Merge remote-tracking branch 'remotes/hreitz/tags/pull-block-2021-09-01' into staging
[qemu.git] / target / arm / cpu.c
blobd631c4683c4060652c8b6670ca881d729f92c99b
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 ARMCPU *cpu = ARM_CPU(cs);
48 CPUARMState *env = &cpu->env;
50 if (is_a64(env)) {
51 env->pc = value;
52 env->thumb = 0;
53 } else {
54 env->regs[15] = value & ~1;
55 env->thumb = value & 1;
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61 const TranslationBlock *tb)
63 ARMCPU *cpu = ARM_CPU(cs);
64 CPUARMState *env = &cpu->env;
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
70 if (is_a64(env)) {
71 env->pc = tb->pc;
72 } else {
73 env->regs[15] = tb->pc;
76 #endif /* CONFIG_TCG */
78 static bool arm_cpu_has_work(CPUState *cs)
80 ARMCPU *cpu = ARM_CPU(cs);
82 return (cpu->power_state != PSCI_OFF)
83 && cs->interrupt_request &
84 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB);
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90 void *opaque)
92 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 entry->hook = hook;
95 entry->opaque = opaque;
97 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101 void *opaque)
103 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 entry->hook = hook;
106 entry->opaque = opaque;
108 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo *ri = value;
115 ARMCPU *cpu = opaque;
117 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118 return;
121 if (ri->resetfn) {
122 ri->resetfn(&cpu->env, ri);
123 return;
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
131 if (!ri->fieldoffset) {
132 return;
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137 } else {
138 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
149 ARMCPRegInfo *ri = value;
150 ARMCPU *cpu = opaque;
151 uint64_t oldvalue, newvalue;
153 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154 return;
157 oldvalue = read_raw_cp_reg(&cpu->env, ri);
158 cp_reg_reset(key, value, opaque);
159 newvalue = read_raw_cp_reg(&cpu->env, ri);
160 assert(oldvalue == newvalue);
163 static void arm_cpu_reset(DeviceState *dev)
165 CPUState *s = CPU(dev);
166 ARMCPU *cpu = ARM_CPU(s);
167 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168 CPUARMState *env = &cpu->env;
170 acc->parent_reset(dev);
172 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189 /* 64 bit CPUs always start in 64 bit mode */
190 env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192 env->pstate = PSTATE_MODE_EL0t;
193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195 /* Enable all PAC keys. */
196 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197 SCTLR_EnDA | SCTLR_EnDB);
198 /* and to the FP/Neon instructions */
199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200 /* and to the SVE instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve, cpu)) {
204 env->vfp.zcr_el[1] =
205 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
208 * Enable TBI0 but not TBI1.
209 * Note that this must match useronly_clean_ptr.
211 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
213 /* Enable MTE */
214 if (cpu_isar_feature(aa64_mte, cpu)) {
215 /* Enable tag access, but leave TCF0 as No Effect (0). */
216 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
218 * Exclude all tags, so that tag 0 is always used.
219 * This corresponds to Linux current->thread.gcr_incl = 0.
221 * Set RRND, so that helper_irg() will generate a seed later.
222 * Here in cpu_reset(), the crypto subsystem has not yet been
223 * initialized.
225 env->cp15.gcr_el1 = 0x1ffff;
227 #else
228 /* Reset into the highest available EL */
229 if (arm_feature(env, ARM_FEATURE_EL3)) {
230 env->pstate = PSTATE_MODE_EL3h;
231 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232 env->pstate = PSTATE_MODE_EL2h;
233 } else {
234 env->pstate = PSTATE_MODE_EL1h;
236 env->pc = cpu->rvbar;
237 #endif
238 } else {
239 #if defined(CONFIG_USER_ONLY)
240 /* Userspace expects access to cp10 and cp11 for FP/Neon */
241 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
245 #if defined(CONFIG_USER_ONLY)
246 env->uncached_cpsr = ARM_CPU_MODE_USR;
247 /* For user mode we must enable access to coprocessors */
248 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250 env->cp15.c15_cpar = 3;
251 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252 env->cp15.c15_cpar = 1;
254 #else
257 * If the highest available EL is EL2, AArch32 will start in Hyp
258 * mode; otherwise it starts in SVC. Note that if we start in
259 * AArch64 then these values in the uncached_cpsr will be ignored.
261 if (arm_feature(env, ARM_FEATURE_EL2) &&
262 !arm_feature(env, ARM_FEATURE_EL3)) {
263 env->uncached_cpsr = ARM_CPU_MODE_HYP;
264 } else {
265 env->uncached_cpsr = ARM_CPU_MODE_SVC;
267 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
269 if (arm_feature(env, ARM_FEATURE_M)) {
270 uint32_t initial_msp; /* Loaded from 0x0 */
271 uint32_t initial_pc; /* Loaded from 0x4 */
272 uint8_t *rom;
273 uint32_t vecbase;
275 if (cpu_isar_feature(aa32_lob, cpu)) {
277 * LTPSIZE is constant 4 if MVE not implemented, and resets
278 * to an UNKNOWN value if MVE is implemented. We choose to
279 * always reset to 4.
281 env->v7m.ltpsize = 4;
282 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
283 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
284 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
287 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
288 env->v7m.secure = true;
289 } else {
290 /* This bit resets to 0 if security is supported, but 1 if
291 * it is not. The bit is not present in v7M, but we set it
292 * here so we can avoid having to make checks on it conditional
293 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
295 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
297 * Set NSACR to indicate "NS access permitted to everything";
298 * this avoids having to have all the tests of it being
299 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
300 * v8.1M the guest-visible value of NSACR in a CPU without the
301 * Security Extension is 0xcff.
303 env->v7m.nsacr = 0xcff;
306 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
307 * that it resets to 1, so QEMU always does that rather than making
308 * it dependent on CPU model. In v8M it is RES1.
310 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
311 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
312 if (arm_feature(env, ARM_FEATURE_V8)) {
313 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
314 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
317 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
318 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
322 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
323 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
324 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
325 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
327 /* Unlike A/R profile, M profile defines the reset LR value */
328 env->regs[14] = 0xffffffff;
330 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
331 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
333 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
334 vecbase = env->v7m.vecbase[env->v7m.secure];
335 rom = rom_ptr_for_as(s->as, vecbase, 8);
336 if (rom) {
337 /* Address zero is covered by ROM which hasn't yet been
338 * copied into physical memory.
340 initial_msp = ldl_p(rom);
341 initial_pc = ldl_p(rom + 4);
342 } else {
343 /* Address zero not covered by a ROM blob, or the ROM blob
344 * is in non-modifiable memory and this is a second reset after
345 * it got copied into memory. In the latter case, rom_ptr
346 * will return a NULL pointer and we should use ldl_phys instead.
348 initial_msp = ldl_phys(s->as, vecbase);
349 initial_pc = ldl_phys(s->as, vecbase + 4);
352 env->regs[13] = initial_msp & 0xFFFFFFFC;
353 env->regs[15] = initial_pc & ~1;
354 env->thumb = initial_pc & 1;
357 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
358 * executing as AArch32 then check if highvecs are enabled and
359 * adjust the PC accordingly.
361 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
362 env->regs[15] = 0xFFFF0000;
365 /* M profile requires that reset clears the exclusive monitor;
366 * A profile does not, but clearing it makes more sense than having it
367 * set with an exclusive access on address zero.
369 arm_clear_exclusive(env);
371 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
372 #endif
374 if (arm_feature(env, ARM_FEATURE_PMSA)) {
375 if (cpu->pmsav7_dregion > 0) {
376 if (arm_feature(env, ARM_FEATURE_V8)) {
377 memset(env->pmsav8.rbar[M_REG_NS], 0,
378 sizeof(*env->pmsav8.rbar[M_REG_NS])
379 * cpu->pmsav7_dregion);
380 memset(env->pmsav8.rlar[M_REG_NS], 0,
381 sizeof(*env->pmsav8.rlar[M_REG_NS])
382 * cpu->pmsav7_dregion);
383 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
384 memset(env->pmsav8.rbar[M_REG_S], 0,
385 sizeof(*env->pmsav8.rbar[M_REG_S])
386 * cpu->pmsav7_dregion);
387 memset(env->pmsav8.rlar[M_REG_S], 0,
388 sizeof(*env->pmsav8.rlar[M_REG_S])
389 * cpu->pmsav7_dregion);
391 } else if (arm_feature(env, ARM_FEATURE_V7)) {
392 memset(env->pmsav7.drbar, 0,
393 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
394 memset(env->pmsav7.drsr, 0,
395 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
396 memset(env->pmsav7.dracr, 0,
397 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
400 env->pmsav7.rnr[M_REG_NS] = 0;
401 env->pmsav7.rnr[M_REG_S] = 0;
402 env->pmsav8.mair0[M_REG_NS] = 0;
403 env->pmsav8.mair0[M_REG_S] = 0;
404 env->pmsav8.mair1[M_REG_NS] = 0;
405 env->pmsav8.mair1[M_REG_S] = 0;
408 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
409 if (cpu->sau_sregion > 0) {
410 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
411 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
413 env->sau.rnr = 0;
414 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
415 * the Cortex-M33 does.
417 env->sau.ctrl = 0;
420 set_flush_to_zero(1, &env->vfp.standard_fp_status);
421 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
422 set_default_nan_mode(1, &env->vfp.standard_fp_status);
423 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
424 set_float_detect_tininess(float_tininess_before_rounding,
425 &env->vfp.fp_status);
426 set_float_detect_tininess(float_tininess_before_rounding,
427 &env->vfp.standard_fp_status);
428 set_float_detect_tininess(float_tininess_before_rounding,
429 &env->vfp.fp_status_f16);
430 set_float_detect_tininess(float_tininess_before_rounding,
431 &env->vfp.standard_fp_status_f16);
432 #ifndef CONFIG_USER_ONLY
433 if (kvm_enabled()) {
434 kvm_arm_reset_vcpu(cpu);
436 #endif
438 hw_breakpoint_update_all(cpu);
439 hw_watchpoint_update_all(cpu);
440 arm_rebuild_hflags(env);
443 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
444 unsigned int target_el,
445 unsigned int cur_el, bool secure,
446 uint64_t hcr_el2)
448 CPUARMState *env = cs->env_ptr;
449 bool pstate_unmasked;
450 bool unmasked = false;
453 * Don't take exceptions if they target a lower EL.
454 * This check should catch any exceptions that would not be taken
455 * but left pending.
457 if (cur_el > target_el) {
458 return false;
461 switch (excp_idx) {
462 case EXCP_FIQ:
463 pstate_unmasked = !(env->daif & PSTATE_F);
464 break;
466 case EXCP_IRQ:
467 pstate_unmasked = !(env->daif & PSTATE_I);
468 break;
470 case EXCP_VFIQ:
471 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
472 /* VFIQs are only taken when hypervized. */
473 return false;
475 return !(env->daif & PSTATE_F);
476 case EXCP_VIRQ:
477 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
478 /* VIRQs are only taken when hypervized. */
479 return false;
481 return !(env->daif & PSTATE_I);
482 default:
483 g_assert_not_reached();
487 * Use the target EL, current execution state and SCR/HCR settings to
488 * determine whether the corresponding CPSR bit is used to mask the
489 * interrupt.
491 if ((target_el > cur_el) && (target_el != 1)) {
492 /* Exceptions targeting a higher EL may not be maskable */
493 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
495 * 64-bit masking rules are simple: exceptions to EL3
496 * can't be masked, and exceptions to EL2 can only be
497 * masked from Secure state. The HCR and SCR settings
498 * don't affect the masking logic, only the interrupt routing.
500 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
501 unmasked = true;
503 } else {
505 * The old 32-bit-only environment has a more complicated
506 * masking setup. HCR and SCR bits not only affect interrupt
507 * routing but also change the behaviour of masking.
509 bool hcr, scr;
511 switch (excp_idx) {
512 case EXCP_FIQ:
514 * If FIQs are routed to EL3 or EL2 then there are cases where
515 * we override the CPSR.F in determining if the exception is
516 * masked or not. If neither of these are set then we fall back
517 * to the CPSR.F setting otherwise we further assess the state
518 * below.
520 hcr = hcr_el2 & HCR_FMO;
521 scr = (env->cp15.scr_el3 & SCR_FIQ);
524 * When EL3 is 32-bit, the SCR.FW bit controls whether the
525 * CPSR.F bit masks FIQ interrupts when taken in non-secure
526 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
527 * when non-secure but only when FIQs are only routed to EL3.
529 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
530 break;
531 case EXCP_IRQ:
533 * When EL3 execution state is 32-bit, if HCR.IMO is set then
534 * we may override the CPSR.I masking when in non-secure state.
535 * The SCR.IRQ setting has already been taken into consideration
536 * when setting the target EL, so it does not have a further
537 * affect here.
539 hcr = hcr_el2 & HCR_IMO;
540 scr = false;
541 break;
542 default:
543 g_assert_not_reached();
546 if ((scr || hcr) && !secure) {
547 unmasked = true;
553 * The PSTATE bits only mask the interrupt if we have not overriden the
554 * ability above.
556 return unmasked || pstate_unmasked;
559 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
561 CPUClass *cc = CPU_GET_CLASS(cs);
562 CPUARMState *env = cs->env_ptr;
563 uint32_t cur_el = arm_current_el(env);
564 bool secure = arm_is_secure(env);
565 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
566 uint32_t target_el;
567 uint32_t excp_idx;
569 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
571 if (interrupt_request & CPU_INTERRUPT_FIQ) {
572 excp_idx = EXCP_FIQ;
573 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
574 if (arm_excp_unmasked(cs, excp_idx, target_el,
575 cur_el, secure, hcr_el2)) {
576 goto found;
579 if (interrupt_request & CPU_INTERRUPT_HARD) {
580 excp_idx = EXCP_IRQ;
581 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
582 if (arm_excp_unmasked(cs, excp_idx, target_el,
583 cur_el, secure, hcr_el2)) {
584 goto found;
587 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
588 excp_idx = EXCP_VIRQ;
589 target_el = 1;
590 if (arm_excp_unmasked(cs, excp_idx, target_el,
591 cur_el, secure, hcr_el2)) {
592 goto found;
595 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
596 excp_idx = EXCP_VFIQ;
597 target_el = 1;
598 if (arm_excp_unmasked(cs, excp_idx, target_el,
599 cur_el, secure, hcr_el2)) {
600 goto found;
603 return false;
605 found:
606 cs->exception_index = excp_idx;
607 env->exception.target_el = target_el;
608 cc->tcg_ops->do_interrupt(cs);
609 return true;
612 void arm_cpu_update_virq(ARMCPU *cpu)
615 * Update the interrupt level for VIRQ, which is the logical OR of
616 * the HCR_EL2.VI bit and the input line level from the GIC.
618 CPUARMState *env = &cpu->env;
619 CPUState *cs = CPU(cpu);
621 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
622 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
624 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
625 if (new_state) {
626 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
627 } else {
628 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
633 void arm_cpu_update_vfiq(ARMCPU *cpu)
636 * Update the interrupt level for VFIQ, which is the logical OR of
637 * the HCR_EL2.VF bit and the input line level from the GIC.
639 CPUARMState *env = &cpu->env;
640 CPUState *cs = CPU(cpu);
642 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
643 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
645 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
646 if (new_state) {
647 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
648 } else {
649 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
654 #ifndef CONFIG_USER_ONLY
655 static void arm_cpu_set_irq(void *opaque, int irq, int level)
657 ARMCPU *cpu = opaque;
658 CPUARMState *env = &cpu->env;
659 CPUState *cs = CPU(cpu);
660 static const int mask[] = {
661 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
662 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
663 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
664 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
667 if (level) {
668 env->irq_line_state |= mask[irq];
669 } else {
670 env->irq_line_state &= ~mask[irq];
673 switch (irq) {
674 case ARM_CPU_VIRQ:
675 assert(arm_feature(env, ARM_FEATURE_EL2));
676 arm_cpu_update_virq(cpu);
677 break;
678 case ARM_CPU_VFIQ:
679 assert(arm_feature(env, ARM_FEATURE_EL2));
680 arm_cpu_update_vfiq(cpu);
681 break;
682 case ARM_CPU_IRQ:
683 case ARM_CPU_FIQ:
684 if (level) {
685 cpu_interrupt(cs, mask[irq]);
686 } else {
687 cpu_reset_interrupt(cs, mask[irq]);
689 break;
690 default:
691 g_assert_not_reached();
695 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
697 #ifdef CONFIG_KVM
698 ARMCPU *cpu = opaque;
699 CPUARMState *env = &cpu->env;
700 CPUState *cs = CPU(cpu);
701 uint32_t linestate_bit;
702 int irq_id;
704 switch (irq) {
705 case ARM_CPU_IRQ:
706 irq_id = KVM_ARM_IRQ_CPU_IRQ;
707 linestate_bit = CPU_INTERRUPT_HARD;
708 break;
709 case ARM_CPU_FIQ:
710 irq_id = KVM_ARM_IRQ_CPU_FIQ;
711 linestate_bit = CPU_INTERRUPT_FIQ;
712 break;
713 default:
714 g_assert_not_reached();
717 if (level) {
718 env->irq_line_state |= linestate_bit;
719 } else {
720 env->irq_line_state &= ~linestate_bit;
722 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
723 #endif
726 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
728 ARMCPU *cpu = ARM_CPU(cs);
729 CPUARMState *env = &cpu->env;
731 cpu_synchronize_state(cs);
732 return arm_cpu_data_is_big_endian(env);
735 #endif
737 static int
738 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
740 return print_insn_arm(pc | 1, info);
743 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
745 ARMCPU *ac = ARM_CPU(cpu);
746 CPUARMState *env = &ac->env;
747 bool sctlr_b;
749 if (is_a64(env)) {
750 /* We might not be compiled with the A64 disassembler
751 * because it needs a C++ compiler. Leave print_insn
752 * unset in this case to use the caller default behaviour.
754 #if defined(CONFIG_ARM_A64_DIS)
755 info->print_insn = print_insn_arm_a64;
756 #endif
757 info->cap_arch = CS_ARCH_ARM64;
758 info->cap_insn_unit = 4;
759 info->cap_insn_split = 4;
760 } else {
761 int cap_mode;
762 if (env->thumb) {
763 info->print_insn = print_insn_thumb1;
764 info->cap_insn_unit = 2;
765 info->cap_insn_split = 4;
766 cap_mode = CS_MODE_THUMB;
767 } else {
768 info->print_insn = print_insn_arm;
769 info->cap_insn_unit = 4;
770 info->cap_insn_split = 4;
771 cap_mode = CS_MODE_ARM;
773 if (arm_feature(env, ARM_FEATURE_V8)) {
774 cap_mode |= CS_MODE_V8;
776 if (arm_feature(env, ARM_FEATURE_M)) {
777 cap_mode |= CS_MODE_MCLASS;
779 info->cap_arch = CS_ARCH_ARM;
780 info->cap_mode = cap_mode;
783 sctlr_b = arm_sctlr_b(env);
784 if (bswap_code(sctlr_b)) {
785 #ifdef TARGET_WORDS_BIGENDIAN
786 info->endian = BFD_ENDIAN_LITTLE;
787 #else
788 info->endian = BFD_ENDIAN_BIG;
789 #endif
791 info->flags &= ~INSN_ARM_BE32;
792 #ifndef CONFIG_USER_ONLY
793 if (sctlr_b) {
794 info->flags |= INSN_ARM_BE32;
796 #endif
799 #ifdef TARGET_AARCH64
801 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
803 ARMCPU *cpu = ARM_CPU(cs);
804 CPUARMState *env = &cpu->env;
805 uint32_t psr = pstate_read(env);
806 int i;
807 int el = arm_current_el(env);
808 const char *ns_status;
810 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
811 for (i = 0; i < 32; i++) {
812 if (i == 31) {
813 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
814 } else {
815 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
816 (i + 2) % 3 ? " " : "\n");
820 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
821 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
822 } else {
823 ns_status = "";
825 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
826 psr,
827 psr & PSTATE_N ? 'N' : '-',
828 psr & PSTATE_Z ? 'Z' : '-',
829 psr & PSTATE_C ? 'C' : '-',
830 psr & PSTATE_V ? 'V' : '-',
831 ns_status,
833 psr & PSTATE_SP ? 'h' : 't');
835 if (cpu_isar_feature(aa64_bti, cpu)) {
836 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
838 if (!(flags & CPU_DUMP_FPU)) {
839 qemu_fprintf(f, "\n");
840 return;
842 if (fp_exception_el(env, el) != 0) {
843 qemu_fprintf(f, " FPU disabled\n");
844 return;
846 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
847 vfp_get_fpcr(env), vfp_get_fpsr(env));
849 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
850 int j, zcr_len = sve_zcr_len_for_el(env, el);
852 for (i = 0; i <= FFR_PRED_NUM; i++) {
853 bool eol;
854 if (i == FFR_PRED_NUM) {
855 qemu_fprintf(f, "FFR=");
856 /* It's last, so end the line. */
857 eol = true;
858 } else {
859 qemu_fprintf(f, "P%02d=", i);
860 switch (zcr_len) {
861 case 0:
862 eol = i % 8 == 7;
863 break;
864 case 1:
865 eol = i % 6 == 5;
866 break;
867 case 2:
868 case 3:
869 eol = i % 3 == 2;
870 break;
871 default:
872 /* More than one quadword per predicate. */
873 eol = true;
874 break;
877 for (j = zcr_len / 4; j >= 0; j--) {
878 int digits;
879 if (j * 4 + 4 <= zcr_len + 1) {
880 digits = 16;
881 } else {
882 digits = (zcr_len % 4 + 1) * 4;
884 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
885 env->vfp.pregs[i].p[j],
886 j ? ":" : eol ? "\n" : " ");
890 for (i = 0; i < 32; i++) {
891 if (zcr_len == 0) {
892 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893 i, env->vfp.zregs[i].d[1],
894 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
895 } else if (zcr_len == 1) {
896 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
897 ":%016" PRIx64 ":%016" PRIx64 "\n",
898 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
899 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
900 } else {
901 for (j = zcr_len; j >= 0; j--) {
902 bool odd = (zcr_len - j) % 2 != 0;
903 if (j == zcr_len) {
904 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
905 } else if (!odd) {
906 if (j > 0) {
907 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
908 } else {
909 qemu_fprintf(f, " [%x]=", j);
912 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
913 env->vfp.zregs[i].d[j * 2 + 1],
914 env->vfp.zregs[i].d[j * 2],
915 odd || j == 0 ? "\n" : ":");
919 } else {
920 for (i = 0; i < 32; i++) {
921 uint64_t *q = aa64_vfp_qreg(env, i);
922 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923 i, q[1], q[0], (i & 1 ? "\n" : " "));
928 #else
930 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
932 g_assert_not_reached();
935 #endif
937 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
939 ARMCPU *cpu = ARM_CPU(cs);
940 CPUARMState *env = &cpu->env;
941 int i;
943 if (is_a64(env)) {
944 aarch64_cpu_dump_state(cs, f, flags);
945 return;
948 for (i = 0; i < 16; i++) {
949 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
950 if ((i % 4) == 3) {
951 qemu_fprintf(f, "\n");
952 } else {
953 qemu_fprintf(f, " ");
957 if (arm_feature(env, ARM_FEATURE_M)) {
958 uint32_t xpsr = xpsr_read(env);
959 const char *mode;
960 const char *ns_status = "";
962 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
963 ns_status = env->v7m.secure ? "S " : "NS ";
966 if (xpsr & XPSR_EXCP) {
967 mode = "handler";
968 } else {
969 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
970 mode = "unpriv-thread";
971 } else {
972 mode = "priv-thread";
976 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
977 xpsr,
978 xpsr & XPSR_N ? 'N' : '-',
979 xpsr & XPSR_Z ? 'Z' : '-',
980 xpsr & XPSR_C ? 'C' : '-',
981 xpsr & XPSR_V ? 'V' : '-',
982 xpsr & XPSR_T ? 'T' : 'A',
983 ns_status,
984 mode);
985 } else {
986 uint32_t psr = cpsr_read(env);
987 const char *ns_status = "";
989 if (arm_feature(env, ARM_FEATURE_EL3) &&
990 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
991 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
994 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
995 psr,
996 psr & CPSR_N ? 'N' : '-',
997 psr & CPSR_Z ? 'Z' : '-',
998 psr & CPSR_C ? 'C' : '-',
999 psr & CPSR_V ? 'V' : '-',
1000 psr & CPSR_T ? 'T' : 'A',
1001 ns_status,
1002 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1005 if (flags & CPU_DUMP_FPU) {
1006 int numvfpregs = 0;
1007 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008 numvfpregs = 32;
1009 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010 numvfpregs = 16;
1012 for (i = 0; i < numvfpregs; i++) {
1013 uint64_t v = *aa32_vfp_dreg(env, i);
1014 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015 i * 2, (uint32_t)v,
1016 i * 2 + 1, (uint32_t)(v >> 32),
1017 i, v);
1019 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020 if (cpu_isar_feature(aa32_mve, cpu)) {
1021 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1026 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1028 uint32_t Aff1 = idx / clustersz;
1029 uint32_t Aff0 = idx % clustersz;
1030 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1033 static void cpreg_hashtable_data_destroy(gpointer data)
1036 * Destroy function for cpu->cp_regs hashtable data entries.
1037 * We must free the name string because it was g_strdup()ed in
1038 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1039 * from r->name because we know we definitely allocated it.
1041 ARMCPRegInfo *r = data;
1043 g_free((void *)r->name);
1044 g_free(r);
1047 static void arm_cpu_initfn(Object *obj)
1049 ARMCPU *cpu = ARM_CPU(obj);
1051 cpu_set_cpustate_pointers(cpu);
1052 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1053 g_free, cpreg_hashtable_data_destroy);
1055 QLIST_INIT(&cpu->pre_el_change_hooks);
1056 QLIST_INIT(&cpu->el_change_hooks);
1058 #ifdef CONFIG_USER_ONLY
1059 # ifdef TARGET_AARCH64
1061 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1062 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1063 * our corresponding sve-default-vector-length cpu property.
1065 cpu->sve_default_vq = 4;
1066 # endif
1067 #else
1068 /* Our inbound IRQ and FIQ lines */
1069 if (kvm_enabled()) {
1070 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1071 * the same interface as non-KVM CPUs.
1073 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1074 } else {
1075 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1078 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1079 ARRAY_SIZE(cpu->gt_timer_outputs));
1081 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1082 "gicv3-maintenance-interrupt", 1);
1083 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1084 "pmu-interrupt", 1);
1085 #endif
1087 /* DTB consumers generally don't in fact care what the 'compatible'
1088 * string is, so always provide some string and trust that a hypothetical
1089 * picky DTB consumer will also provide a helpful error message.
1091 cpu->dtb_compatible = "qemu,unknown";
1092 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1093 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1095 if (tcg_enabled()) {
1096 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1100 static Property arm_cpu_gt_cntfrq_property =
1101 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1102 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1104 static Property arm_cpu_reset_cbar_property =
1105 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1107 static Property arm_cpu_reset_hivecs_property =
1108 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1110 static Property arm_cpu_rvbar_property =
1111 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1113 #ifndef CONFIG_USER_ONLY
1114 static Property arm_cpu_has_el2_property =
1115 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1117 static Property arm_cpu_has_el3_property =
1118 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1119 #endif
1121 static Property arm_cpu_cfgend_property =
1122 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1124 static Property arm_cpu_has_vfp_property =
1125 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1127 static Property arm_cpu_has_neon_property =
1128 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1130 static Property arm_cpu_has_dsp_property =
1131 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1133 static Property arm_cpu_has_mpu_property =
1134 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1136 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1137 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1138 * the right value for that particular CPU type, and we don't want
1139 * to override that with an incorrect constant value.
1141 static Property arm_cpu_pmsav7_dregion_property =
1142 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1143 pmsav7_dregion,
1144 qdev_prop_uint32, uint32_t);
1146 static bool arm_get_pmu(Object *obj, Error **errp)
1148 ARMCPU *cpu = ARM_CPU(obj);
1150 return cpu->has_pmu;
1153 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1155 ARMCPU *cpu = ARM_CPU(obj);
1157 if (value) {
1158 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1159 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1160 return;
1162 set_feature(&cpu->env, ARM_FEATURE_PMU);
1163 } else {
1164 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1166 cpu->has_pmu = value;
1169 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1172 * The exact approach to calculating guest ticks is:
1174 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1175 * NANOSECONDS_PER_SECOND);
1177 * We don't do that. Rather we intentionally use integer division
1178 * truncation below and in the caller for the conversion of host monotonic
1179 * time to guest ticks to provide the exact inverse for the semantics of
1180 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1181 * it loses precision when representing frequencies where
1182 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1183 * provide an exact inverse leads to scheduling timers with negative
1184 * periods, which in turn leads to sticky behaviour in the guest.
1186 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1187 * cannot become zero.
1189 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1190 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1193 void arm_cpu_post_init(Object *obj)
1195 ARMCPU *cpu = ARM_CPU(obj);
1197 /* M profile implies PMSA. We have to do this here rather than
1198 * in realize with the other feature-implication checks because
1199 * we look at the PMSA bit to see if we should add some properties.
1201 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1202 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1205 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1206 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1207 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1210 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1211 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1214 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1215 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1218 #ifndef CONFIG_USER_ONLY
1219 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1220 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1221 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1223 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1225 object_property_add_link(obj, "secure-memory",
1226 TYPE_MEMORY_REGION,
1227 (Object **)&cpu->secure_memory,
1228 qdev_prop_allow_set_link_before_realize,
1229 OBJ_PROP_LINK_STRONG);
1232 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1233 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1235 #endif
1237 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1238 cpu->has_pmu = true;
1239 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1243 * Allow user to turn off VFP and Neon support, but only for TCG --
1244 * KVM does not currently allow us to lie to the guest about its
1245 * ID/feature registers, so the guest always sees what the host has.
1247 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1248 ? cpu_isar_feature(aa64_fp_simd, cpu)
1249 : cpu_isar_feature(aa32_vfp, cpu)) {
1250 cpu->has_vfp = true;
1251 if (!kvm_enabled()) {
1252 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1256 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1257 cpu->has_neon = true;
1258 if (!kvm_enabled()) {
1259 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1263 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1264 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1265 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1268 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1269 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1270 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1271 qdev_property_add_static(DEVICE(obj),
1272 &arm_cpu_pmsav7_dregion_property);
1276 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1277 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1278 qdev_prop_allow_set_link_before_realize,
1279 OBJ_PROP_LINK_STRONG);
1281 * M profile: initial value of the Secure VTOR. We can't just use
1282 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1283 * the property to be set after realize.
1285 object_property_add_uint32_ptr(obj, "init-svtor",
1286 &cpu->init_svtor,
1287 OBJ_PROP_FLAG_READWRITE);
1289 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1291 * Initial value of the NS VTOR (for cores without the Security
1292 * extension, this is the only VTOR)
1294 object_property_add_uint32_ptr(obj, "init-nsvtor",
1295 &cpu->init_nsvtor,
1296 OBJ_PROP_FLAG_READWRITE);
1299 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1301 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1302 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1305 if (kvm_enabled()) {
1306 kvm_arm_add_vcpu_properties(obj);
1309 #ifndef CONFIG_USER_ONLY
1310 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1311 cpu_isar_feature(aa64_mte, cpu)) {
1312 object_property_add_link(obj, "tag-memory",
1313 TYPE_MEMORY_REGION,
1314 (Object **)&cpu->tag_memory,
1315 qdev_prop_allow_set_link_before_realize,
1316 OBJ_PROP_LINK_STRONG);
1318 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1319 object_property_add_link(obj, "secure-tag-memory",
1320 TYPE_MEMORY_REGION,
1321 (Object **)&cpu->secure_tag_memory,
1322 qdev_prop_allow_set_link_before_realize,
1323 OBJ_PROP_LINK_STRONG);
1326 #endif
1329 static void arm_cpu_finalizefn(Object *obj)
1331 ARMCPU *cpu = ARM_CPU(obj);
1332 ARMELChangeHook *hook, *next;
1334 g_hash_table_destroy(cpu->cp_regs);
1336 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1337 QLIST_REMOVE(hook, node);
1338 g_free(hook);
1340 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1341 QLIST_REMOVE(hook, node);
1342 g_free(hook);
1344 #ifndef CONFIG_USER_ONLY
1345 if (cpu->pmu_timer) {
1346 timer_free(cpu->pmu_timer);
1348 #endif
1351 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1353 Error *local_err = NULL;
1355 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1356 arm_cpu_sve_finalize(cpu, &local_err);
1357 if (local_err != NULL) {
1358 error_propagate(errp, local_err);
1359 return;
1363 * KVM does not support modifications to this feature.
1364 * We have not registered the cpu properties when KVM
1365 * is in use, so the user will not be able to set them.
1367 if (!kvm_enabled()) {
1368 arm_cpu_pauth_finalize(cpu, &local_err);
1369 if (local_err != NULL) {
1370 error_propagate(errp, local_err);
1371 return;
1376 if (kvm_enabled()) {
1377 kvm_arm_steal_time_finalize(cpu, &local_err);
1378 if (local_err != NULL) {
1379 error_propagate(errp, local_err);
1380 return;
1385 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1387 CPUState *cs = CPU(dev);
1388 ARMCPU *cpu = ARM_CPU(dev);
1389 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1390 CPUARMState *env = &cpu->env;
1391 int pagebits;
1392 Error *local_err = NULL;
1393 bool no_aa32 = false;
1395 /* If we needed to query the host kernel for the CPU features
1396 * then it's possible that might have failed in the initfn, but
1397 * this is the first point where we can report it.
1399 if (cpu->host_cpu_probe_failed) {
1400 if (!kvm_enabled()) {
1401 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1402 } else {
1403 error_setg(errp, "Failed to retrieve host CPU features");
1405 return;
1408 #ifndef CONFIG_USER_ONLY
1409 /* The NVIC and M-profile CPU are two halves of a single piece of
1410 * hardware; trying to use one without the other is a command line
1411 * error and will result in segfaults if not caught here.
1413 if (arm_feature(env, ARM_FEATURE_M)) {
1414 if (!env->nvic) {
1415 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1416 return;
1418 } else {
1419 if (env->nvic) {
1420 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1421 return;
1425 if (kvm_enabled()) {
1427 * Catch all the cases which might cause us to create more than one
1428 * address space for the CPU (otherwise we will assert() later in
1429 * cpu_address_space_init()).
1431 if (arm_feature(env, ARM_FEATURE_M)) {
1432 error_setg(errp,
1433 "Cannot enable KVM when using an M-profile guest CPU");
1434 return;
1436 if (cpu->has_el3) {
1437 error_setg(errp,
1438 "Cannot enable KVM when guest CPU has EL3 enabled");
1439 return;
1441 if (cpu->tag_memory) {
1442 error_setg(errp,
1443 "Cannot enable KVM when guest CPUs has MTE enabled");
1444 return;
1449 uint64_t scale;
1451 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1452 if (!cpu->gt_cntfrq_hz) {
1453 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1454 cpu->gt_cntfrq_hz);
1455 return;
1457 scale = gt_cntfrq_period_ns(cpu);
1458 } else {
1459 scale = GTIMER_SCALE;
1462 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1463 arm_gt_ptimer_cb, cpu);
1464 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1465 arm_gt_vtimer_cb, cpu);
1466 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1467 arm_gt_htimer_cb, cpu);
1468 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1469 arm_gt_stimer_cb, cpu);
1470 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1471 arm_gt_hvtimer_cb, cpu);
1473 #endif
1475 cpu_exec_realizefn(cs, &local_err);
1476 if (local_err != NULL) {
1477 error_propagate(errp, local_err);
1478 return;
1481 arm_cpu_finalize_features(cpu, &local_err);
1482 if (local_err != NULL) {
1483 error_propagate(errp, local_err);
1484 return;
1487 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1488 cpu->has_vfp != cpu->has_neon) {
1490 * This is an architectural requirement for AArch64; AArch32 is
1491 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1493 error_setg(errp,
1494 "AArch64 CPUs must have both VFP and Neon or neither");
1495 return;
1498 if (!cpu->has_vfp) {
1499 uint64_t t;
1500 uint32_t u;
1502 t = cpu->isar.id_aa64isar1;
1503 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1504 cpu->isar.id_aa64isar1 = t;
1506 t = cpu->isar.id_aa64pfr0;
1507 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1508 cpu->isar.id_aa64pfr0 = t;
1510 u = cpu->isar.id_isar6;
1511 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1512 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1513 cpu->isar.id_isar6 = u;
1515 u = cpu->isar.mvfr0;
1516 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1517 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1518 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1519 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1520 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1521 if (!arm_feature(env, ARM_FEATURE_M)) {
1522 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1523 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1525 cpu->isar.mvfr0 = u;
1527 u = cpu->isar.mvfr1;
1528 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1529 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1530 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1531 if (arm_feature(env, ARM_FEATURE_M)) {
1532 u = FIELD_DP32(u, MVFR1, FP16, 0);
1534 cpu->isar.mvfr1 = u;
1536 u = cpu->isar.mvfr2;
1537 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1538 cpu->isar.mvfr2 = u;
1541 if (!cpu->has_neon) {
1542 uint64_t t;
1543 uint32_t u;
1545 unset_feature(env, ARM_FEATURE_NEON);
1547 t = cpu->isar.id_aa64isar0;
1548 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1549 cpu->isar.id_aa64isar0 = t;
1551 t = cpu->isar.id_aa64isar1;
1552 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1553 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1554 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1555 cpu->isar.id_aa64isar1 = t;
1557 t = cpu->isar.id_aa64pfr0;
1558 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1559 cpu->isar.id_aa64pfr0 = t;
1561 u = cpu->isar.id_isar5;
1562 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1563 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1564 cpu->isar.id_isar5 = u;
1566 u = cpu->isar.id_isar6;
1567 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1568 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1569 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1570 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1571 cpu->isar.id_isar6 = u;
1573 if (!arm_feature(env, ARM_FEATURE_M)) {
1574 u = cpu->isar.mvfr1;
1575 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1576 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1577 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1578 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1579 cpu->isar.mvfr1 = u;
1581 u = cpu->isar.mvfr2;
1582 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1583 cpu->isar.mvfr2 = u;
1587 if (!cpu->has_neon && !cpu->has_vfp) {
1588 uint64_t t;
1589 uint32_t u;
1591 t = cpu->isar.id_aa64isar0;
1592 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1593 cpu->isar.id_aa64isar0 = t;
1595 t = cpu->isar.id_aa64isar1;
1596 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1597 cpu->isar.id_aa64isar1 = t;
1599 u = cpu->isar.mvfr0;
1600 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1601 cpu->isar.mvfr0 = u;
1603 /* Despite the name, this field covers both VFP and Neon */
1604 u = cpu->isar.mvfr1;
1605 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1606 cpu->isar.mvfr1 = u;
1609 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1610 uint32_t u;
1612 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1614 u = cpu->isar.id_isar1;
1615 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1616 cpu->isar.id_isar1 = u;
1618 u = cpu->isar.id_isar2;
1619 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1620 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1621 cpu->isar.id_isar2 = u;
1623 u = cpu->isar.id_isar3;
1624 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1625 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1626 cpu->isar.id_isar3 = u;
1629 /* Some features automatically imply others: */
1630 if (arm_feature(env, ARM_FEATURE_V8)) {
1631 if (arm_feature(env, ARM_FEATURE_M)) {
1632 set_feature(env, ARM_FEATURE_V7);
1633 } else {
1634 set_feature(env, ARM_FEATURE_V7VE);
1639 * There exist AArch64 cpus without AArch32 support. When KVM
1640 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1641 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1642 * As a general principle, we also do not make ID register
1643 * consistency checks anywhere unless using TCG, because only
1644 * for TCG would a consistency-check failure be a QEMU bug.
1646 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1647 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1650 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1651 /* v7 Virtualization Extensions. In real hardware this implies
1652 * EL2 and also the presence of the Security Extensions.
1653 * For QEMU, for backwards-compatibility we implement some
1654 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1655 * include the various other features that V7VE implies.
1656 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1657 * Security Extensions is ARM_FEATURE_EL3.
1659 assert(!tcg_enabled() || no_aa32 ||
1660 cpu_isar_feature(aa32_arm_div, cpu));
1661 set_feature(env, ARM_FEATURE_LPAE);
1662 set_feature(env, ARM_FEATURE_V7);
1664 if (arm_feature(env, ARM_FEATURE_V7)) {
1665 set_feature(env, ARM_FEATURE_VAPA);
1666 set_feature(env, ARM_FEATURE_THUMB2);
1667 set_feature(env, ARM_FEATURE_MPIDR);
1668 if (!arm_feature(env, ARM_FEATURE_M)) {
1669 set_feature(env, ARM_FEATURE_V6K);
1670 } else {
1671 set_feature(env, ARM_FEATURE_V6);
1674 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1675 * non-EL3 configs. This is needed by some legacy boards.
1677 set_feature(env, ARM_FEATURE_VBAR);
1679 if (arm_feature(env, ARM_FEATURE_V6K)) {
1680 set_feature(env, ARM_FEATURE_V6);
1681 set_feature(env, ARM_FEATURE_MVFR);
1683 if (arm_feature(env, ARM_FEATURE_V6)) {
1684 set_feature(env, ARM_FEATURE_V5);
1685 if (!arm_feature(env, ARM_FEATURE_M)) {
1686 assert(!tcg_enabled() || no_aa32 ||
1687 cpu_isar_feature(aa32_jazelle, cpu));
1688 set_feature(env, ARM_FEATURE_AUXCR);
1691 if (arm_feature(env, ARM_FEATURE_V5)) {
1692 set_feature(env, ARM_FEATURE_V4T);
1694 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1695 set_feature(env, ARM_FEATURE_V7MP);
1697 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1698 set_feature(env, ARM_FEATURE_CBAR);
1700 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1701 !arm_feature(env, ARM_FEATURE_M)) {
1702 set_feature(env, ARM_FEATURE_THUMB_DSP);
1706 * We rely on no XScale CPU having VFP so we can use the same bits in the
1707 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1709 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1710 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1711 !arm_feature(env, ARM_FEATURE_XSCALE));
1713 if (arm_feature(env, ARM_FEATURE_V7) &&
1714 !arm_feature(env, ARM_FEATURE_M) &&
1715 !arm_feature(env, ARM_FEATURE_PMSA)) {
1716 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1717 * can use 4K pages.
1719 pagebits = 12;
1720 } else {
1721 /* For CPUs which might have tiny 1K pages, or which have an
1722 * MPU and might have small region sizes, stick with 1K pages.
1724 pagebits = 10;
1726 if (!set_preferred_target_page_bits(pagebits)) {
1727 /* This can only ever happen for hotplugging a CPU, or if
1728 * the board code incorrectly creates a CPU which it has
1729 * promised via minimum_page_size that it will not.
1731 error_setg(errp, "This CPU requires a smaller page size than the "
1732 "system is using");
1733 return;
1736 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1737 * We don't support setting cluster ID ([16..23]) (known as Aff2
1738 * in later ARM ARM versions), or any of the higher affinity level fields,
1739 * so these bits always RAZ.
1741 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1742 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1743 ARM_DEFAULT_CPUS_PER_CLUSTER);
1746 if (cpu->reset_hivecs) {
1747 cpu->reset_sctlr |= (1 << 13);
1750 if (cpu->cfgend) {
1751 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1752 cpu->reset_sctlr |= SCTLR_EE;
1753 } else {
1754 cpu->reset_sctlr |= SCTLR_B;
1758 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1759 /* If the has_el3 CPU property is disabled then we need to disable the
1760 * feature.
1762 unset_feature(env, ARM_FEATURE_EL3);
1764 /* Disable the security extension feature bits in the processor feature
1765 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1767 cpu->isar.id_pfr1 &= ~0xf0;
1768 cpu->isar.id_aa64pfr0 &= ~0xf000;
1771 if (!cpu->has_el2) {
1772 unset_feature(env, ARM_FEATURE_EL2);
1775 if (!cpu->has_pmu) {
1776 unset_feature(env, ARM_FEATURE_PMU);
1778 if (arm_feature(env, ARM_FEATURE_PMU)) {
1779 pmu_init(cpu);
1781 if (!kvm_enabled()) {
1782 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1783 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1786 #ifndef CONFIG_USER_ONLY
1787 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1788 cpu);
1789 #endif
1790 } else {
1791 cpu->isar.id_aa64dfr0 =
1792 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1793 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1794 cpu->pmceid0 = 0;
1795 cpu->pmceid1 = 0;
1798 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1799 /* Disable the hypervisor feature bits in the processor feature
1800 * registers if we don't have EL2. These are id_pfr1[15:12] and
1801 * id_aa64pfr0_el1[11:8].
1803 cpu->isar.id_aa64pfr0 &= ~0xf00;
1804 cpu->isar.id_pfr1 &= ~0xf000;
1807 #ifndef CONFIG_USER_ONLY
1808 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1810 * Disable the MTE feature bits if we do not have tag-memory
1811 * provided by the machine.
1813 cpu->isar.id_aa64pfr1 =
1814 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1816 #endif
1818 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1819 * to false or by setting pmsav7-dregion to 0.
1821 if (!cpu->has_mpu) {
1822 cpu->pmsav7_dregion = 0;
1824 if (cpu->pmsav7_dregion == 0) {
1825 cpu->has_mpu = false;
1828 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1829 arm_feature(env, ARM_FEATURE_V7)) {
1830 uint32_t nr = cpu->pmsav7_dregion;
1832 if (nr > 0xff) {
1833 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1834 return;
1837 if (nr) {
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 /* PMSAv8 */
1840 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1841 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1842 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1843 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1844 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1846 } else {
1847 env->pmsav7.drbar = g_new0(uint32_t, nr);
1848 env->pmsav7.drsr = g_new0(uint32_t, nr);
1849 env->pmsav7.dracr = g_new0(uint32_t, nr);
1854 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1855 uint32_t nr = cpu->sau_sregion;
1857 if (nr > 0xff) {
1858 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1859 return;
1862 if (nr) {
1863 env->sau.rbar = g_new0(uint32_t, nr);
1864 env->sau.rlar = g_new0(uint32_t, nr);
1868 if (arm_feature(env, ARM_FEATURE_EL3)) {
1869 set_feature(env, ARM_FEATURE_VBAR);
1872 register_cp_regs_for_features(cpu);
1873 arm_cpu_register_gdb_regs_for_features(cpu);
1875 init_cpreg_list(cpu);
1877 #ifndef CONFIG_USER_ONLY
1878 MachineState *ms = MACHINE(qdev_get_machine());
1879 unsigned int smp_cpus = ms->smp.cpus;
1880 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1883 * We must set cs->num_ases to the final value before
1884 * the first call to cpu_address_space_init.
1886 if (cpu->tag_memory != NULL) {
1887 cs->num_ases = 3 + has_secure;
1888 } else {
1889 cs->num_ases = 1 + has_secure;
1892 if (has_secure) {
1893 if (!cpu->secure_memory) {
1894 cpu->secure_memory = cs->memory;
1896 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1897 cpu->secure_memory);
1900 if (cpu->tag_memory != NULL) {
1901 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1902 cpu->tag_memory);
1903 if (has_secure) {
1904 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1905 cpu->secure_tag_memory);
1909 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1911 /* No core_count specified, default to smp_cpus. */
1912 if (cpu->core_count == -1) {
1913 cpu->core_count = smp_cpus;
1915 #endif
1917 if (tcg_enabled()) {
1918 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1921 * We only support DCZ blocklen that fits on one page.
1923 * Architectually this is always true. However TARGET_PAGE_SIZE
1924 * is variable and, for compatibility with -machine virt-2.7,
1925 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1926 * But even then, while the largest architectural DCZ blocklen
1927 * is 2KiB, no cpu actually uses such a large blocklen.
1929 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1932 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1933 * both nibbles of each byte storing tag data may be written at once.
1934 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1936 if (cpu_isar_feature(aa64_mte, cpu)) {
1937 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1941 qemu_init_vcpu(cs);
1942 cpu_reset(cs);
1944 acc->parent_realize(dev, errp);
1947 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1949 ObjectClass *oc;
1950 char *typename;
1951 char **cpuname;
1952 const char *cpunamestr;
1954 cpuname = g_strsplit(cpu_model, ",", 1);
1955 cpunamestr = cpuname[0];
1956 #ifdef CONFIG_USER_ONLY
1957 /* For backwards compatibility usermode emulation allows "-cpu any",
1958 * which has the same semantics as "-cpu max".
1960 if (!strcmp(cpunamestr, "any")) {
1961 cpunamestr = "max";
1963 #endif
1964 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1965 oc = object_class_by_name(typename);
1966 g_strfreev(cpuname);
1967 g_free(typename);
1968 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1969 object_class_is_abstract(oc)) {
1970 return NULL;
1972 return oc;
1975 static Property arm_cpu_properties[] = {
1976 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1977 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1978 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1979 mp_affinity, ARM64_AFFINITY_INVALID),
1980 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1981 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1982 DEFINE_PROP_END_OF_LIST()
1985 static gchar *arm_gdb_arch_name(CPUState *cs)
1987 ARMCPU *cpu = ARM_CPU(cs);
1988 CPUARMState *env = &cpu->env;
1990 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1991 return g_strdup("iwmmxt");
1993 return g_strdup("arm");
1996 #ifndef CONFIG_USER_ONLY
1997 #include "hw/core/sysemu-cpu-ops.h"
1999 static const struct SysemuCPUOps arm_sysemu_ops = {
2000 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2001 .asidx_from_attrs = arm_asidx_from_attrs,
2002 .write_elf32_note = arm_cpu_write_elf32_note,
2003 .write_elf64_note = arm_cpu_write_elf64_note,
2004 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2005 .legacy_vmsd = &vmstate_arm_cpu,
2007 #endif
2009 #ifdef CONFIG_TCG
2010 static const struct TCGCPUOps arm_tcg_ops = {
2011 .initialize = arm_translate_init,
2012 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2013 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2014 .tlb_fill = arm_cpu_tlb_fill,
2015 .debug_excp_handler = arm_debug_excp_handler,
2017 #if !defined(CONFIG_USER_ONLY)
2018 .do_interrupt = arm_cpu_do_interrupt,
2019 .do_transaction_failed = arm_cpu_do_transaction_failed,
2020 .do_unaligned_access = arm_cpu_do_unaligned_access,
2021 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2022 .debug_check_watchpoint = arm_debug_check_watchpoint,
2023 .debug_check_breakpoint = arm_debug_check_breakpoint,
2024 #endif /* !CONFIG_USER_ONLY */
2026 #endif /* CONFIG_TCG */
2028 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2030 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2031 CPUClass *cc = CPU_CLASS(acc);
2032 DeviceClass *dc = DEVICE_CLASS(oc);
2034 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2035 &acc->parent_realize);
2037 device_class_set_props(dc, arm_cpu_properties);
2038 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2040 cc->class_by_name = arm_cpu_class_by_name;
2041 cc->has_work = arm_cpu_has_work;
2042 cc->dump_state = arm_cpu_dump_state;
2043 cc->set_pc = arm_cpu_set_pc;
2044 cc->gdb_read_register = arm_cpu_gdb_read_register;
2045 cc->gdb_write_register = arm_cpu_gdb_write_register;
2046 #ifndef CONFIG_USER_ONLY
2047 cc->sysemu_ops = &arm_sysemu_ops;
2048 #endif
2049 cc->gdb_num_core_regs = 26;
2050 cc->gdb_core_xml_file = "arm-core.xml";
2051 cc->gdb_arch_name = arm_gdb_arch_name;
2052 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2053 cc->gdb_stop_before_watchpoint = true;
2054 cc->disas_set_info = arm_disas_set_info;
2056 #ifdef CONFIG_TCG
2057 cc->tcg_ops = &arm_tcg_ops;
2058 #endif /* CONFIG_TCG */
2061 #ifdef CONFIG_KVM
2062 static void arm_host_initfn(Object *obj)
2064 ARMCPU *cpu = ARM_CPU(obj);
2066 kvm_arm_set_cpu_features_from_host(cpu);
2067 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2068 aarch64_add_sve_properties(obj);
2070 arm_cpu_post_init(obj);
2073 static const TypeInfo host_arm_cpu_type_info = {
2074 .name = TYPE_ARM_HOST_CPU,
2075 .parent = TYPE_AARCH64_CPU,
2076 .instance_init = arm_host_initfn,
2079 #endif
2081 static void arm_cpu_instance_init(Object *obj)
2083 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2085 acc->info->initfn(obj);
2086 arm_cpu_post_init(obj);
2089 static void cpu_register_class_init(ObjectClass *oc, void *data)
2091 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2093 acc->info = data;
2096 void arm_cpu_register(const ARMCPUInfo *info)
2098 TypeInfo type_info = {
2099 .parent = TYPE_ARM_CPU,
2100 .instance_size = sizeof(ARMCPU),
2101 .instance_align = __alignof__(ARMCPU),
2102 .instance_init = arm_cpu_instance_init,
2103 .class_size = sizeof(ARMCPUClass),
2104 .class_init = info->class_init ?: cpu_register_class_init,
2105 .class_data = (void *)info,
2108 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2109 type_register(&type_info);
2110 g_free((void *)type_info.name);
2113 static const TypeInfo arm_cpu_type_info = {
2114 .name = TYPE_ARM_CPU,
2115 .parent = TYPE_CPU,
2116 .instance_size = sizeof(ARMCPU),
2117 .instance_align = __alignof__(ARMCPU),
2118 .instance_init = arm_cpu_initfn,
2119 .instance_finalize = arm_cpu_finalizefn,
2120 .abstract = true,
2121 .class_size = sizeof(ARMCPUClass),
2122 .class_init = arm_cpu_class_init,
2125 static void arm_cpu_register_types(void)
2127 type_register_static(&arm_cpu_type_info);
2129 #ifdef CONFIG_KVM
2130 type_register_static(&host_arm_cpu_type_info);
2131 #endif
2134 type_init(arm_cpu_register_types)