_mask(CPU_LOG_MMU,
569 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
570 " hash " TARGET_FMT_plx "\n",
571 env->htab_base, env->htab_mask, hash);
573 /* Primary PTEG lookup */
574 qemu_log_mask(CPU_LOG_MMU,
575 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
576 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
577 " hash=" TARGET_FMT_plx "\n",
578 env->htab_base, env->htab_mask, vsid, ptem, hash);
579 pte_offset = ppc_hash64_pteg_search(cpu, hash, slb, ptem, pte, pshift);
581 if (pte_offset == -1) {
582 /* Secondary PTEG lookup */
583 ptem |= HPTE64_V_SECONDARY;
584 qemu_log_mask(CPU_LOG_MMU,
585 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
586 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
587 " hash=" TARGET_FMT_plx "\n", env->htab_base,
588 env->htab_mask, vsid, ptem, ~hash);
590 pte_offset = ppc_hash64_pteg_search(cpu, ~hash, slb, ptem, pte, pshift);
593 return pte_offset;
596 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
597 uint64_t pte0, uint64_t pte1)
599 CPUPPCState *env = &cpu->env;
600 int i;
602 if (!(pte0 & HPTE64_V_LARGE)) {
603 return 12;
607 * The encodings in env->sps need to be carefully chosen so that
608 * this gives an unambiguous result.
610 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
611 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
612 unsigned shift;
614 if (!sps->page_shift) {
615 break;
618 shift = hpte_page_shift(sps, pte0, pte1);
619 if (shift) {
620 return shift;
624 return 0;
627 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
628 uint64_t error_code)
630 bool vpm;
632 if (msr_ir) {
633 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
634 } else {
635 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
637 if (vpm && !msr_hv) {
638 cs->exception_index = POWERPC_EXCP_HISI;
639 } else {
640 cs->exception_index = POWERPC_EXCP_ISI;
642 env->error_code = error_code;
645 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
646 uint64_t dsisr)
648 bool vpm;
650 if (msr_dr) {
651 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
652 } else {
653 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
655 if (vpm && !msr_hv) {
656 cs->exception_index = POWERPC_EXCP_HDSI;
657 env->spr[SPR_HDAR] = dar;
658 env->spr[SPR_HDSISR] = dsisr;
659 } else {
660 cs->exception_index = POWERPC_EXCP_DSI;
661 env->spr[SPR_DAR] = dar;
662 env->spr[SPR_DSISR] = dsisr;
664 env->error_code = 0;
668 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
669 int rwx, int mmu_idx)
671 CPUState *cs = CPU(cpu);
672 CPUPPCState *env = &cpu->env;
673 ppc_slb_t *slb;
674 unsigned apshift;
675 hwaddr pte_offset;
676 ppc_hash_pte64_t pte;
677 int pp_prot, amr_prot, prot;
678 uint64_t new_pte1, dsisr;
679 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
680 hwaddr raddr;
682 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
684 /* Note on LPCR usage: 970 uses HID4, but our special variant
685 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
686 * Similarily we filter unimplemented bits when storing into
687 * LPCR depending on the MMU version. This code can thus just
688 * use the LPCR "as-is".
691 /* 1. Handle real mode accesses */
692 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
693 /* Translation is supposedly "off" */
694 /* In real mode the top 4 effective address bits are (mostly) ignored */
695 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
697 /* In HV mode, add HRMOR if top EA bit is clear */
698 if (msr_hv || !env->has_hv_mode) {
699 if (!(eaddr >> 63)) {
700 raddr |= env->spr[SPR_HRMOR];
702 } else {
703 /* Otherwise, check VPM for RMA vs VRMA */
704 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
705 slb = &env->vrma_slb;
706 if (slb->sps) {
707 goto skip_slb_search;
709 /* Not much else to do here */
710 cs->exception_index = POWERPC_EXCP_MCHECK;
711 env->error_code = 0;
712 return 1;
713 } else if (raddr < env->rmls) {
714 /* RMA. Check bounds in RMLS */
715 raddr |= env->spr[SPR_RMOR];
716 } else {
717 /* The access failed, generate the approriate interrupt */
718 if (rwx == 2) {
719 ppc_hash64_set_isi(cs, env, 0x08000000);
720 } else {
721 dsisr = 0x08000000;
722 if (rwx == 1) {
723 dsisr |= 0x02000000;
725 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
727 return 1;
730 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
731 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
732 TARGET_PAGE_SIZE);
733 return 0;
736 /* 2. Translation is on, so look up the SLB */
737 slb = slb_lookup(cpu, eaddr);
738 if (!slb) {
739 if (rwx == 2) {
740 cs->exception_index = POWERPC_EXCP_ISEG;
741 env->error_code = 0;
742 } else {
743 cs->exception_index = POWERPC_EXCP_DSEG;
744 env->error_code = 0;
745 env->spr[SPR_DAR] = eaddr;
747 return 1;
750 skip_slb_search:
752 /* 3. Check for segment level no-execute violation */
753 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
754 ppc_hash64_set_isi(cs, env, 0x10000000);
755 return 1;
758 /* 4. Locate the PTE in the hash table */
759 pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
760 if (pte_offset == -1) {
761 dsisr = 0x40000000;
762 if (rwx == 2) {
763 ppc_hash64_set_isi(cs, env, dsisr);
764 } else {
765 if (rwx == 1) {
766 dsisr |= 0x02000000;
768 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
770 return 1;
772 qemu_log_mask(CPU_LOG_MMU,
773 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
775 /* 5. Check access permissions */
777 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
778 amr_prot = ppc_hash64_amr_prot(cpu, pte);
779 prot = pp_prot & amr_prot;
781 if ((need_prot[rwx] & ~prot) != 0) {
782 /* Access right violation */
783 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
784 if (rwx == 2) {
785 ppc_hash64_set_isi(cs, env, 0x08000000);
786 } else {
787 dsisr = 0;
788 if (need_prot[rwx] & ~pp_prot) {
789 dsisr |= 0x08000000;
791 if (rwx == 1) {
792 dsisr |= 0x02000000;
794 if (need_prot[rwx] & ~amr_prot) {
795 dsisr |= 0x00200000;
797 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
799 return 1;
802 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
804 /* 6. Update PTE referenced and changed bits if necessary */
806 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
807 if (rwx == 1) {
808 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
809 } else {
810 /* Treat the page as read-only for now, so that a later write
811 * will pass through this function again to set the C bit */
812 prot &= ~PAGE_WRITE;
815 if (new_pte1 != pte.pte1) {
816 ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
817 pte.pte0, new_pte1);
820 /* 7. Determine the real address from the PTE */
822 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
824 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
825 prot, mmu_idx, 1ULL << apshift);
827 return 0;
830 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
832 CPUPPCState *env = &cpu->env;
833 ppc_slb_t *slb;
834 hwaddr pte_offset, raddr;
835 ppc_hash_pte64_t pte;
836 unsigned apshift;
838 /* Handle real mode */
839 if (msr_dr == 0) {
840 /* In real mode the top 4 effective address bits are ignored */
841 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
843 /* In HV mode, add HRMOR if top EA bit is clear */
844 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
845 return raddr | env->spr[SPR_HRMOR];
848 /* Otherwise, check VPM for RMA vs VRMA */
849 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
850 slb = &env->vrma_slb;
851 if (!slb->sps) {
852 return -1;
854 } else if (raddr < env->rmls) {
855 /* RMA. Check bounds in RMLS */
856 return raddr | env->spr[SPR_RMOR];
857 } else {
858 return -1;
860 } else {
861 slb = slb_lookup(cpu, addr);
862 if (!slb) {
863 return -1;
867 pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
868 if (pte_offset == -1) {
869 return -1;
872 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
873 & TARGET_PAGE_MASK;
876 void ppc_hash64_store_hpte(PowerPCCPU *cpu,
877 target_ulong pte_index,
878 target_ulong pte0, target_ulong pte1)
880 CPUPPCState *env = &cpu->env;
882 if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
883 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
884 return;
887 pte_index *= HASH_PTE_SIZE_64;
888 if (env->external_htab) {
889 stq_p(env->external_htab + pte_index, pte0);
890 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
891 } else {
892 stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
893 stq_phys(CPU(cpu)->as,
894 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
898 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
899 target_ulong pte_index,
900 target_ulong pte0, target_ulong pte1)
903 * XXX: given the fact that there are too many segments to
904 * invalidate, and we still don't have a tlb_flush_mask(env, n,
905 * mask) in QEMU, we just invalidate all TLBs
907 tlb_flush(CPU(cpu), 1);
910 void ppc_hash64_update_rmls(CPUPPCState *env)
912 uint64_t lpcr = env->spr[SPR_LPCR];
915 * This is the full 4 bits encoding of POWER8. Previous
916 * CPUs only support a subset of these but the filtering
917 * is done when writing LPCR
919 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
920 case 0x8: /* 32MB */
921 env->rmls = 0x2000000ull;
922 break;
923 case 0x3: /* 64MB */
924 env->rmls = 0x4000000ull;
925 break;
926 case 0x7: /* 128MB */
927 env->rmls = 0x8000000ull;
928 break;
929 case 0x4: /* 256MB */
930 env->rmls = 0x10000000ull;
931 break;
932 case 0x2: /* 1GB */
933 env->rmls = 0x40000000ull;
934 break;
935 case 0x1: /* 16GB */
936 env->rmls = 0x400000000ull;
937 break;
938 default:
939 /* What to do here ??? */
940 env->rmls = 0;
944 void ppc_hash64_update_vrma(CPUPPCState *env)
946 const struct ppc_one_seg_page_size *sps = NULL;
947 target_ulong esid, vsid, lpcr;
948 ppc_slb_t *slb = &env->vrma_slb;
949 uint32_t vrmasd;
950 int i;
952 /* First clear it */
953 slb->esid = slb->vsid = 0;
954 slb->sps = NULL;
956 /* Is VRMA enabled ? */
957 lpcr = env->spr[SPR_LPCR];
958 if (!(lpcr & LPCR_VPM0)) {
959 return;
962 /* Make one up. Mostly ignore the ESID which will not be
963 * needed for translation
965 vsid = SLB_VSID_VRMA;
966 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
967 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
968 esid = SLB_ESID_V;
970 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
971 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
973 if (!sps1->page_shift) {
974 break;
977 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
978 sps = sps1;
979 break;
983 if (!sps) {
984 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
985 " vsid 0x"TARGET_FMT_lx, esid, vsid);
986 return;
989 slb->vsid = vsid;
990 slb->esid = esid;
991 slb->sps = sps;
994 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
996 uint64_t lpcr = 0;
998 /* Filter out bits */
999 switch (env->mmu_model) {
1000 case POWERPC_MMU_64B: /* 970 */
1001 if (val & 0x40) {
1002 lpcr |= LPCR_LPES0;
1004 if (val & 0x8000000000000000ull) {
1005 lpcr |= LPCR_LPES1;
1007 if (val & 0x20) {
1008 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1010 if (val & 0x4000000000000000ull) {
1011 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1013 if (val & 0x2000000000000000ull) {
1014 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1016 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1018 /* XXX We could also write LPID from HID4 here
1019 * but since we don't tag any translation on it
1020 * it doesn't actually matter
1022 /* XXX For proper emulation of 970 we also need
1023 * to dig HRMOR out of HID5
1025 break;
1026 case POWERPC_MMU_2_03: /* P5p */
1027 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1028 LPCR_LPES0 | LPCR_LPES1 |
1029 LPCR_RMI | LPCR_HDICE);
1030 break;
1031 case POWERPC_MMU_2_06: /* P7 */
1032 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1033 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1034 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1035 LPCR_MER | LPCR_TC |
1036 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1037 break;
1038 case POWERPC_MMU_2_07: /* P8 */
1039 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1040 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1041 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1042 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1043 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1044 break;
1045 default:
1048 env->spr[SPR_LPCR] = lpcr;
1049 ppc_hash64_update_rmls(env);
1050 ppc_hash64_update_vrma(env);