tests/qemu-iotests: Rework the checks and spots using GNU sed
[qemu.git] / hw / intc / arm_gicv3.c
blob6d3c8ee231c9ae17d8d5ea123f00fa1e8afb23a9
1 /*
2 * ARM Generic Interrupt Controller v3 (emulation)
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 /* This file contains implementation code for an interrupt controller
13 * which implements the GICv3 architecture. Specifically this is where
14 * the device class itself and the functions for handling interrupts
15 * coming in and going out live.
18 #include "qemu/osdep.h"
19 #include "qapi/error.h"
20 #include "qemu/module.h"
21 #include "hw/intc/arm_gicv3.h"
22 #include "gicv3_internal.h"
24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
26 /* Return true if this IRQ at this priority should take
27 * precedence over the current recorded highest priority
28 * pending interrupt for this CPU. We also return true if
29 * the current recorded highest priority pending interrupt
30 * is the same as this one (a property which the calling code
31 * relies on).
33 if (prio < cs->hppi.prio) {
34 return true;
36 /* If multiple pending interrupts have the same priority then it is an
37 * IMPDEF choice which of them to signal to the CPU. We choose to
38 * signal the one with the lowest interrupt number.
40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
41 return true;
43 return false;
46 static uint32_t gicd_int_pending(GICv3State *s, int irq)
48 /* Recalculate which distributor interrupts are actually pending
49 * in the group of 32 interrupts starting at irq (which should be a multiple
50 * of 32), and return a 32-bit integer which has a bit set for each
51 * interrupt that is eligible to be signaled to the CPU interface.
53 * An interrupt is pending if:
54 * + the PENDING latch is set OR it is level triggered and the input is 1
55 * + its ENABLE bit is set
56 * + the GICD enable bit for its group is set
57 * + its ACTIVE bit is not set (otherwise it would be Active+Pending)
58 * Conveniently we can bulk-calculate this with bitwise operations.
60 uint32_t pend, grpmask;
61 uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
62 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
63 uint32_t level = *gic_bmp_ptr32(s->level, irq);
64 uint32_t group = *gic_bmp_ptr32(s->group, irq);
65 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
66 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
67 uint32_t active = *gic_bmp_ptr32(s->active, irq);
69 pend = pending | (~edge_trigger & level);
70 pend &= enable;
71 pend &= ~active;
73 if (s->gicd_ctlr & GICD_CTLR_DS) {
74 grpmod = 0;
77 grpmask = 0;
78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
79 grpmask |= group;
81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
82 grpmask |= (~group & grpmod);
84 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
85 grpmask |= (~group & ~grpmod);
87 pend &= grpmask;
89 return pend;
92 static uint32_t gicr_int_pending(GICv3CPUState *cs)
94 /* Recalculate which redistributor interrupts are actually pending,
95 * and return a 32-bit integer which has a bit set for each interrupt
96 * that is eligible to be signaled to the CPU interface.
98 * An interrupt is pending if:
99 * + the PENDING latch is set OR it is level triggered and the input is 1
100 * + its ENABLE bit is set
101 * + the GICD enable bit for its group is set
102 * + its ACTIVE bit is not set (otherwise it would be Active+Pending)
103 * Conveniently we can bulk-calculate this with bitwise operations.
105 uint32_t pend, grpmask, grpmod;
107 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
108 pend &= cs->gicr_ienabler0;
109 pend &= ~cs->gicr_iactiver0;
111 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
112 grpmod = 0;
113 } else {
114 grpmod = cs->gicr_igrpmodr0;
117 grpmask = 0;
118 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
119 grpmask |= cs->gicr_igroupr0;
121 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
122 grpmask |= (~cs->gicr_igroupr0 & grpmod);
124 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
125 grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
127 pend &= grpmask;
129 return pend;
132 /* Update the interrupt status after state in a redistributor
133 * or CPU interface has changed, but don't tell the CPU i/f.
135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
137 /* Find the highest priority pending interrupt among the
138 * redistributor interrupts (SGIs and PPIs).
140 bool seenbetter = false;
141 uint8_t prio;
142 int i;
143 uint32_t pend;
145 /* Find out which redistributor interrupts are eligible to be
146 * signaled to the CPU interface.
148 pend = gicr_int_pending(cs);
150 if (pend) {
151 for (i = 0; i < GIC_INTERNAL; i++) {
152 if (!(pend & (1 << i))) {
153 continue;
155 prio = cs->gicr_ipriorityr[i];
156 if (irqbetter(cs, i, prio)) {
157 cs->hppi.irq = i;
158 cs->hppi.prio = prio;
159 seenbetter = true;
164 if (seenbetter) {
165 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
168 if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable &&
169 (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) &&
170 (cs->hpplpi.prio != 0xff)) {
171 if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) {
172 cs->hppi.irq = cs->hpplpi.irq;
173 cs->hppi.prio = cs->hpplpi.prio;
174 cs->hppi.grp = cs->hpplpi.grp;
175 seenbetter = true;
179 /* If the best interrupt we just found would preempt whatever
180 * was the previous best interrupt before this update, then
181 * we know it's definitely the best one now.
182 * If we didn't find an interrupt that would preempt the previous
183 * best, and the previous best is outside our range (or there was no
184 * previous pending interrupt at all), then that is still valid, and
185 * we leave it as the best.
186 * Otherwise, we need to do a full update (because the previous best
187 * interrupt has reduced in priority and any other interrupt could
188 * now be the new best one).
190 if (!seenbetter && cs->hppi.prio != 0xff &&
191 (cs->hppi.irq < GIC_INTERNAL ||
192 cs->hppi.irq >= GICV3_LPI_INTID_START)) {
193 gicv3_full_update_noirqset(cs->gic);
197 /* Update the GIC status after state in a redistributor or
198 * CPU interface has changed, and inform the CPU i/f of
199 * its new highest priority pending interrupt.
201 void gicv3_redist_update(GICv3CPUState *cs)
203 gicv3_redist_update_noirqset(cs);
204 gicv3_cpuif_update(cs);
207 /* Update the GIC status after state in the distributor has
208 * changed affecting @len interrupts starting at @start,
209 * but don't tell the CPU i/f.
211 static void gicv3_update_noirqset(GICv3State *s, int start, int len)
213 int i;
214 uint8_t prio;
215 uint32_t pend = 0;
217 assert(start >= GIC_INTERNAL);
218 assert(len > 0);
220 for (i = 0; i < s->num_cpu; i++) {
221 s->cpu[i].seenbetter = false;
224 /* Find the highest priority pending interrupt in this range. */
225 for (i = start; i < start + len; i++) {
226 GICv3CPUState *cs;
228 if (i == start || (i & 0x1f) == 0) {
229 /* Calculate the next 32 bits worth of pending status */
230 pend = gicd_int_pending(s, i & ~0x1f);
233 if (!(pend & (1 << (i & 0x1f)))) {
234 continue;
236 cs = s->gicd_irouter_target[i];
237 if (!cs) {
238 /* Interrupts targeting no implemented CPU should remain pending
239 * and not be forwarded to any CPU.
241 continue;
243 prio = s->gicd_ipriority[i];
244 if (irqbetter(cs, i, prio)) {
245 cs->hppi.irq = i;
246 cs->hppi.prio = prio;
247 cs->seenbetter = true;
251 /* If the best interrupt we just found would preempt whatever
252 * was the previous best interrupt before this update, then
253 * we know it's definitely the best one now.
254 * If we didn't find an interrupt that would preempt the previous
255 * best, and the previous best is outside our range (or there was
256 * no previous pending interrupt at all), then that
257 * is still valid, and we leave it as the best.
258 * Otherwise, we need to do a full update (because the previous best
259 * interrupt has reduced in priority and any other interrupt could
260 * now be the new best one).
262 for (i = 0; i < s->num_cpu; i++) {
263 GICv3CPUState *cs = &s->cpu[i];
265 if (cs->seenbetter) {
266 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
269 if (!cs->seenbetter && cs->hppi.prio != 0xff &&
270 cs->hppi.irq >= start && cs->hppi.irq < start + len) {
271 gicv3_full_update_noirqset(s);
272 break;
277 void gicv3_update(GICv3State *s, int start, int len)
279 int i;
281 gicv3_update_noirqset(s, start, len);
282 for (i = 0; i < s->num_cpu; i++) {
283 gicv3_cpuif_update(&s->cpu[i]);
287 void gicv3_full_update_noirqset(GICv3State *s)
289 /* Completely recalculate the GIC status from scratch, but
290 * don't update any outbound IRQ lines.
292 int i;
294 for (i = 0; i < s->num_cpu; i++) {
295 s->cpu[i].hppi.prio = 0xff;
298 /* Note that we can guarantee that these functions will not
299 * recursively call back into gicv3_full_update(), because
300 * at each point the "previous best" is always outside the
301 * range we ask them to update.
303 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
305 for (i = 0; i < s->num_cpu; i++) {
306 gicv3_redist_update_noirqset(&s->cpu[i]);
310 void gicv3_full_update(GICv3State *s)
312 /* Completely recalculate the GIC status from scratch, including
313 * updating outbound IRQ lines.
315 int i;
317 gicv3_full_update_noirqset(s);
318 for (i = 0; i < s->num_cpu; i++) {
319 gicv3_cpuif_update(&s->cpu[i]);
323 /* Process a change in an external IRQ input. */
324 static void gicv3_set_irq(void *opaque, int irq, int level)
326 /* Meaning of the 'irq' parameter:
327 * [0..N-1] : external interrupts
328 * [N..N+31] : PPI (internal) interrupts for CPU 0
329 * [N+32..N+63] : PPI (internal interrupts for CPU 1
330 * ...
332 GICv3State *s = opaque;
334 if (irq < (s->num_irq - GIC_INTERNAL)) {
335 /* external interrupt (SPI) */
336 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
337 } else {
338 /* per-cpu interrupt (PPI) */
339 int cpu;
341 irq -= (s->num_irq - GIC_INTERNAL);
342 cpu = irq / GIC_INTERNAL;
343 irq %= GIC_INTERNAL;
344 assert(cpu < s->num_cpu);
345 /* Raising SGIs via this function would be a bug in how the board
346 * model wires up interrupts.
348 assert(irq >= GIC_NR_SGIS);
349 gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
353 static void arm_gicv3_post_load(GICv3State *s)
355 int i;
356 /* Recalculate our cached idea of the current highest priority
357 * pending interrupt, but don't set IRQ or FIQ lines.
359 for (i = 0; i < s->num_cpu; i++) {
360 gicv3_redist_update_lpi_only(&s->cpu[i]);
362 gicv3_full_update_noirqset(s);
363 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
364 gicv3_cache_all_target_cpustates(s);
367 static const MemoryRegionOps gic_ops[] = {
369 .read_with_attrs = gicv3_dist_read,
370 .write_with_attrs = gicv3_dist_write,
371 .endianness = DEVICE_NATIVE_ENDIAN,
374 .read_with_attrs = gicv3_redist_read,
375 .write_with_attrs = gicv3_redist_write,
376 .endianness = DEVICE_NATIVE_ENDIAN,
380 static void arm_gic_realize(DeviceState *dev, Error **errp)
382 /* Device instance realize function for the GIC sysbus device */
383 GICv3State *s = ARM_GICV3(dev);
384 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
385 Error *local_err = NULL;
387 agc->parent_realize(dev, &local_err);
388 if (local_err) {
389 error_propagate(errp, local_err);
390 return;
393 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
395 gicv3_init_cpuif(s);
398 static void arm_gicv3_class_init(ObjectClass *klass, void *data)
400 DeviceClass *dc = DEVICE_CLASS(klass);
401 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
402 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
404 agcc->post_load = arm_gicv3_post_load;
405 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
408 static const TypeInfo arm_gicv3_info = {
409 .name = TYPE_ARM_GICV3,
410 .parent = TYPE_ARM_GICV3_COMMON,
411 .instance_size = sizeof(GICv3State),
412 .class_init = arm_gicv3_class_init,
413 .class_size = sizeof(ARMGICv3Class),
416 static void arm_gicv3_register_types(void)
418 type_register_static(&arm_gicv3_info);
421 type_init(arm_gicv3_register_types)