4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
45 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
47 ARMCPU
*cpu
= ARM_CPU(cs
);
48 CPUARMState
*env
= &cpu
->env
;
54 env
->regs
[15] = value
& ~1;
55 env
->thumb
= value
& 1;
60 void arm_cpu_synchronize_from_tb(CPUState
*cs
,
61 const TranslationBlock
*tb
)
63 ARMCPU
*cpu
= ARM_CPU(cs
);
64 CPUARMState
*env
= &cpu
->env
;
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
73 env
->regs
[15] = tb
->pc
;
76 #endif /* CONFIG_TCG */
78 static bool arm_cpu_has_work(CPUState
*cs
)
80 ARMCPU
*cpu
= ARM_CPU(cs
);
82 return (cpu
->power_state
!= PSCI_OFF
)
83 && cs
->interrupt_request
&
84 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB
);
89 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
92 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
95 entry
->opaque
= opaque
;
97 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
100 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
103 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
106 entry
->opaque
= opaque
;
108 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
111 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo
*ri
= value
;
115 ARMCPU
*cpu
= opaque
;
117 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
122 ri
->resetfn(&cpu
->env
, ri
);
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
131 if (!ri
->fieldoffset
) {
135 if (cpreg_field_is_64bit(ri
)) {
136 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
138 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
142 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
149 ARMCPRegInfo
*ri
= value
;
150 ARMCPU
*cpu
= opaque
;
151 uint64_t oldvalue
, newvalue
;
153 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
157 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
158 cp_reg_reset(key
, value
, opaque
);
159 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
160 assert(oldvalue
== newvalue
);
163 static void arm_cpu_reset(DeviceState
*dev
)
165 CPUState
*s
= CPU(dev
);
166 ARMCPU
*cpu
= ARM_CPU(s
);
167 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
168 CPUARMState
*env
= &cpu
->env
;
170 acc
->parent_reset(dev
);
172 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
174 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
175 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
177 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
178 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
179 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
180 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
182 cpu
->power_state
= s
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
184 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
185 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
188 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
189 /* 64 bit CPUs always start in 64 bit mode */
191 #if defined(CONFIG_USER_ONLY)
192 env
->pstate
= PSTATE_MODE_EL0t
;
193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
195 /* Enable all PAC keys. */
196 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
197 SCTLR_EnDA
| SCTLR_EnDB
);
198 /* and to the FP/Neon instructions */
199 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
200 /* and to the SVE instructions */
201 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve
, cpu
)) {
205 aarch64_sve_zcr_get_valid_len(cpu
, cpu
->sve_default_vq
- 1);
208 * Enable TBI0 but not TBI1.
209 * Note that this must match useronly_clean_ptr.
211 env
->cp15
.tcr_el
[1].raw_tcr
= (1ULL << 37);
214 if (cpu_isar_feature(aa64_mte
, cpu
)) {
215 /* Enable tag access, but leave TCF0 as No Effect (0). */
216 env
->cp15
.sctlr_el
[1] |= SCTLR_ATA0
;
218 * Exclude all tags, so that tag 0 is always used.
219 * This corresponds to Linux current->thread.gcr_incl = 0.
221 * Set RRND, so that helper_irg() will generate a seed later.
222 * Here in cpu_reset(), the crypto subsystem has not yet been
225 env
->cp15
.gcr_el1
= 0x1ffff;
228 /* Reset into the highest available EL */
229 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
230 env
->pstate
= PSTATE_MODE_EL3h
;
231 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
232 env
->pstate
= PSTATE_MODE_EL2h
;
234 env
->pstate
= PSTATE_MODE_EL1h
;
236 env
->pc
= cpu
->rvbar
;
239 #if defined(CONFIG_USER_ONLY)
240 /* Userspace expects access to cp10 and cp11 for FP/Neon */
241 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
245 #if defined(CONFIG_USER_ONLY)
246 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
247 /* For user mode we must enable access to coprocessors */
248 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
249 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
250 env
->cp15
.c15_cpar
= 3;
251 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
252 env
->cp15
.c15_cpar
= 1;
257 * If the highest available EL is EL2, AArch32 will start in Hyp
258 * mode; otherwise it starts in SVC. Note that if we start in
259 * AArch64 then these values in the uncached_cpsr will be ignored.
261 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
262 !arm_feature(env
, ARM_FEATURE_EL3
)) {
263 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
265 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
267 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
269 if (arm_feature(env
, ARM_FEATURE_M
)) {
270 uint32_t initial_msp
; /* Loaded from 0x0 */
271 uint32_t initial_pc
; /* Loaded from 0x4 */
275 if (cpu_isar_feature(aa32_lob
, cpu
)) {
277 * LTPSIZE is constant 4 if MVE not implemented, and resets
278 * to an UNKNOWN value if MVE is implemented. We choose to
281 env
->v7m
.ltpsize
= 4;
282 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
283 env
->v7m
.fpdscr
[M_REG_NS
] = 4 << FPCR_LTPSIZE_SHIFT
;
284 env
->v7m
.fpdscr
[M_REG_S
] = 4 << FPCR_LTPSIZE_SHIFT
;
287 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
288 env
->v7m
.secure
= true;
290 /* This bit resets to 0 if security is supported, but 1 if
291 * it is not. The bit is not present in v7M, but we set it
292 * here so we can avoid having to make checks on it conditional
293 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
295 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
297 * Set NSACR to indicate "NS access permitted to everything";
298 * this avoids having to have all the tests of it being
299 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
300 * v8.1M the guest-visible value of NSACR in a CPU without the
301 * Security Extension is 0xcff.
303 env
->v7m
.nsacr
= 0xcff;
306 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
307 * that it resets to 1, so QEMU always does that rather than making
308 * it dependent on CPU model. In v8M it is RES1.
310 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
311 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
312 if (arm_feature(env
, ARM_FEATURE_V8
)) {
313 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
314 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
315 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
317 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
318 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
319 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
322 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
323 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
324 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
325 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
327 /* Unlike A/R profile, M profile defines the reset LR value */
328 env
->regs
[14] = 0xffffffff;
330 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
331 env
->v7m
.vecbase
[M_REG_NS
] = cpu
->init_nsvtor
& 0xffffff80;
333 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
334 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
335 rom
= rom_ptr_for_as(s
->as
, vecbase
, 8);
337 /* Address zero is covered by ROM which hasn't yet been
338 * copied into physical memory.
340 initial_msp
= ldl_p(rom
);
341 initial_pc
= ldl_p(rom
+ 4);
343 /* Address zero not covered by a ROM blob, or the ROM blob
344 * is in non-modifiable memory and this is a second reset after
345 * it got copied into memory. In the latter case, rom_ptr
346 * will return a NULL pointer and we should use ldl_phys instead.
348 initial_msp
= ldl_phys(s
->as
, vecbase
);
349 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
352 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
353 env
->regs
[15] = initial_pc
& ~1;
354 env
->thumb
= initial_pc
& 1;
357 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
358 * executing as AArch32 then check if highvecs are enabled and
359 * adjust the PC accordingly.
361 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
362 env
->regs
[15] = 0xFFFF0000;
365 /* M profile requires that reset clears the exclusive monitor;
366 * A profile does not, but clearing it makes more sense than having it
367 * set with an exclusive access on address zero.
369 arm_clear_exclusive(env
);
371 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
374 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
375 if (cpu
->pmsav7_dregion
> 0) {
376 if (arm_feature(env
, ARM_FEATURE_V8
)) {
377 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
378 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
379 * cpu
->pmsav7_dregion
);
380 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
381 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
382 * cpu
->pmsav7_dregion
);
383 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
384 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
385 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
386 * cpu
->pmsav7_dregion
);
387 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
388 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
389 * cpu
->pmsav7_dregion
);
391 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
392 memset(env
->pmsav7
.drbar
, 0,
393 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
394 memset(env
->pmsav7
.drsr
, 0,
395 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
396 memset(env
->pmsav7
.dracr
, 0,
397 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
400 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
401 env
->pmsav7
.rnr
[M_REG_S
] = 0;
402 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
403 env
->pmsav8
.mair0
[M_REG_S
] = 0;
404 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
405 env
->pmsav8
.mair1
[M_REG_S
] = 0;
408 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
409 if (cpu
->sau_sregion
> 0) {
410 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
411 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
414 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
415 * the Cortex-M33 does.
420 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
421 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
422 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
423 set_default_nan_mode(1, &env
->vfp
.standard_fp_status_f16
);
424 set_float_detect_tininess(float_tininess_before_rounding
,
425 &env
->vfp
.fp_status
);
426 set_float_detect_tininess(float_tininess_before_rounding
,
427 &env
->vfp
.standard_fp_status
);
428 set_float_detect_tininess(float_tininess_before_rounding
,
429 &env
->vfp
.fp_status_f16
);
430 set_float_detect_tininess(float_tininess_before_rounding
,
431 &env
->vfp
.standard_fp_status_f16
);
432 #ifndef CONFIG_USER_ONLY
434 kvm_arm_reset_vcpu(cpu
);
438 hw_breakpoint_update_all(cpu
);
439 hw_watchpoint_update_all(cpu
);
440 arm_rebuild_hflags(env
);
443 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
444 unsigned int target_el
,
445 unsigned int cur_el
, bool secure
,
448 CPUARMState
*env
= cs
->env_ptr
;
449 bool pstate_unmasked
;
450 bool unmasked
= false;
453 * Don't take exceptions if they target a lower EL.
454 * This check should catch any exceptions that would not be taken
457 if (cur_el
> target_el
) {
463 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
467 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
471 if (!(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
472 /* VFIQs are only taken when hypervized. */
475 return !(env
->daif
& PSTATE_F
);
477 if (!(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
478 /* VIRQs are only taken when hypervized. */
481 return !(env
->daif
& PSTATE_I
);
483 g_assert_not_reached();
487 * Use the target EL, current execution state and SCR/HCR settings to
488 * determine whether the corresponding CPSR bit is used to mask the
491 if ((target_el
> cur_el
) && (target_el
!= 1)) {
492 /* Exceptions targeting a higher EL may not be maskable */
493 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
495 * 64-bit masking rules are simple: exceptions to EL3
496 * can't be masked, and exceptions to EL2 can only be
497 * masked from Secure state. The HCR and SCR settings
498 * don't affect the masking logic, only the interrupt routing.
500 if (target_el
== 3 || !secure
|| (env
->cp15
.scr_el3
& SCR_EEL2
)) {
505 * The old 32-bit-only environment has a more complicated
506 * masking setup. HCR and SCR bits not only affect interrupt
507 * routing but also change the behaviour of masking.
514 * If FIQs are routed to EL3 or EL2 then there are cases where
515 * we override the CPSR.F in determining if the exception is
516 * masked or not. If neither of these are set then we fall back
517 * to the CPSR.F setting otherwise we further assess the state
520 hcr
= hcr_el2
& HCR_FMO
;
521 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
524 * When EL3 is 32-bit, the SCR.FW bit controls whether the
525 * CPSR.F bit masks FIQ interrupts when taken in non-secure
526 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
527 * when non-secure but only when FIQs are only routed to EL3.
529 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
533 * When EL3 execution state is 32-bit, if HCR.IMO is set then
534 * we may override the CPSR.I masking when in non-secure state.
535 * The SCR.IRQ setting has already been taken into consideration
536 * when setting the target EL, so it does not have a further
539 hcr
= hcr_el2
& HCR_IMO
;
543 g_assert_not_reached();
546 if ((scr
|| hcr
) && !secure
) {
553 * The PSTATE bits only mask the interrupt if we have not overriden the
556 return unmasked
|| pstate_unmasked
;
559 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
561 CPUClass
*cc
= CPU_GET_CLASS(cs
);
562 CPUARMState
*env
= cs
->env_ptr
;
563 uint32_t cur_el
= arm_current_el(env
);
564 bool secure
= arm_is_secure(env
);
565 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
569 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
571 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
573 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
574 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
575 cur_el
, secure
, hcr_el2
)) {
579 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
581 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
582 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
583 cur_el
, secure
, hcr_el2
)) {
587 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
588 excp_idx
= EXCP_VIRQ
;
590 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
591 cur_el
, secure
, hcr_el2
)) {
595 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
596 excp_idx
= EXCP_VFIQ
;
598 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
599 cur_el
, secure
, hcr_el2
)) {
606 cs
->exception_index
= excp_idx
;
607 env
->exception
.target_el
= target_el
;
608 cc
->tcg_ops
->do_interrupt(cs
);
612 void arm_cpu_update_virq(ARMCPU
*cpu
)
615 * Update the interrupt level for VIRQ, which is the logical OR of
616 * the HCR_EL2.VI bit and the input line level from the GIC.
618 CPUARMState
*env
= &cpu
->env
;
619 CPUState
*cs
= CPU(cpu
);
621 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
622 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
624 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
626 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
628 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
633 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
636 * Update the interrupt level for VFIQ, which is the logical OR of
637 * the HCR_EL2.VF bit and the input line level from the GIC.
639 CPUARMState
*env
= &cpu
->env
;
640 CPUState
*cs
= CPU(cpu
);
642 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
643 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
645 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
647 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
649 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
654 #ifndef CONFIG_USER_ONLY
655 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
657 ARMCPU
*cpu
= opaque
;
658 CPUARMState
*env
= &cpu
->env
;
659 CPUState
*cs
= CPU(cpu
);
660 static const int mask
[] = {
661 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
662 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
663 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
664 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
668 env
->irq_line_state
|= mask
[irq
];
670 env
->irq_line_state
&= ~mask
[irq
];
675 assert(arm_feature(env
, ARM_FEATURE_EL2
));
676 arm_cpu_update_virq(cpu
);
679 assert(arm_feature(env
, ARM_FEATURE_EL2
));
680 arm_cpu_update_vfiq(cpu
);
685 cpu_interrupt(cs
, mask
[irq
]);
687 cpu_reset_interrupt(cs
, mask
[irq
]);
691 g_assert_not_reached();
695 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
698 ARMCPU
*cpu
= opaque
;
699 CPUARMState
*env
= &cpu
->env
;
700 CPUState
*cs
= CPU(cpu
);
701 uint32_t linestate_bit
;
706 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
707 linestate_bit
= CPU_INTERRUPT_HARD
;
710 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
711 linestate_bit
= CPU_INTERRUPT_FIQ
;
714 g_assert_not_reached();
718 env
->irq_line_state
|= linestate_bit
;
720 env
->irq_line_state
&= ~linestate_bit
;
722 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
726 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
728 ARMCPU
*cpu
= ARM_CPU(cs
);
729 CPUARMState
*env
= &cpu
->env
;
731 cpu_synchronize_state(cs
);
732 return arm_cpu_data_is_big_endian(env
);
738 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
740 return print_insn_arm(pc
| 1, info
);
743 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
745 ARMCPU
*ac
= ARM_CPU(cpu
);
746 CPUARMState
*env
= &ac
->env
;
750 /* We might not be compiled with the A64 disassembler
751 * because it needs a C++ compiler. Leave print_insn
752 * unset in this case to use the caller default behaviour.
754 #if defined(CONFIG_ARM_A64_DIS)
755 info
->print_insn
= print_insn_arm_a64
;
757 info
->cap_arch
= CS_ARCH_ARM64
;
758 info
->cap_insn_unit
= 4;
759 info
->cap_insn_split
= 4;
763 info
->print_insn
= print_insn_thumb1
;
764 info
->cap_insn_unit
= 2;
765 info
->cap_insn_split
= 4;
766 cap_mode
= CS_MODE_THUMB
;
768 info
->print_insn
= print_insn_arm
;
769 info
->cap_insn_unit
= 4;
770 info
->cap_insn_split
= 4;
771 cap_mode
= CS_MODE_ARM
;
773 if (arm_feature(env
, ARM_FEATURE_V8
)) {
774 cap_mode
|= CS_MODE_V8
;
776 if (arm_feature(env
, ARM_FEATURE_M
)) {
777 cap_mode
|= CS_MODE_MCLASS
;
779 info
->cap_arch
= CS_ARCH_ARM
;
780 info
->cap_mode
= cap_mode
;
783 sctlr_b
= arm_sctlr_b(env
);
784 if (bswap_code(sctlr_b
)) {
785 #ifdef TARGET_WORDS_BIGENDIAN
786 info
->endian
= BFD_ENDIAN_LITTLE
;
788 info
->endian
= BFD_ENDIAN_BIG
;
791 info
->flags
&= ~INSN_ARM_BE32
;
792 #ifndef CONFIG_USER_ONLY
794 info
->flags
|= INSN_ARM_BE32
;
799 #ifdef TARGET_AARCH64
801 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
803 ARMCPU
*cpu
= ARM_CPU(cs
);
804 CPUARMState
*env
= &cpu
->env
;
805 uint32_t psr
= pstate_read(env
);
807 int el
= arm_current_el(env
);
808 const char *ns_status
;
810 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
811 for (i
= 0; i
< 32; i
++) {
813 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
815 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
816 (i
+ 2) % 3 ? " " : "\n");
820 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
821 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
825 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
827 psr
& PSTATE_N
? 'N' : '-',
828 psr
& PSTATE_Z
? 'Z' : '-',
829 psr
& PSTATE_C
? 'C' : '-',
830 psr
& PSTATE_V
? 'V' : '-',
833 psr
& PSTATE_SP
? 'h' : 't');
835 if (cpu_isar_feature(aa64_bti
, cpu
)) {
836 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
838 if (!(flags
& CPU_DUMP_FPU
)) {
839 qemu_fprintf(f
, "\n");
842 if (fp_exception_el(env
, el
) != 0) {
843 qemu_fprintf(f
, " FPU disabled\n");
846 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
847 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
849 if (cpu_isar_feature(aa64_sve
, cpu
) && sve_exception_el(env
, el
) == 0) {
850 int j
, zcr_len
= sve_zcr_len_for_el(env
, el
);
852 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
854 if (i
== FFR_PRED_NUM
) {
855 qemu_fprintf(f
, "FFR=");
856 /* It's last, so end the line. */
859 qemu_fprintf(f
, "P%02d=", i
);
872 /* More than one quadword per predicate. */
877 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
879 if (j
* 4 + 4 <= zcr_len
+ 1) {
882 digits
= (zcr_len
% 4 + 1) * 4;
884 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
885 env
->vfp
.pregs
[i
].p
[j
],
886 j
? ":" : eol
? "\n" : " ");
890 for (i
= 0; i
< 32; i
++) {
892 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
893 i
, env
->vfp
.zregs
[i
].d
[1],
894 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
895 } else if (zcr_len
== 1) {
896 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
897 ":%016" PRIx64
":%016" PRIx64
"\n",
898 i
, env
->vfp
.zregs
[i
].d
[3], env
->vfp
.zregs
[i
].d
[2],
899 env
->vfp
.zregs
[i
].d
[1], env
->vfp
.zregs
[i
].d
[0]);
901 for (j
= zcr_len
; j
>= 0; j
--) {
902 bool odd
= (zcr_len
- j
) % 2 != 0;
904 qemu_fprintf(f
, "Z%02d[%x-%x]=", i
, j
, j
- 1);
907 qemu_fprintf(f
, " [%x-%x]=", j
, j
- 1);
909 qemu_fprintf(f
, " [%x]=", j
);
912 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
913 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
914 env
->vfp
.zregs
[i
].d
[j
* 2],
915 odd
|| j
== 0 ? "\n" : ":");
920 for (i
= 0; i
< 32; i
++) {
921 uint64_t *q
= aa64_vfp_qreg(env
, i
);
922 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
923 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
930 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
932 g_assert_not_reached();
937 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
939 ARMCPU
*cpu
= ARM_CPU(cs
);
940 CPUARMState
*env
= &cpu
->env
;
944 aarch64_cpu_dump_state(cs
, f
, flags
);
948 for (i
= 0; i
< 16; i
++) {
949 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
951 qemu_fprintf(f
, "\n");
953 qemu_fprintf(f
, " ");
957 if (arm_feature(env
, ARM_FEATURE_M
)) {
958 uint32_t xpsr
= xpsr_read(env
);
960 const char *ns_status
= "";
962 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
963 ns_status
= env
->v7m
.secure
? "S " : "NS ";
966 if (xpsr
& XPSR_EXCP
) {
969 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
970 mode
= "unpriv-thread";
972 mode
= "priv-thread";
976 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
978 xpsr
& XPSR_N
? 'N' : '-',
979 xpsr
& XPSR_Z
? 'Z' : '-',
980 xpsr
& XPSR_C
? 'C' : '-',
981 xpsr
& XPSR_V
? 'V' : '-',
982 xpsr
& XPSR_T
? 'T' : 'A',
986 uint32_t psr
= cpsr_read(env
);
987 const char *ns_status
= "";
989 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
990 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
991 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
994 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
996 psr
& CPSR_N
? 'N' : '-',
997 psr
& CPSR_Z
? 'Z' : '-',
998 psr
& CPSR_C
? 'C' : '-',
999 psr
& CPSR_V
? 'V' : '-',
1000 psr
& CPSR_T
? 'T' : 'A',
1002 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
1005 if (flags
& CPU_DUMP_FPU
) {
1007 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
1009 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1012 for (i
= 0; i
< numvfpregs
; i
++) {
1013 uint64_t v
= *aa32_vfp_dreg(env
, i
);
1014 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
1016 i
* 2 + 1, (uint32_t)(v
>> 32),
1019 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
1020 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1021 qemu_fprintf(f
, "VPR: %08x\n", env
->v7m
.vpr
);
1026 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
1028 uint32_t Aff1
= idx
/ clustersz
;
1029 uint32_t Aff0
= idx
% clustersz
;
1030 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
1033 static void cpreg_hashtable_data_destroy(gpointer data
)
1036 * Destroy function for cpu->cp_regs hashtable data entries.
1037 * We must free the name string because it was g_strdup()ed in
1038 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1039 * from r->name because we know we definitely allocated it.
1041 ARMCPRegInfo
*r
= data
;
1043 g_free((void *)r
->name
);
1047 static void arm_cpu_initfn(Object
*obj
)
1049 ARMCPU
*cpu
= ARM_CPU(obj
);
1051 cpu_set_cpustate_pointers(cpu
);
1052 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
1053 g_free
, cpreg_hashtable_data_destroy
);
1055 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1056 QLIST_INIT(&cpu
->el_change_hooks
);
1058 #ifdef CONFIG_USER_ONLY
1059 # ifdef TARGET_AARCH64
1061 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1062 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1063 * our corresponding sve-default-vector-length cpu property.
1065 cpu
->sve_default_vq
= 4;
1068 /* Our inbound IRQ and FIQ lines */
1069 if (kvm_enabled()) {
1070 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1071 * the same interface as non-KVM CPUs.
1073 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
1075 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
1078 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1079 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1081 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1082 "gicv3-maintenance-interrupt", 1);
1083 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1084 "pmu-interrupt", 1);
1087 /* DTB consumers generally don't in fact care what the 'compatible'
1088 * string is, so always provide some string and trust that a hypothetical
1089 * picky DTB consumer will also provide a helpful error message.
1091 cpu
->dtb_compatible
= "qemu,unknown";
1092 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
1093 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1095 if (tcg_enabled()) {
1096 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
1100 static Property arm_cpu_gt_cntfrq_property
=
1101 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
,
1102 NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
);
1104 static Property arm_cpu_reset_cbar_property
=
1105 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1107 static Property arm_cpu_reset_hivecs_property
=
1108 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1110 static Property arm_cpu_rvbar_property
=
1111 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
1113 #ifndef CONFIG_USER_ONLY
1114 static Property arm_cpu_has_el2_property
=
1115 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1117 static Property arm_cpu_has_el3_property
=
1118 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1121 static Property arm_cpu_cfgend_property
=
1122 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1124 static Property arm_cpu_has_vfp_property
=
1125 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1127 static Property arm_cpu_has_neon_property
=
1128 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1130 static Property arm_cpu_has_dsp_property
=
1131 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1133 static Property arm_cpu_has_mpu_property
=
1134 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1136 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1137 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1138 * the right value for that particular CPU type, and we don't want
1139 * to override that with an incorrect constant value.
1141 static Property arm_cpu_pmsav7_dregion_property
=
1142 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1144 qdev_prop_uint32
, uint32_t);
1146 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1148 ARMCPU
*cpu
= ARM_CPU(obj
);
1150 return cpu
->has_pmu
;
1153 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1155 ARMCPU
*cpu
= ARM_CPU(obj
);
1158 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1159 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1162 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1164 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1166 cpu
->has_pmu
= value
;
1169 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1172 * The exact approach to calculating guest ticks is:
1174 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1175 * NANOSECONDS_PER_SECOND);
1177 * We don't do that. Rather we intentionally use integer division
1178 * truncation below and in the caller for the conversion of host monotonic
1179 * time to guest ticks to provide the exact inverse for the semantics of
1180 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1181 * it loses precision when representing frequencies where
1182 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1183 * provide an exact inverse leads to scheduling timers with negative
1184 * periods, which in turn leads to sticky behaviour in the guest.
1186 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1187 * cannot become zero.
1189 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1190 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1193 void arm_cpu_post_init(Object
*obj
)
1195 ARMCPU
*cpu
= ARM_CPU(obj
);
1197 /* M profile implies PMSA. We have to do this here rather than
1198 * in realize with the other feature-implication checks because
1199 * we look at the PMSA bit to see if we should add some properties.
1201 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1202 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1205 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1206 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1207 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1210 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1211 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1214 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1215 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
);
1218 #ifndef CONFIG_USER_ONLY
1219 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1220 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1221 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1223 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1225 object_property_add_link(obj
, "secure-memory",
1227 (Object
**)&cpu
->secure_memory
,
1228 qdev_prop_allow_set_link_before_realize
,
1229 OBJ_PROP_LINK_STRONG
);
1232 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1233 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1237 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1238 cpu
->has_pmu
= true;
1239 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1243 * Allow user to turn off VFP and Neon support, but only for TCG --
1244 * KVM does not currently allow us to lie to the guest about its
1245 * ID/feature registers, so the guest always sees what the host has.
1247 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
1248 ? cpu_isar_feature(aa64_fp_simd
, cpu
)
1249 : cpu_isar_feature(aa32_vfp
, cpu
)) {
1250 cpu
->has_vfp
= true;
1251 if (!kvm_enabled()) {
1252 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_vfp_property
);
1256 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1257 cpu
->has_neon
= true;
1258 if (!kvm_enabled()) {
1259 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1263 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1264 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1265 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1268 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1269 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1270 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1271 qdev_property_add_static(DEVICE(obj
),
1272 &arm_cpu_pmsav7_dregion_property
);
1276 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1277 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1278 qdev_prop_allow_set_link_before_realize
,
1279 OBJ_PROP_LINK_STRONG
);
1281 * M profile: initial value of the Secure VTOR. We can't just use
1282 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1283 * the property to be set after realize.
1285 object_property_add_uint32_ptr(obj
, "init-svtor",
1287 OBJ_PROP_FLAG_READWRITE
);
1289 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1291 * Initial value of the NS VTOR (for cores without the Security
1292 * extension, this is the only VTOR)
1294 object_property_add_uint32_ptr(obj
, "init-nsvtor",
1296 OBJ_PROP_FLAG_READWRITE
);
1299 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1301 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1302 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1305 if (kvm_enabled()) {
1306 kvm_arm_add_vcpu_properties(obj
);
1309 #ifndef CONFIG_USER_ONLY
1310 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1311 cpu_isar_feature(aa64_mte
, cpu
)) {
1312 object_property_add_link(obj
, "tag-memory",
1314 (Object
**)&cpu
->tag_memory
,
1315 qdev_prop_allow_set_link_before_realize
,
1316 OBJ_PROP_LINK_STRONG
);
1318 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1319 object_property_add_link(obj
, "secure-tag-memory",
1321 (Object
**)&cpu
->secure_tag_memory
,
1322 qdev_prop_allow_set_link_before_realize
,
1323 OBJ_PROP_LINK_STRONG
);
1329 static void arm_cpu_finalizefn(Object
*obj
)
1331 ARMCPU
*cpu
= ARM_CPU(obj
);
1332 ARMELChangeHook
*hook
, *next
;
1334 g_hash_table_destroy(cpu
->cp_regs
);
1336 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1337 QLIST_REMOVE(hook
, node
);
1340 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1341 QLIST_REMOVE(hook
, node
);
1344 #ifndef CONFIG_USER_ONLY
1345 if (cpu
->pmu_timer
) {
1346 timer_free(cpu
->pmu_timer
);
1351 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1353 Error
*local_err
= NULL
;
1355 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1356 arm_cpu_sve_finalize(cpu
, &local_err
);
1357 if (local_err
!= NULL
) {
1358 error_propagate(errp
, local_err
);
1363 * KVM does not support modifications to this feature.
1364 * We have not registered the cpu properties when KVM
1365 * is in use, so the user will not be able to set them.
1367 if (!kvm_enabled()) {
1368 arm_cpu_pauth_finalize(cpu
, &local_err
);
1369 if (local_err
!= NULL
) {
1370 error_propagate(errp
, local_err
);
1376 if (kvm_enabled()) {
1377 kvm_arm_steal_time_finalize(cpu
, &local_err
);
1378 if (local_err
!= NULL
) {
1379 error_propagate(errp
, local_err
);
1385 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1387 CPUState
*cs
= CPU(dev
);
1388 ARMCPU
*cpu
= ARM_CPU(dev
);
1389 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1390 CPUARMState
*env
= &cpu
->env
;
1392 Error
*local_err
= NULL
;
1393 bool no_aa32
= false;
1395 /* If we needed to query the host kernel for the CPU features
1396 * then it's possible that might have failed in the initfn, but
1397 * this is the first point where we can report it.
1399 if (cpu
->host_cpu_probe_failed
) {
1400 if (!kvm_enabled()) {
1401 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
1403 error_setg(errp
, "Failed to retrieve host CPU features");
1408 #ifndef CONFIG_USER_ONLY
1409 /* The NVIC and M-profile CPU are two halves of a single piece of
1410 * hardware; trying to use one without the other is a command line
1411 * error and will result in segfaults if not caught here.
1413 if (arm_feature(env
, ARM_FEATURE_M
)) {
1415 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
1420 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
1425 if (kvm_enabled()) {
1427 * Catch all the cases which might cause us to create more than one
1428 * address space for the CPU (otherwise we will assert() later in
1429 * cpu_address_space_init()).
1431 if (arm_feature(env
, ARM_FEATURE_M
)) {
1433 "Cannot enable KVM when using an M-profile guest CPU");
1438 "Cannot enable KVM when guest CPU has EL3 enabled");
1441 if (cpu
->tag_memory
) {
1443 "Cannot enable KVM when guest CPUs has MTE enabled");
1451 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1452 if (!cpu
->gt_cntfrq_hz
) {
1453 error_setg(errp
, "Invalid CNTFRQ: %"PRId64
"Hz",
1457 scale
= gt_cntfrq_period_ns(cpu
);
1459 scale
= GTIMER_SCALE
;
1462 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1463 arm_gt_ptimer_cb
, cpu
);
1464 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1465 arm_gt_vtimer_cb
, cpu
);
1466 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1467 arm_gt_htimer_cb
, cpu
);
1468 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1469 arm_gt_stimer_cb
, cpu
);
1470 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1471 arm_gt_hvtimer_cb
, cpu
);
1475 cpu_exec_realizefn(cs
, &local_err
);
1476 if (local_err
!= NULL
) {
1477 error_propagate(errp
, local_err
);
1481 arm_cpu_finalize_features(cpu
, &local_err
);
1482 if (local_err
!= NULL
) {
1483 error_propagate(errp
, local_err
);
1487 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1488 cpu
->has_vfp
!= cpu
->has_neon
) {
1490 * This is an architectural requirement for AArch64; AArch32 is
1491 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1494 "AArch64 CPUs must have both VFP and Neon or neither");
1498 if (!cpu
->has_vfp
) {
1502 t
= cpu
->isar
.id_aa64isar1
;
1503 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
1504 cpu
->isar
.id_aa64isar1
= t
;
1506 t
= cpu
->isar
.id_aa64pfr0
;
1507 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
1508 cpu
->isar
.id_aa64pfr0
= t
;
1510 u
= cpu
->isar
.id_isar6
;
1511 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
1512 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1513 cpu
->isar
.id_isar6
= u
;
1515 u
= cpu
->isar
.mvfr0
;
1516 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
1517 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
1518 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
1519 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
1520 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
1521 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1522 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
1523 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
1525 cpu
->isar
.mvfr0
= u
;
1527 u
= cpu
->isar
.mvfr1
;
1528 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
1529 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
1530 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
1531 if (arm_feature(env
, ARM_FEATURE_M
)) {
1532 u
= FIELD_DP32(u
, MVFR1
, FP16
, 0);
1534 cpu
->isar
.mvfr1
= u
;
1536 u
= cpu
->isar
.mvfr2
;
1537 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
1538 cpu
->isar
.mvfr2
= u
;
1541 if (!cpu
->has_neon
) {
1545 unset_feature(env
, ARM_FEATURE_NEON
);
1547 t
= cpu
->isar
.id_aa64isar0
;
1548 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
1549 cpu
->isar
.id_aa64isar0
= t
;
1551 t
= cpu
->isar
.id_aa64isar1
;
1552 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
1553 t
= FIELD_DP64(t
, ID_AA64ISAR1
, BF16
, 0);
1554 t
= FIELD_DP64(t
, ID_AA64ISAR1
, I8MM
, 0);
1555 cpu
->isar
.id_aa64isar1
= t
;
1557 t
= cpu
->isar
.id_aa64pfr0
;
1558 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
1559 cpu
->isar
.id_aa64pfr0
= t
;
1561 u
= cpu
->isar
.id_isar5
;
1562 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
1563 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
1564 cpu
->isar
.id_isar5
= u
;
1566 u
= cpu
->isar
.id_isar6
;
1567 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
1568 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
1569 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1570 u
= FIELD_DP32(u
, ID_ISAR6
, I8MM
, 0);
1571 cpu
->isar
.id_isar6
= u
;
1573 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1574 u
= cpu
->isar
.mvfr1
;
1575 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
1576 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
1577 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
1578 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
1579 cpu
->isar
.mvfr1
= u
;
1581 u
= cpu
->isar
.mvfr2
;
1582 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
1583 cpu
->isar
.mvfr2
= u
;
1587 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
1591 t
= cpu
->isar
.id_aa64isar0
;
1592 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
1593 cpu
->isar
.id_aa64isar0
= t
;
1595 t
= cpu
->isar
.id_aa64isar1
;
1596 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
1597 cpu
->isar
.id_aa64isar1
= t
;
1599 u
= cpu
->isar
.mvfr0
;
1600 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
1601 cpu
->isar
.mvfr0
= u
;
1603 /* Despite the name, this field covers both VFP and Neon */
1604 u
= cpu
->isar
.mvfr1
;
1605 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
1606 cpu
->isar
.mvfr1
= u
;
1609 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
1612 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
1614 u
= cpu
->isar
.id_isar1
;
1615 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
1616 cpu
->isar
.id_isar1
= u
;
1618 u
= cpu
->isar
.id_isar2
;
1619 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
1620 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
1621 cpu
->isar
.id_isar2
= u
;
1623 u
= cpu
->isar
.id_isar3
;
1624 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
1625 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
1626 cpu
->isar
.id_isar3
= u
;
1629 /* Some features automatically imply others: */
1630 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1631 if (arm_feature(env
, ARM_FEATURE_M
)) {
1632 set_feature(env
, ARM_FEATURE_V7
);
1634 set_feature(env
, ARM_FEATURE_V7VE
);
1639 * There exist AArch64 cpus without AArch32 support. When KVM
1640 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1641 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1642 * As a general principle, we also do not make ID register
1643 * consistency checks anywhere unless using TCG, because only
1644 * for TCG would a consistency-check failure be a QEMU bug.
1646 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1647 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1650 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1651 /* v7 Virtualization Extensions. In real hardware this implies
1652 * EL2 and also the presence of the Security Extensions.
1653 * For QEMU, for backwards-compatibility we implement some
1654 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1655 * include the various other features that V7VE implies.
1656 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1657 * Security Extensions is ARM_FEATURE_EL3.
1659 assert(!tcg_enabled() || no_aa32
||
1660 cpu_isar_feature(aa32_arm_div
, cpu
));
1661 set_feature(env
, ARM_FEATURE_LPAE
);
1662 set_feature(env
, ARM_FEATURE_V7
);
1664 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1665 set_feature(env
, ARM_FEATURE_VAPA
);
1666 set_feature(env
, ARM_FEATURE_THUMB2
);
1667 set_feature(env
, ARM_FEATURE_MPIDR
);
1668 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1669 set_feature(env
, ARM_FEATURE_V6K
);
1671 set_feature(env
, ARM_FEATURE_V6
);
1674 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1675 * non-EL3 configs. This is needed by some legacy boards.
1677 set_feature(env
, ARM_FEATURE_VBAR
);
1679 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1680 set_feature(env
, ARM_FEATURE_V6
);
1681 set_feature(env
, ARM_FEATURE_MVFR
);
1683 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1684 set_feature(env
, ARM_FEATURE_V5
);
1685 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1686 assert(!tcg_enabled() || no_aa32
||
1687 cpu_isar_feature(aa32_jazelle
, cpu
));
1688 set_feature(env
, ARM_FEATURE_AUXCR
);
1691 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1692 set_feature(env
, ARM_FEATURE_V4T
);
1694 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1695 set_feature(env
, ARM_FEATURE_V7MP
);
1697 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1698 set_feature(env
, ARM_FEATURE_CBAR
);
1700 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1701 !arm_feature(env
, ARM_FEATURE_M
)) {
1702 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1706 * We rely on no XScale CPU having VFP so we can use the same bits in the
1707 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1709 assert(arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) ||
1710 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
1711 !arm_feature(env
, ARM_FEATURE_XSCALE
));
1713 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1714 !arm_feature(env
, ARM_FEATURE_M
) &&
1715 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1716 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1721 /* For CPUs which might have tiny 1K pages, or which have an
1722 * MPU and might have small region sizes, stick with 1K pages.
1726 if (!set_preferred_target_page_bits(pagebits
)) {
1727 /* This can only ever happen for hotplugging a CPU, or if
1728 * the board code incorrectly creates a CPU which it has
1729 * promised via minimum_page_size that it will not.
1731 error_setg(errp
, "This CPU requires a smaller page size than the "
1736 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1737 * We don't support setting cluster ID ([16..23]) (known as Aff2
1738 * in later ARM ARM versions), or any of the higher affinity level fields,
1739 * so these bits always RAZ.
1741 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1742 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1743 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1746 if (cpu
->reset_hivecs
) {
1747 cpu
->reset_sctlr
|= (1 << 13);
1751 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1752 cpu
->reset_sctlr
|= SCTLR_EE
;
1754 cpu
->reset_sctlr
|= SCTLR_B
;
1758 if (!arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_el3
) {
1759 /* If the has_el3 CPU property is disabled then we need to disable the
1762 unset_feature(env
, ARM_FEATURE_EL3
);
1764 /* Disable the security extension feature bits in the processor feature
1765 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1767 cpu
->isar
.id_pfr1
&= ~0xf0;
1768 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1771 if (!cpu
->has_el2
) {
1772 unset_feature(env
, ARM_FEATURE_EL2
);
1775 if (!cpu
->has_pmu
) {
1776 unset_feature(env
, ARM_FEATURE_PMU
);
1778 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1781 if (!kvm_enabled()) {
1782 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1783 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1786 #ifndef CONFIG_USER_ONLY
1787 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1791 cpu
->isar
.id_aa64dfr0
=
1792 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
1793 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
1798 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1799 /* Disable the hypervisor feature bits in the processor feature
1800 * registers if we don't have EL2. These are id_pfr1[15:12] and
1801 * id_aa64pfr0_el1[11:8].
1803 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1804 cpu
->isar
.id_pfr1
&= ~0xf000;
1807 #ifndef CONFIG_USER_ONLY
1808 if (cpu
->tag_memory
== NULL
&& cpu_isar_feature(aa64_mte
, cpu
)) {
1810 * Disable the MTE feature bits if we do not have tag-memory
1811 * provided by the machine.
1813 cpu
->isar
.id_aa64pfr1
=
1814 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 0);
1818 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1819 * to false or by setting pmsav7-dregion to 0.
1821 if (!cpu
->has_mpu
) {
1822 cpu
->pmsav7_dregion
= 0;
1824 if (cpu
->pmsav7_dregion
== 0) {
1825 cpu
->has_mpu
= false;
1828 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1829 arm_feature(env
, ARM_FEATURE_V7
)) {
1830 uint32_t nr
= cpu
->pmsav7_dregion
;
1833 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1838 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1840 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1841 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1842 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1843 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1844 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1847 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1848 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1849 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1854 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1855 uint32_t nr
= cpu
->sau_sregion
;
1858 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1863 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1864 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1868 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1869 set_feature(env
, ARM_FEATURE_VBAR
);
1872 register_cp_regs_for_features(cpu
);
1873 arm_cpu_register_gdb_regs_for_features(cpu
);
1875 init_cpreg_list(cpu
);
1877 #ifndef CONFIG_USER_ONLY
1878 MachineState
*ms
= MACHINE(qdev_get_machine());
1879 unsigned int smp_cpus
= ms
->smp
.cpus
;
1880 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
1883 * We must set cs->num_ases to the final value before
1884 * the first call to cpu_address_space_init.
1886 if (cpu
->tag_memory
!= NULL
) {
1887 cs
->num_ases
= 3 + has_secure
;
1889 cs
->num_ases
= 1 + has_secure
;
1893 if (!cpu
->secure_memory
) {
1894 cpu
->secure_memory
= cs
->memory
;
1896 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1897 cpu
->secure_memory
);
1900 if (cpu
->tag_memory
!= NULL
) {
1901 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
1904 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
1905 cpu
->secure_tag_memory
);
1909 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1911 /* No core_count specified, default to smp_cpus. */
1912 if (cpu
->core_count
== -1) {
1913 cpu
->core_count
= smp_cpus
;
1917 if (tcg_enabled()) {
1918 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
1921 * We only support DCZ blocklen that fits on one page.
1923 * Architectually this is always true. However TARGET_PAGE_SIZE
1924 * is variable and, for compatibility with -machine virt-2.7,
1925 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1926 * But even then, while the largest architectural DCZ blocklen
1927 * is 2KiB, no cpu actually uses such a large blocklen.
1929 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
1932 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1933 * both nibbles of each byte storing tag data may be written at once.
1934 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1936 if (cpu_isar_feature(aa64_mte
, cpu
)) {
1937 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
1944 acc
->parent_realize(dev
, errp
);
1947 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1952 const char *cpunamestr
;
1954 cpuname
= g_strsplit(cpu_model
, ",", 1);
1955 cpunamestr
= cpuname
[0];
1956 #ifdef CONFIG_USER_ONLY
1957 /* For backwards compatibility usermode emulation allows "-cpu any",
1958 * which has the same semantics as "-cpu max".
1960 if (!strcmp(cpunamestr
, "any")) {
1964 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1965 oc
= object_class_by_name(typename
);
1966 g_strfreev(cpuname
);
1968 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1969 object_class_is_abstract(oc
)) {
1975 static Property arm_cpu_properties
[] = {
1976 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
1977 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
1978 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
1979 mp_affinity
, ARM64_AFFINITY_INVALID
),
1980 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
1981 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
1982 DEFINE_PROP_END_OF_LIST()
1985 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
1987 ARMCPU
*cpu
= ARM_CPU(cs
);
1988 CPUARMState
*env
= &cpu
->env
;
1990 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
1991 return g_strdup("iwmmxt");
1993 return g_strdup("arm");
1996 #ifndef CONFIG_USER_ONLY
1997 #include "hw/core/sysemu-cpu-ops.h"
1999 static const struct SysemuCPUOps arm_sysemu_ops
= {
2000 .get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
,
2001 .asidx_from_attrs
= arm_asidx_from_attrs
,
2002 .write_elf32_note
= arm_cpu_write_elf32_note
,
2003 .write_elf64_note
= arm_cpu_write_elf64_note
,
2004 .virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
,
2005 .legacy_vmsd
= &vmstate_arm_cpu
,
2010 static const struct TCGCPUOps arm_tcg_ops
= {
2011 .initialize
= arm_translate_init
,
2012 .synchronize_from_tb
= arm_cpu_synchronize_from_tb
,
2013 .cpu_exec_interrupt
= arm_cpu_exec_interrupt
,
2014 .tlb_fill
= arm_cpu_tlb_fill
,
2015 .debug_excp_handler
= arm_debug_excp_handler
,
2017 #if !defined(CONFIG_USER_ONLY)
2018 .do_interrupt
= arm_cpu_do_interrupt
,
2019 .do_transaction_failed
= arm_cpu_do_transaction_failed
,
2020 .do_unaligned_access
= arm_cpu_do_unaligned_access
,
2021 .adjust_watchpoint_address
= arm_adjust_watchpoint_address
,
2022 .debug_check_watchpoint
= arm_debug_check_watchpoint
,
2023 .debug_check_breakpoint
= arm_debug_check_breakpoint
,
2024 #endif /* !CONFIG_USER_ONLY */
2026 #endif /* CONFIG_TCG */
2028 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2030 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2031 CPUClass
*cc
= CPU_CLASS(acc
);
2032 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2034 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2035 &acc
->parent_realize
);
2037 device_class_set_props(dc
, arm_cpu_properties
);
2038 device_class_set_parent_reset(dc
, arm_cpu_reset
, &acc
->parent_reset
);
2040 cc
->class_by_name
= arm_cpu_class_by_name
;
2041 cc
->has_work
= arm_cpu_has_work
;
2042 cc
->dump_state
= arm_cpu_dump_state
;
2043 cc
->set_pc
= arm_cpu_set_pc
;
2044 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2045 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2046 #ifndef CONFIG_USER_ONLY
2047 cc
->sysemu_ops
= &arm_sysemu_ops
;
2049 cc
->gdb_num_core_regs
= 26;
2050 cc
->gdb_core_xml_file
= "arm-core.xml";
2051 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2052 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2053 cc
->gdb_stop_before_watchpoint
= true;
2054 cc
->disas_set_info
= arm_disas_set_info
;
2057 cc
->tcg_ops
= &arm_tcg_ops
;
2058 #endif /* CONFIG_TCG */
2062 static void arm_host_initfn(Object
*obj
)
2064 ARMCPU
*cpu
= ARM_CPU(obj
);
2066 kvm_arm_set_cpu_features_from_host(cpu
);
2067 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2068 aarch64_add_sve_properties(obj
);
2070 arm_cpu_post_init(obj
);
2073 static const TypeInfo host_arm_cpu_type_info
= {
2074 .name
= TYPE_ARM_HOST_CPU
,
2075 .parent
= TYPE_AARCH64_CPU
,
2076 .instance_init
= arm_host_initfn
,
2081 static void arm_cpu_instance_init(Object
*obj
)
2083 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2085 acc
->info
->initfn(obj
);
2086 arm_cpu_post_init(obj
);
2089 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2091 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2096 void arm_cpu_register(const ARMCPUInfo
*info
)
2098 TypeInfo type_info
= {
2099 .parent
= TYPE_ARM_CPU
,
2100 .instance_size
= sizeof(ARMCPU
),
2101 .instance_align
= __alignof__(ARMCPU
),
2102 .instance_init
= arm_cpu_instance_init
,
2103 .class_size
= sizeof(ARMCPUClass
),
2104 .class_init
= info
->class_init
?: cpu_register_class_init
,
2105 .class_data
= (void *)info
,
2108 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2109 type_register(&type_info
);
2110 g_free((void *)type_info
.name
);
2113 static const TypeInfo arm_cpu_type_info
= {
2114 .name
= TYPE_ARM_CPU
,
2116 .instance_size
= sizeof(ARMCPU
),
2117 .instance_align
= __alignof__(ARMCPU
),
2118 .instance_init
= arm_cpu_initfn
,
2119 .instance_finalize
= arm_cpu_finalizefn
,
2121 .class_size
= sizeof(ARMCPUClass
),
2122 .class_init
= arm_cpu_class_init
,
2125 static void arm_cpu_register_types(void)
2127 type_register_static(&arm_cpu_type_info
);
2130 type_register_static(&host_arm_cpu_type_info
);
2134 type_init(arm_cpu_register_types
)