exec: Introduce qemu_maxrampagesize() and rename qemu_getrampagesize()
[qemu.git] / exec.c
blobbb1dff423aaf928f289550d8982b90435f02b155
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "qemu/qemu-print.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #endif
57 #include "qemu/rcu_queue.h"
58 #include "qemu/main-loop.h"
59 #include "translate-all.h"
60 #include "sysemu/replay.h"
62 #include "exec/memory-internal.h"
63 #include "exec/ram_addr.h"
64 #include "exec/log.h"
66 #include "migration/vmstate.h"
68 #include "qemu/range.h"
69 #ifndef _WIN32
70 #include "qemu/mmap-alloc.h"
71 #endif
73 #include "monitor/monitor.h"
75 //#define DEBUG_SUBPAGE
77 #if !defined(CONFIG_USER_ONLY)
78 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
79 * are protected by the ramlist lock.
81 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
83 static MemoryRegion *system_memory;
84 static MemoryRegion *system_io;
86 AddressSpace address_space_io;
87 AddressSpace address_space_memory;
89 MemoryRegion io_mem_rom, io_mem_notdirty;
90 static MemoryRegion io_mem_unassigned;
91 #endif
93 #ifdef TARGET_PAGE_BITS_VARY
94 int target_page_bits;
95 bool target_page_bits_decided;
96 #endif
98 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100 /* current CPU in the current thread. It is only valid inside
101 cpu_exec() */
102 __thread CPUState *current_cpu;
103 /* 0 = Do not count executed instructions.
104 1 = Precise instruction counting.
105 2 = Adaptive rate instruction counting. */
106 int use_icount;
108 uintptr_t qemu_host_page_size;
109 intptr_t qemu_host_page_mask;
111 bool set_preferred_target_page_bits(int bits)
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
124 target_page_bits = bits;
126 #endif
127 return true;
130 #if !defined(CONFIG_USER_ONLY)
132 static void finalize_target_page_bits(void)
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
138 target_page_bits_decided = true;
139 #endif
142 typedef struct PhysPageEntry PhysPageEntry;
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161 typedef PhysPageEntry Node[P_L2_SIZE];
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
174 struct AddressSpaceDispatch {
175 MemoryRegionSection *mru_section;
176 /* This is a multi-level map on the physical address space.
177 * The bottom level has pointers to MemoryRegionSections.
179 PhysPageEntry phys_map;
180 PhysPageMap map;
183 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
184 typedef struct subpage_t {
185 MemoryRegion iomem;
186 FlatView *fv;
187 hwaddr base;
188 uint16_t sub_section[];
189 } subpage_t;
191 #define PHYS_SECTION_UNASSIGNED 0
192 #define PHYS_SECTION_NOTDIRTY 1
193 #define PHYS_SECTION_ROM 2
194 #define PHYS_SECTION_WATCH 3
196 static void io_mem_init(void);
197 static void memory_map_init(void);
198 static void tcg_commit(MemoryListener *listener);
200 static MemoryRegion io_mem_watch;
203 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
204 * @cpu: the CPU whose AddressSpace this is
205 * @as: the AddressSpace itself
206 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
207 * @tcg_as_listener: listener for tracking changes to the AddressSpace
209 struct CPUAddressSpace {
210 CPUState *cpu;
211 AddressSpace *as;
212 struct AddressSpaceDispatch *memory_dispatch;
213 MemoryListener tcg_as_listener;
216 struct DirtyBitmapSnapshot {
217 ram_addr_t start;
218 ram_addr_t end;
219 unsigned long dirty[];
222 #endif
224 #if !defined(CONFIG_USER_ONLY)
226 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
228 static unsigned alloc_hint = 16;
229 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
231 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
232 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
233 alloc_hint = map->nodes_nb_alloc;
237 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
239 unsigned i;
240 uint32_t ret;
241 PhysPageEntry e;
242 PhysPageEntry *p;
244 ret = map->nodes_nb++;
245 p = map->nodes[ret];
246 assert(ret != PHYS_MAP_NODE_NIL);
247 assert(ret != map->nodes_nb_alloc);
249 e.skip = leaf ? 0 : 1;
250 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
251 for (i = 0; i < P_L2_SIZE; ++i) {
252 memcpy(&p[i], &e, sizeof(e));
254 return ret;
257 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
258 hwaddr *index, hwaddr *nb, uint16_t leaf,
259 int level)
261 PhysPageEntry *p;
262 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
264 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
265 lp->ptr = phys_map_node_alloc(map, level == 0);
267 p = map->nodes[lp->ptr];
268 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
270 while (*nb && lp < &p[P_L2_SIZE]) {
271 if ((*index & (step - 1)) == 0 && *nb >= step) {
272 lp->skip = 0;
273 lp->ptr = leaf;
274 *index += step;
275 *nb -= step;
276 } else {
277 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
279 ++lp;
283 static void phys_page_set(AddressSpaceDispatch *d,
284 hwaddr index, hwaddr nb,
285 uint16_t leaf)
287 /* Wildly overreserve - it doesn't matter much. */
288 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
290 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
293 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
294 * and update our entry so we can skip it and go directly to the destination.
296 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
298 unsigned valid_ptr = P_L2_SIZE;
299 int valid = 0;
300 PhysPageEntry *p;
301 int i;
303 if (lp->ptr == PHYS_MAP_NODE_NIL) {
304 return;
307 p = nodes[lp->ptr];
308 for (i = 0; i < P_L2_SIZE; i++) {
309 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
310 continue;
313 valid_ptr = i;
314 valid++;
315 if (p[i].skip) {
316 phys_page_compact(&p[i], nodes);
320 /* We can only compress if there's only one child. */
321 if (valid != 1) {
322 return;
325 assert(valid_ptr < P_L2_SIZE);
327 /* Don't compress if it won't fit in the # of bits we have. */
328 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
329 return;
332 lp->ptr = p[valid_ptr].ptr;
333 if (!p[valid_ptr].skip) {
334 /* If our only child is a leaf, make this a leaf. */
335 /* By design, we should have made this node a leaf to begin with so we
336 * should never reach here.
337 * But since it's so simple to handle this, let's do it just in case we
338 * change this rule.
340 lp->skip = 0;
341 } else {
342 lp->skip += p[valid_ptr].skip;
346 void address_space_dispatch_compact(AddressSpaceDispatch *d)
348 if (d->phys_map.skip) {
349 phys_page_compact(&d->phys_map, d->map.nodes);
353 static inline bool section_covers_addr(const MemoryRegionSection *section,
354 hwaddr addr)
356 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
357 * the section must cover the entire address space.
359 return int128_gethi(section->size) ||
360 range_covers_byte(section->offset_within_address_space,
361 int128_getlo(section->size), addr);
364 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
366 PhysPageEntry lp = d->phys_map, *p;
367 Node *nodes = d->map.nodes;
368 MemoryRegionSection *sections = d->map.sections;
369 hwaddr index = addr >> TARGET_PAGE_BITS;
370 int i;
372 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
373 if (lp.ptr == PHYS_MAP_NODE_NIL) {
374 return &sections[PHYS_SECTION_UNASSIGNED];
376 p = nodes[lp.ptr];
377 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380 if (section_covers_addr(&sections[lp.ptr], addr)) {
381 return &sections[lp.ptr];
382 } else {
383 return &sections[PHYS_SECTION_UNASSIGNED];
387 /* Called from RCU critical section */
388 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
389 hwaddr addr,
390 bool resolve_subpage)
392 MemoryRegionSection *section = atomic_read(&d->mru_section);
393 subpage_t *subpage;
395 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
396 !section_covers_addr(section, addr)) {
397 section = phys_page_find(d, addr);
398 atomic_set(&d->mru_section, section);
400 if (resolve_subpage && section->mr->subpage) {
401 subpage = container_of(section->mr, subpage_t, iomem);
402 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
404 return section;
407 /* Called from RCU critical section */
408 static MemoryRegionSection *
409 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
410 hwaddr *plen, bool resolve_subpage)
412 MemoryRegionSection *section;
413 MemoryRegion *mr;
414 Int128 diff;
416 section = address_space_lookup_region(d, addr, resolve_subpage);
417 /* Compute offset within MemoryRegionSection */
418 addr -= section->offset_within_address_space;
420 /* Compute offset within MemoryRegion */
421 *xlat = addr + section->offset_within_region;
423 mr = section->mr;
425 /* MMIO registers can be expected to perform full-width accesses based only
426 * on their address, without considering adjacent registers that could
427 * decode to completely different MemoryRegions. When such registers
428 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
429 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * here.
432 * If the length is small (as is the case for address_space_ldl/stl),
433 * everything works fine. If the incoming length is large, however,
434 * the caller really has to do the clamping through memory_access_size.
436 if (memory_region_is_ram(mr)) {
437 diff = int128_sub(section->size, int128_make64(addr));
438 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
440 return section;
444 * address_space_translate_iommu - translate an address through an IOMMU
445 * memory region and then through the target address space.
447 * @iommu_mr: the IOMMU memory region that we start the translation from
448 * @addr: the address to be translated through the MMU
449 * @xlat: the translated address offset within the destination memory region.
450 * It cannot be %NULL.
451 * @plen_out: valid read/write length of the translated address. It
452 * cannot be %NULL.
453 * @page_mask_out: page mask for the translated address. This
454 * should only be meaningful for IOMMU translated
455 * addresses, since there may be huge pages that this bit
456 * would tell. It can be %NULL if we don't care about it.
457 * @is_write: whether the translation operation is for write
458 * @is_mmio: whether this can be MMIO, set true if it can
459 * @target_as: the address space targeted by the IOMMU
460 * @attrs: transaction attributes
462 * This function is called from RCU critical section. It is the common
463 * part of flatview_do_translate and address_space_translate_cached.
465 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
466 hwaddr *xlat,
467 hwaddr *plen_out,
468 hwaddr *page_mask_out,
469 bool is_write,
470 bool is_mmio,
471 AddressSpace **target_as,
472 MemTxAttrs attrs)
474 MemoryRegionSection *section;
475 hwaddr page_mask = (hwaddr)-1;
477 do {
478 hwaddr addr = *xlat;
479 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
480 int iommu_idx = 0;
481 IOMMUTLBEntry iotlb;
483 if (imrc->attrs_to_index) {
484 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
487 iotlb = imrc->translate(iommu_mr, addr, is_write ?
488 IOMMU_WO : IOMMU_RO, iommu_idx);
490 if (!(iotlb.perm & (1 << is_write))) {
491 goto unassigned;
494 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
495 | (addr & iotlb.addr_mask));
496 page_mask &= iotlb.addr_mask;
497 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
498 *target_as = iotlb.target_as;
500 section = address_space_translate_internal(
501 address_space_to_dispatch(iotlb.target_as), addr, xlat,
502 plen_out, is_mmio);
504 iommu_mr = memory_region_get_iommu(section->mr);
505 } while (unlikely(iommu_mr));
507 if (page_mask_out) {
508 *page_mask_out = page_mask;
510 return *section;
512 unassigned:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 * flatview_do_translate - translate an address in FlatView
519 * @fv: the flat view that we want to translate on
520 * @addr: the address to be translated in above address space
521 * @xlat: the translated address offset within memory region. It
522 * cannot be @NULL.
523 * @plen_out: valid read/write length of the translated address. It
524 * can be @NULL when we don't care about it.
525 * @page_mask_out: page mask for the translated address. This
526 * should only be meaningful for IOMMU translated
527 * addresses, since there may be huge pages that this bit
528 * would tell. It can be @NULL if we don't care about it.
529 * @is_write: whether the translation operation is for write
530 * @is_mmio: whether this can be MMIO, set true if it can
531 * @target_as: the address space targeted by the IOMMU
532 * @attrs: memory transaction attributes
534 * This function is called from RCU critical section
536 static MemoryRegionSection flatview_do_translate(FlatView *fv,
537 hwaddr addr,
538 hwaddr *xlat,
539 hwaddr *plen_out,
540 hwaddr *page_mask_out,
541 bool is_write,
542 bool is_mmio,
543 AddressSpace **target_as,
544 MemTxAttrs attrs)
546 MemoryRegionSection *section;
547 IOMMUMemoryRegion *iommu_mr;
548 hwaddr plen = (hwaddr)(-1);
550 if (!plen_out) {
551 plen_out = &plen;
554 section = address_space_translate_internal(
555 flatview_to_dispatch(fv), addr, xlat,
556 plen_out, is_mmio);
558 iommu_mr = memory_region_get_iommu(section->mr);
559 if (unlikely(iommu_mr)) {
560 return address_space_translate_iommu(iommu_mr, xlat,
561 plen_out, page_mask_out,
562 is_write, is_mmio,
563 target_as, attrs);
565 if (page_mask_out) {
566 /* Not behind an IOMMU, use default page size. */
567 *page_mask_out = ~TARGET_PAGE_MASK;
570 return *section;
573 /* Called from RCU critical section */
574 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
575 bool is_write, MemTxAttrs attrs)
577 MemoryRegionSection section;
578 hwaddr xlat, page_mask;
581 * This can never be MMIO, and we don't really care about plen,
582 * but page mask.
584 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
585 NULL, &page_mask, is_write, false, &as,
586 attrs);
588 /* Illegal translation */
589 if (section.mr == &io_mem_unassigned) {
590 goto iotlb_fail;
593 /* Convert memory region offset into address space offset */
594 xlat += section.offset_within_address_space -
595 section.offset_within_region;
597 return (IOMMUTLBEntry) {
598 .target_as = as,
599 .iova = addr & ~page_mask,
600 .translated_addr = xlat & ~page_mask,
601 .addr_mask = page_mask,
602 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
603 .perm = IOMMU_RW,
606 iotlb_fail:
607 return (IOMMUTLBEntry) {0};
610 /* Called from RCU critical section */
611 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
612 hwaddr *plen, bool is_write,
613 MemTxAttrs attrs)
615 MemoryRegion *mr;
616 MemoryRegionSection section;
617 AddressSpace *as = NULL;
619 /* This can be MMIO, so setup MMIO bit. */
620 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
621 is_write, true, &as, attrs);
622 mr = section.mr;
624 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
625 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
626 *plen = MIN(page, *plen);
629 return mr;
632 typedef struct TCGIOMMUNotifier {
633 IOMMUNotifier n;
634 MemoryRegion *mr;
635 CPUState *cpu;
636 int iommu_idx;
637 bool active;
638 } TCGIOMMUNotifier;
640 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
642 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
644 if (!notifier->active) {
645 return;
647 tlb_flush(notifier->cpu);
648 notifier->active = false;
649 /* We leave the notifier struct on the list to avoid reallocating it later.
650 * Generally the number of IOMMUs a CPU deals with will be small.
651 * In any case we can't unregister the iommu notifier from a notify
652 * callback.
656 static void tcg_register_iommu_notifier(CPUState *cpu,
657 IOMMUMemoryRegion *iommu_mr,
658 int iommu_idx)
660 /* Make sure this CPU has an IOMMU notifier registered for this
661 * IOMMU/IOMMU index combination, so that we can flush its TLB
662 * when the IOMMU tells us the mappings we've cached have changed.
664 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
665 TCGIOMMUNotifier *notifier;
666 int i;
668 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
669 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
670 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
671 break;
674 if (i == cpu->iommu_notifiers->len) {
675 /* Not found, add a new entry at the end of the array */
676 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
677 notifier = g_new0(TCGIOMMUNotifier, 1);
678 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
680 notifier->mr = mr;
681 notifier->iommu_idx = iommu_idx;
682 notifier->cpu = cpu;
683 /* Rather than trying to register interest in the specific part
684 * of the iommu's address space that we've accessed and then
685 * expand it later as subsequent accesses touch more of it, we
686 * just register interest in the whole thing, on the assumption
687 * that iommu reconfiguration will be rare.
689 iommu_notifier_init(&notifier->n,
690 tcg_iommu_unmap_notify,
691 IOMMU_NOTIFIER_UNMAP,
693 HWADDR_MAX,
694 iommu_idx);
695 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
698 if (!notifier->active) {
699 notifier->active = true;
703 static void tcg_iommu_free_notifier_list(CPUState *cpu)
705 /* Destroy the CPU's notifier list */
706 int i;
707 TCGIOMMUNotifier *notifier;
709 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
710 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
711 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
712 g_free(notifier);
714 g_array_free(cpu->iommu_notifiers, true);
717 /* Called from RCU critical section */
718 MemoryRegionSection *
719 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
720 hwaddr *xlat, hwaddr *plen,
721 MemTxAttrs attrs, int *prot)
723 MemoryRegionSection *section;
724 IOMMUMemoryRegion *iommu_mr;
725 IOMMUMemoryRegionClass *imrc;
726 IOMMUTLBEntry iotlb;
727 int iommu_idx;
728 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
730 for (;;) {
731 section = address_space_translate_internal(d, addr, &addr, plen, false);
733 iommu_mr = memory_region_get_iommu(section->mr);
734 if (!iommu_mr) {
735 break;
738 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
740 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
741 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
742 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
743 * doesn't short-cut its translation table walk.
745 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
746 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
747 | (addr & iotlb.addr_mask));
748 /* Update the caller's prot bits to remove permissions the IOMMU
749 * is giving us a failure response for. If we get down to no
750 * permissions left at all we can give up now.
752 if (!(iotlb.perm & IOMMU_RO)) {
753 *prot &= ~(PAGE_READ | PAGE_EXEC);
755 if (!(iotlb.perm & IOMMU_WO)) {
756 *prot &= ~PAGE_WRITE;
759 if (!*prot) {
760 goto translate_fail;
763 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 assert(!memory_region_is_iommu(section->mr));
767 *xlat = addr;
768 return section;
770 translate_fail:
771 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
773 #endif
775 #if !defined(CONFIG_USER_ONLY)
777 static int cpu_common_post_load(void *opaque, int version_id)
779 CPUState *cpu = opaque;
781 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
782 version_id is increased. */
783 cpu->interrupt_request &= ~0x01;
784 tlb_flush(cpu);
786 /* loadvm has just updated the content of RAM, bypassing the
787 * usual mechanisms that ensure we flush TBs for writes to
788 * memory we've translated code from. So we must flush all TBs,
789 * which will now be stale.
791 tb_flush(cpu);
793 return 0;
796 static int cpu_common_pre_load(void *opaque)
798 CPUState *cpu = opaque;
800 cpu->exception_index = -1;
802 return 0;
805 static bool cpu_common_exception_index_needed(void *opaque)
807 CPUState *cpu = opaque;
809 return tcg_enabled() && cpu->exception_index != -1;
812 static const VMStateDescription vmstate_cpu_common_exception_index = {
813 .name = "cpu_common/exception_index",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .needed = cpu_common_exception_index_needed,
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(exception_index, CPUState),
819 VMSTATE_END_OF_LIST()
823 static bool cpu_common_crash_occurred_needed(void *opaque)
825 CPUState *cpu = opaque;
827 return cpu->crash_occurred;
830 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
831 .name = "cpu_common/crash_occurred",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = cpu_common_crash_occurred_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_BOOL(crash_occurred, CPUState),
837 VMSTATE_END_OF_LIST()
841 const VMStateDescription vmstate_cpu_common = {
842 .name = "cpu_common",
843 .version_id = 1,
844 .minimum_version_id = 1,
845 .pre_load = cpu_common_pre_load,
846 .post_load = cpu_common_post_load,
847 .fields = (VMStateField[]) {
848 VMSTATE_UINT32(halted, CPUState),
849 VMSTATE_UINT32(interrupt_request, CPUState),
850 VMSTATE_END_OF_LIST()
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_cpu_common_exception_index,
854 &vmstate_cpu_common_crash_occurred,
855 NULL
859 #endif
861 CPUState *qemu_get_cpu(int index)
863 CPUState *cpu;
865 CPU_FOREACH(cpu) {
866 if (cpu->cpu_index == index) {
867 return cpu;
871 return NULL;
874 #if !defined(CONFIG_USER_ONLY)
875 void cpu_address_space_init(CPUState *cpu, int asidx,
876 const char *prefix, MemoryRegion *mr)
878 CPUAddressSpace *newas;
879 AddressSpace *as = g_new0(AddressSpace, 1);
880 char *as_name;
882 assert(mr);
883 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
884 address_space_init(as, mr, as_name);
885 g_free(as_name);
887 /* Target code should have set num_ases before calling us */
888 assert(asidx < cpu->num_ases);
890 if (asidx == 0) {
891 /* address space 0 gets the convenience alias */
892 cpu->as = as;
895 /* KVM cannot currently support multiple address spaces. */
896 assert(asidx == 0 || !kvm_enabled());
898 if (!cpu->cpu_ases) {
899 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
902 newas = &cpu->cpu_ases[asidx];
903 newas->cpu = cpu;
904 newas->as = as;
905 if (tcg_enabled()) {
906 newas->tcg_as_listener.commit = tcg_commit;
907 memory_listener_register(&newas->tcg_as_listener, as);
911 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
913 /* Return the AddressSpace corresponding to the specified index */
914 return cpu->cpu_ases[asidx].as;
916 #endif
918 void cpu_exec_unrealizefn(CPUState *cpu)
920 CPUClass *cc = CPU_GET_CLASS(cpu);
922 cpu_list_remove(cpu);
924 if (cc->vmsd != NULL) {
925 vmstate_unregister(NULL, cc->vmsd, cpu);
927 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
928 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
930 #ifndef CONFIG_USER_ONLY
931 tcg_iommu_free_notifier_list(cpu);
932 #endif
935 Property cpu_common_props[] = {
936 #ifndef CONFIG_USER_ONLY
937 /* Create a memory property for softmmu CPU object,
938 * so users can wire up its memory. (This can't go in qom/cpu.c
939 * because that file is compiled only once for both user-mode
940 * and system builds.) The default if no link is set up is to use
941 * the system address space.
943 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
944 MemoryRegion *),
945 #endif
946 DEFINE_PROP_END_OF_LIST(),
949 void cpu_exec_initfn(CPUState *cpu)
951 cpu->as = NULL;
952 cpu->num_ases = 0;
954 #ifndef CONFIG_USER_ONLY
955 cpu->thread_id = qemu_get_thread_id();
956 cpu->memory = system_memory;
957 object_ref(OBJECT(cpu->memory));
958 #endif
961 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
963 CPUClass *cc = CPU_GET_CLASS(cpu);
964 static bool tcg_target_initialized;
966 cpu_list_add(cpu);
968 if (tcg_enabled() && !tcg_target_initialized) {
969 tcg_target_initialized = true;
970 cc->tcg_initialize();
972 tlb_init(cpu);
974 #ifndef CONFIG_USER_ONLY
975 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
976 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
978 if (cc->vmsd != NULL) {
979 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
982 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
983 #endif
986 const char *parse_cpu_model(const char *cpu_model)
988 ObjectClass *oc;
989 CPUClass *cc;
990 gchar **model_pieces;
991 const char *cpu_type;
993 model_pieces = g_strsplit(cpu_model, ",", 2);
995 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
996 if (oc == NULL) {
997 error_report("unable to find CPU model '%s'", model_pieces[0]);
998 g_strfreev(model_pieces);
999 exit(EXIT_FAILURE);
1002 cpu_type = object_class_get_name(oc);
1003 cc = CPU_CLASS(oc);
1004 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1005 g_strfreev(model_pieces);
1006 return cpu_type;
1009 #if defined(CONFIG_USER_ONLY)
1010 void tb_invalidate_phys_addr(target_ulong addr)
1012 mmap_lock();
1013 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1014 mmap_unlock();
1017 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1019 tb_invalidate_phys_addr(pc);
1021 #else
1022 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1024 ram_addr_t ram_addr;
1025 MemoryRegion *mr;
1026 hwaddr l = 1;
1028 if (!tcg_enabled()) {
1029 return;
1032 rcu_read_lock();
1033 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1034 if (!(memory_region_is_ram(mr)
1035 || memory_region_is_romd(mr))) {
1036 rcu_read_unlock();
1037 return;
1039 ram_addr = memory_region_get_ram_addr(mr) + addr;
1040 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1041 rcu_read_unlock();
1044 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1046 MemTxAttrs attrs;
1047 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1048 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1049 if (phys != -1) {
1050 /* Locks grabbed by tb_invalidate_phys_addr */
1051 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1052 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1055 #endif
1057 #if defined(CONFIG_USER_ONLY)
1058 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1063 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1064 int flags)
1066 return -ENOSYS;
1069 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1073 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1074 int flags, CPUWatchpoint **watchpoint)
1076 return -ENOSYS;
1078 #else
1079 /* Add a watchpoint. */
1080 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1081 int flags, CPUWatchpoint **watchpoint)
1083 CPUWatchpoint *wp;
1085 /* forbid ranges which are empty or run off the end of the address space */
1086 if (len == 0 || (addr + len - 1) < addr) {
1087 error_report("tried to set invalid watchpoint at %"
1088 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1089 return -EINVAL;
1091 wp = g_malloc(sizeof(*wp));
1093 wp->vaddr = addr;
1094 wp->len = len;
1095 wp->flags = flags;
1097 /* keep all GDB-injected watchpoints in front */
1098 if (flags & BP_GDB) {
1099 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1100 } else {
1101 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1104 tlb_flush_page(cpu, addr);
1106 if (watchpoint)
1107 *watchpoint = wp;
1108 return 0;
1111 /* Remove a specific watchpoint. */
1112 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1113 int flags)
1115 CPUWatchpoint *wp;
1117 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1118 if (addr == wp->vaddr && len == wp->len
1119 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1120 cpu_watchpoint_remove_by_ref(cpu, wp);
1121 return 0;
1124 return -ENOENT;
1127 /* Remove a specific watchpoint by reference. */
1128 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1130 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1132 tlb_flush_page(cpu, watchpoint->vaddr);
1134 g_free(watchpoint);
1137 /* Remove all matching watchpoints. */
1138 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1140 CPUWatchpoint *wp, *next;
1142 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1143 if (wp->flags & mask) {
1144 cpu_watchpoint_remove_by_ref(cpu, wp);
1149 /* Return true if this watchpoint address matches the specified
1150 * access (ie the address range covered by the watchpoint overlaps
1151 * partially or completely with the address range covered by the
1152 * access).
1154 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1155 vaddr addr,
1156 vaddr len)
1158 /* We know the lengths are non-zero, but a little caution is
1159 * required to avoid errors in the case where the range ends
1160 * exactly at the top of the address space and so addr + len
1161 * wraps round to zero.
1163 vaddr wpend = wp->vaddr + wp->len - 1;
1164 vaddr addrend = addr + len - 1;
1166 return !(addr > wpend || wp->vaddr > addrend);
1169 #endif
1171 /* Add a breakpoint. */
1172 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1173 CPUBreakpoint **breakpoint)
1175 CPUBreakpoint *bp;
1177 bp = g_malloc(sizeof(*bp));
1179 bp->pc = pc;
1180 bp->flags = flags;
1182 /* keep all GDB-injected breakpoints in front */
1183 if (flags & BP_GDB) {
1184 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1185 } else {
1186 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1189 breakpoint_invalidate(cpu, pc);
1191 if (breakpoint) {
1192 *breakpoint = bp;
1194 return 0;
1197 /* Remove a specific breakpoint. */
1198 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1200 CPUBreakpoint *bp;
1202 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1203 if (bp->pc == pc && bp->flags == flags) {
1204 cpu_breakpoint_remove_by_ref(cpu, bp);
1205 return 0;
1208 return -ENOENT;
1211 /* Remove a specific breakpoint by reference. */
1212 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1214 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1216 breakpoint_invalidate(cpu, breakpoint->pc);
1218 g_free(breakpoint);
1221 /* Remove all matching breakpoints. */
1222 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1224 CPUBreakpoint *bp, *next;
1226 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1227 if (bp->flags & mask) {
1228 cpu_breakpoint_remove_by_ref(cpu, bp);
1233 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1234 CPU loop after each instruction */
1235 void cpu_single_step(CPUState *cpu, int enabled)
1237 if (cpu->singlestep_enabled != enabled) {
1238 cpu->singlestep_enabled = enabled;
1239 if (kvm_enabled()) {
1240 kvm_update_guest_debug(cpu, 0);
1241 } else {
1242 /* must flush all the translated code to avoid inconsistencies */
1243 /* XXX: only flush what is necessary */
1244 tb_flush(cpu);
1249 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1251 va_list ap;
1252 va_list ap2;
1254 va_start(ap, fmt);
1255 va_copy(ap2, ap);
1256 fprintf(stderr, "qemu: fatal: ");
1257 vfprintf(stderr, fmt, ap);
1258 fprintf(stderr, "\n");
1259 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1260 if (qemu_log_separate()) {
1261 qemu_log_lock();
1262 qemu_log("qemu: fatal: ");
1263 qemu_log_vprintf(fmt, ap2);
1264 qemu_log("\n");
1265 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1266 qemu_log_flush();
1267 qemu_log_unlock();
1268 qemu_log_close();
1270 va_end(ap2);
1271 va_end(ap);
1272 replay_finish();
1273 #if defined(CONFIG_USER_ONLY)
1275 struct sigaction act;
1276 sigfillset(&act.sa_mask);
1277 act.sa_handler = SIG_DFL;
1278 act.sa_flags = 0;
1279 sigaction(SIGABRT, &act, NULL);
1281 #endif
1282 abort();
1285 #if !defined(CONFIG_USER_ONLY)
1286 /* Called from RCU critical section */
1287 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1289 RAMBlock *block;
1291 block = atomic_rcu_read(&ram_list.mru_block);
1292 if (block && addr - block->offset < block->max_length) {
1293 return block;
1295 RAMBLOCK_FOREACH(block) {
1296 if (addr - block->offset < block->max_length) {
1297 goto found;
1301 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1302 abort();
1304 found:
1305 /* It is safe to write mru_block outside the iothread lock. This
1306 * is what happens:
1308 * mru_block = xxx
1309 * rcu_read_unlock()
1310 * xxx removed from list
1311 * rcu_read_lock()
1312 * read mru_block
1313 * mru_block = NULL;
1314 * call_rcu(reclaim_ramblock, xxx);
1315 * rcu_read_unlock()
1317 * atomic_rcu_set is not needed here. The block was already published
1318 * when it was placed into the list. Here we're just making an extra
1319 * copy of the pointer.
1321 ram_list.mru_block = block;
1322 return block;
1325 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1327 CPUState *cpu;
1328 ram_addr_t start1;
1329 RAMBlock *block;
1330 ram_addr_t end;
1332 assert(tcg_enabled());
1333 end = TARGET_PAGE_ALIGN(start + length);
1334 start &= TARGET_PAGE_MASK;
1336 rcu_read_lock();
1337 block = qemu_get_ram_block(start);
1338 assert(block == qemu_get_ram_block(end - 1));
1339 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1340 CPU_FOREACH(cpu) {
1341 tlb_reset_dirty(cpu, start1, length);
1343 rcu_read_unlock();
1346 /* Note: start and end must be within the same ram block. */
1347 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1348 ram_addr_t length,
1349 unsigned client)
1351 DirtyMemoryBlocks *blocks;
1352 unsigned long end, page;
1353 bool dirty = false;
1355 if (length == 0) {
1356 return false;
1359 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1360 page = start >> TARGET_PAGE_BITS;
1362 rcu_read_lock();
1364 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366 while (page < end) {
1367 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1371 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1372 offset, num);
1373 page += num;
1376 rcu_read_unlock();
1378 if (dirty && tcg_enabled()) {
1379 tlb_reset_dirty_range_all(start, length);
1382 return dirty;
1385 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1386 (ram_addr_t start, ram_addr_t length, unsigned client)
1388 DirtyMemoryBlocks *blocks;
1389 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1390 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1391 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1392 DirtyBitmapSnapshot *snap;
1393 unsigned long page, end, dest;
1395 snap = g_malloc0(sizeof(*snap) +
1396 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1397 snap->start = first;
1398 snap->end = last;
1400 page = first >> TARGET_PAGE_BITS;
1401 end = last >> TARGET_PAGE_BITS;
1402 dest = 0;
1404 rcu_read_lock();
1406 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1408 while (page < end) {
1409 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1411 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1413 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1414 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1415 offset >>= BITS_PER_LEVEL;
1417 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1418 blocks->blocks[idx] + offset,
1419 num);
1420 page += num;
1421 dest += num >> BITS_PER_LEVEL;
1424 rcu_read_unlock();
1426 if (tcg_enabled()) {
1427 tlb_reset_dirty_range_all(start, length);
1430 return snap;
1433 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1434 ram_addr_t start,
1435 ram_addr_t length)
1437 unsigned long page, end;
1439 assert(start >= snap->start);
1440 assert(start + length <= snap->end);
1442 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1443 page = (start - snap->start) >> TARGET_PAGE_BITS;
1445 while (page < end) {
1446 if (test_bit(page, snap->dirty)) {
1447 return true;
1449 page++;
1451 return false;
1454 /* Called from RCU critical section */
1455 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1456 MemoryRegionSection *section,
1457 target_ulong vaddr,
1458 hwaddr paddr, hwaddr xlat,
1459 int prot,
1460 target_ulong *address)
1462 hwaddr iotlb;
1463 CPUWatchpoint *wp;
1465 if (memory_region_is_ram(section->mr)) {
1466 /* Normal RAM. */
1467 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1468 if (!section->readonly) {
1469 iotlb |= PHYS_SECTION_NOTDIRTY;
1470 } else {
1471 iotlb |= PHYS_SECTION_ROM;
1473 } else {
1474 AddressSpaceDispatch *d;
1476 d = flatview_to_dispatch(section->fv);
1477 iotlb = section - d->map.sections;
1478 iotlb += xlat;
1481 /* Make accesses to pages with watchpoints go via the
1482 watchpoint trap routines. */
1483 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1484 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1485 /* Avoid trapping reads of pages with a write breakpoint. */
1486 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1487 iotlb = PHYS_SECTION_WATCH + paddr;
1488 *address |= TLB_MMIO;
1489 break;
1494 return iotlb;
1496 #endif /* defined(CONFIG_USER_ONLY) */
1498 #if !defined(CONFIG_USER_ONLY)
1500 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1501 uint16_t section);
1502 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1504 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1505 qemu_anon_ram_alloc;
1508 * Set a custom physical guest memory alloator.
1509 * Accelerators with unusual needs may need this. Hopefully, we can
1510 * get rid of it eventually.
1512 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1514 phys_mem_alloc = alloc;
1517 static uint16_t phys_section_add(PhysPageMap *map,
1518 MemoryRegionSection *section)
1520 /* The physical section number is ORed with a page-aligned
1521 * pointer to produce the iotlb entries. Thus it should
1522 * never overflow into the page-aligned value.
1524 assert(map->sections_nb < TARGET_PAGE_SIZE);
1526 if (map->sections_nb == map->sections_nb_alloc) {
1527 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1528 map->sections = g_renew(MemoryRegionSection, map->sections,
1529 map->sections_nb_alloc);
1531 map->sections[map->sections_nb] = *section;
1532 memory_region_ref(section->mr);
1533 return map->sections_nb++;
1536 static void phys_section_destroy(MemoryRegion *mr)
1538 bool have_sub_page = mr->subpage;
1540 memory_region_unref(mr);
1542 if (have_sub_page) {
1543 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1544 object_unref(OBJECT(&subpage->iomem));
1545 g_free(subpage);
1549 static void phys_sections_free(PhysPageMap *map)
1551 while (map->sections_nb > 0) {
1552 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1553 phys_section_destroy(section->mr);
1555 g_free(map->sections);
1556 g_free(map->nodes);
1559 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1561 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1562 subpage_t *subpage;
1563 hwaddr base = section->offset_within_address_space
1564 & TARGET_PAGE_MASK;
1565 MemoryRegionSection *existing = phys_page_find(d, base);
1566 MemoryRegionSection subsection = {
1567 .offset_within_address_space = base,
1568 .size = int128_make64(TARGET_PAGE_SIZE),
1570 hwaddr start, end;
1572 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1574 if (!(existing->mr->subpage)) {
1575 subpage = subpage_init(fv, base);
1576 subsection.fv = fv;
1577 subsection.mr = &subpage->iomem;
1578 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1579 phys_section_add(&d->map, &subsection));
1580 } else {
1581 subpage = container_of(existing->mr, subpage_t, iomem);
1583 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1584 end = start + int128_get64(section->size) - 1;
1585 subpage_register(subpage, start, end,
1586 phys_section_add(&d->map, section));
1590 static void register_multipage(FlatView *fv,
1591 MemoryRegionSection *section)
1593 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1594 hwaddr start_addr = section->offset_within_address_space;
1595 uint16_t section_index = phys_section_add(&d->map, section);
1596 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1597 TARGET_PAGE_BITS));
1599 assert(num_pages);
1600 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1604 * The range in *section* may look like this:
1606 * |s|PPPPPPP|s|
1608 * where s stands for subpage and P for page.
1610 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1612 MemoryRegionSection remain = *section;
1613 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1615 /* register first subpage */
1616 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1617 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1618 - remain.offset_within_address_space;
1620 MemoryRegionSection now = remain;
1621 now.size = int128_min(int128_make64(left), now.size);
1622 register_subpage(fv, &now);
1623 if (int128_eq(remain.size, now.size)) {
1624 return;
1626 remain.size = int128_sub(remain.size, now.size);
1627 remain.offset_within_address_space += int128_get64(now.size);
1628 remain.offset_within_region += int128_get64(now.size);
1631 /* register whole pages */
1632 if (int128_ge(remain.size, page_size)) {
1633 MemoryRegionSection now = remain;
1634 now.size = int128_and(now.size, int128_neg(page_size));
1635 register_multipage(fv, &now);
1636 if (int128_eq(remain.size, now.size)) {
1637 return;
1639 remain.size = int128_sub(remain.size, now.size);
1640 remain.offset_within_address_space += int128_get64(now.size);
1641 remain.offset_within_region += int128_get64(now.size);
1644 /* register last subpage */
1645 register_subpage(fv, &remain);
1648 void qemu_flush_coalesced_mmio_buffer(void)
1650 if (kvm_enabled())
1651 kvm_flush_coalesced_mmio_buffer();
1654 void qemu_mutex_lock_ramlist(void)
1656 qemu_mutex_lock(&ram_list.mutex);
1659 void qemu_mutex_unlock_ramlist(void)
1661 qemu_mutex_unlock(&ram_list.mutex);
1664 void ram_block_dump(Monitor *mon)
1666 RAMBlock *block;
1667 char *psize;
1669 rcu_read_lock();
1670 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1671 "Block Name", "PSize", "Offset", "Used", "Total");
1672 RAMBLOCK_FOREACH(block) {
1673 psize = size_to_str(block->page_size);
1674 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1675 " 0x%016" PRIx64 "\n", block->idstr, psize,
1676 (uint64_t)block->offset,
1677 (uint64_t)block->used_length,
1678 (uint64_t)block->max_length);
1679 g_free(psize);
1681 rcu_read_unlock();
1684 #ifdef __linux__
1686 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1687 * may or may not name the same files / on the same filesystem now as
1688 * when we actually open and map them. Iterate over the file
1689 * descriptors instead, and use qemu_fd_getpagesize().
1691 static int find_min_backend_pagesize(Object *obj, void *opaque)
1693 long *hpsize_min = opaque;
1695 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1696 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1697 long hpsize = host_memory_backend_pagesize(backend);
1699 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1700 *hpsize_min = hpsize;
1704 return 0;
1707 static int find_max_backend_pagesize(Object *obj, void *opaque)
1709 long *hpsize_max = opaque;
1711 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1712 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1713 long hpsize = host_memory_backend_pagesize(backend);
1715 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1716 *hpsize_max = hpsize;
1720 return 0;
1724 * TODO: We assume right now that all mapped host memory backends are
1725 * used as RAM, however some might be used for different purposes.
1727 long qemu_minrampagesize(void)
1729 long hpsize = LONG_MAX;
1730 long mainrampagesize;
1731 Object *memdev_root;
1733 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1735 /* it's possible we have memory-backend objects with
1736 * hugepage-backed RAM. these may get mapped into system
1737 * address space via -numa parameters or memory hotplug
1738 * hooks. we want to take these into account, but we
1739 * also want to make sure these supported hugepage
1740 * sizes are applicable across the entire range of memory
1741 * we may boot from, so we take the min across all
1742 * backends, and assume normal pages in cases where a
1743 * backend isn't backed by hugepages.
1745 memdev_root = object_resolve_path("/objects", NULL);
1746 if (memdev_root) {
1747 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1749 if (hpsize == LONG_MAX) {
1750 /* No additional memory regions found ==> Report main RAM page size */
1751 return mainrampagesize;
1754 /* If NUMA is disabled or the NUMA nodes are not backed with a
1755 * memory-backend, then there is at least one node using "normal" RAM,
1756 * so if its page size is smaller we have got to report that size instead.
1758 if (hpsize > mainrampagesize &&
1759 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1760 static bool warned;
1761 if (!warned) {
1762 error_report("Huge page support disabled (n/a for main memory).");
1763 warned = true;
1765 return mainrampagesize;
1768 return hpsize;
1771 long qemu_maxrampagesize(void)
1773 long pagesize = qemu_mempath_getpagesize(mem_path);
1774 Object *memdev_root = object_resolve_path("/objects", NULL);
1776 if (memdev_root) {
1777 object_child_foreach(memdev_root, find_max_backend_pagesize,
1778 &pagesize);
1780 return pagesize;
1782 #else
1783 long qemu_minrampagesize(void)
1785 return getpagesize();
1787 long qemu_maxrampagesize(void)
1789 return getpagesize();
1791 #endif
1793 #ifdef CONFIG_POSIX
1794 static int64_t get_file_size(int fd)
1796 int64_t size = lseek(fd, 0, SEEK_END);
1797 if (size < 0) {
1798 return -errno;
1800 return size;
1803 static int file_ram_open(const char *path,
1804 const char *region_name,
1805 bool *created,
1806 Error **errp)
1808 char *filename;
1809 char *sanitized_name;
1810 char *c;
1811 int fd = -1;
1813 *created = false;
1814 for (;;) {
1815 fd = open(path, O_RDWR);
1816 if (fd >= 0) {
1817 /* @path names an existing file, use it */
1818 break;
1820 if (errno == ENOENT) {
1821 /* @path names a file that doesn't exist, create it */
1822 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1823 if (fd >= 0) {
1824 *created = true;
1825 break;
1827 } else if (errno == EISDIR) {
1828 /* @path names a directory, create a file there */
1829 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1830 sanitized_name = g_strdup(region_name);
1831 for (c = sanitized_name; *c != '\0'; c++) {
1832 if (*c == '/') {
1833 *c = '_';
1837 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1838 sanitized_name);
1839 g_free(sanitized_name);
1841 fd = mkstemp(filename);
1842 if (fd >= 0) {
1843 unlink(filename);
1844 g_free(filename);
1845 break;
1847 g_free(filename);
1849 if (errno != EEXIST && errno != EINTR) {
1850 error_setg_errno(errp, errno,
1851 "can't open backing store %s for guest RAM",
1852 path);
1853 return -1;
1856 * Try again on EINTR and EEXIST. The latter happens when
1857 * something else creates the file between our two open().
1861 return fd;
1864 static void *file_ram_alloc(RAMBlock *block,
1865 ram_addr_t memory,
1866 int fd,
1867 bool truncate,
1868 Error **errp)
1870 void *area;
1872 block->page_size = qemu_fd_getpagesize(fd);
1873 if (block->mr->align % block->page_size) {
1874 error_setg(errp, "alignment 0x%" PRIx64
1875 " must be multiples of page size 0x%zx",
1876 block->mr->align, block->page_size);
1877 return NULL;
1878 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1879 error_setg(errp, "alignment 0x%" PRIx64
1880 " must be a power of two", block->mr->align);
1881 return NULL;
1883 block->mr->align = MAX(block->page_size, block->mr->align);
1884 #if defined(__s390x__)
1885 if (kvm_enabled()) {
1886 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1888 #endif
1890 if (memory < block->page_size) {
1891 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1892 "or larger than page size 0x%zx",
1893 memory, block->page_size);
1894 return NULL;
1897 memory = ROUND_UP(memory, block->page_size);
1900 * ftruncate is not supported by hugetlbfs in older
1901 * hosts, so don't bother bailing out on errors.
1902 * If anything goes wrong with it under other filesystems,
1903 * mmap will fail.
1905 * Do not truncate the non-empty backend file to avoid corrupting
1906 * the existing data in the file. Disabling shrinking is not
1907 * enough. For example, the current vNVDIMM implementation stores
1908 * the guest NVDIMM labels at the end of the backend file. If the
1909 * backend file is later extended, QEMU will not be able to find
1910 * those labels. Therefore, extending the non-empty backend file
1911 * is disabled as well.
1913 if (truncate && ftruncate(fd, memory)) {
1914 perror("ftruncate");
1917 area = qemu_ram_mmap(fd, memory, block->mr->align,
1918 block->flags & RAM_SHARED);
1919 if (area == MAP_FAILED) {
1920 error_setg_errno(errp, errno,
1921 "unable to map backing store for guest RAM");
1922 return NULL;
1925 if (mem_prealloc) {
1926 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1927 if (errp && *errp) {
1928 qemu_ram_munmap(fd, area, memory);
1929 return NULL;
1933 block->fd = fd;
1934 return area;
1936 #endif
1938 /* Allocate space within the ram_addr_t space that governs the
1939 * dirty bitmaps.
1940 * Called with the ramlist lock held.
1942 static ram_addr_t find_ram_offset(ram_addr_t size)
1944 RAMBlock *block, *next_block;
1945 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1947 assert(size != 0); /* it would hand out same offset multiple times */
1949 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1950 return 0;
1953 RAMBLOCK_FOREACH(block) {
1954 ram_addr_t candidate, next = RAM_ADDR_MAX;
1956 /* Align blocks to start on a 'long' in the bitmap
1957 * which makes the bitmap sync'ing take the fast path.
1959 candidate = block->offset + block->max_length;
1960 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1962 /* Search for the closest following block
1963 * and find the gap.
1965 RAMBLOCK_FOREACH(next_block) {
1966 if (next_block->offset >= candidate) {
1967 next = MIN(next, next_block->offset);
1971 /* If it fits remember our place and remember the size
1972 * of gap, but keep going so that we might find a smaller
1973 * gap to fill so avoiding fragmentation.
1975 if (next - candidate >= size && next - candidate < mingap) {
1976 offset = candidate;
1977 mingap = next - candidate;
1980 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1983 if (offset == RAM_ADDR_MAX) {
1984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1985 (uint64_t)size);
1986 abort();
1989 trace_find_ram_offset(size, offset);
1991 return offset;
1994 static unsigned long last_ram_page(void)
1996 RAMBlock *block;
1997 ram_addr_t last = 0;
1999 rcu_read_lock();
2000 RAMBLOCK_FOREACH(block) {
2001 last = MAX(last, block->offset + block->max_length);
2003 rcu_read_unlock();
2004 return last >> TARGET_PAGE_BITS;
2007 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2009 int ret;
2011 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2012 if (!machine_dump_guest_core(current_machine)) {
2013 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2014 if (ret) {
2015 perror("qemu_madvise");
2016 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2017 "but dump_guest_core=off specified\n");
2022 const char *qemu_ram_get_idstr(RAMBlock *rb)
2024 return rb->idstr;
2027 void *qemu_ram_get_host_addr(RAMBlock *rb)
2029 return rb->host;
2032 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2034 return rb->offset;
2037 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2039 return rb->used_length;
2042 bool qemu_ram_is_shared(RAMBlock *rb)
2044 return rb->flags & RAM_SHARED;
2047 /* Note: Only set at the start of postcopy */
2048 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2050 return rb->flags & RAM_UF_ZEROPAGE;
2053 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2055 rb->flags |= RAM_UF_ZEROPAGE;
2058 bool qemu_ram_is_migratable(RAMBlock *rb)
2060 return rb->flags & RAM_MIGRATABLE;
2063 void qemu_ram_set_migratable(RAMBlock *rb)
2065 rb->flags |= RAM_MIGRATABLE;
2068 void qemu_ram_unset_migratable(RAMBlock *rb)
2070 rb->flags &= ~RAM_MIGRATABLE;
2073 /* Called with iothread lock held. */
2074 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2076 RAMBlock *block;
2078 assert(new_block);
2079 assert(!new_block->idstr[0]);
2081 if (dev) {
2082 char *id = qdev_get_dev_path(dev);
2083 if (id) {
2084 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2085 g_free(id);
2088 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2090 rcu_read_lock();
2091 RAMBLOCK_FOREACH(block) {
2092 if (block != new_block &&
2093 !strcmp(block->idstr, new_block->idstr)) {
2094 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2095 new_block->idstr);
2096 abort();
2099 rcu_read_unlock();
2102 /* Called with iothread lock held. */
2103 void qemu_ram_unset_idstr(RAMBlock *block)
2105 /* FIXME: arch_init.c assumes that this is not called throughout
2106 * migration. Ignore the problem since hot-unplug during migration
2107 * does not work anyway.
2109 if (block) {
2110 memset(block->idstr, 0, sizeof(block->idstr));
2114 size_t qemu_ram_pagesize(RAMBlock *rb)
2116 return rb->page_size;
2119 /* Returns the largest size of page in use */
2120 size_t qemu_ram_pagesize_largest(void)
2122 RAMBlock *block;
2123 size_t largest = 0;
2125 RAMBLOCK_FOREACH(block) {
2126 largest = MAX(largest, qemu_ram_pagesize(block));
2129 return largest;
2132 static int memory_try_enable_merging(void *addr, size_t len)
2134 if (!machine_mem_merge(current_machine)) {
2135 /* disabled by the user */
2136 return 0;
2139 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2142 /* Only legal before guest might have detected the memory size: e.g. on
2143 * incoming migration, or right after reset.
2145 * As memory core doesn't know how is memory accessed, it is up to
2146 * resize callback to update device state and/or add assertions to detect
2147 * misuse, if necessary.
2149 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2151 assert(block);
2153 newsize = HOST_PAGE_ALIGN(newsize);
2155 if (block->used_length == newsize) {
2156 return 0;
2159 if (!(block->flags & RAM_RESIZEABLE)) {
2160 error_setg_errno(errp, EINVAL,
2161 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2162 " in != 0x" RAM_ADDR_FMT, block->idstr,
2163 newsize, block->used_length);
2164 return -EINVAL;
2167 if (block->max_length < newsize) {
2168 error_setg_errno(errp, EINVAL,
2169 "Length too large: %s: 0x" RAM_ADDR_FMT
2170 " > 0x" RAM_ADDR_FMT, block->idstr,
2171 newsize, block->max_length);
2172 return -EINVAL;
2175 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2176 block->used_length = newsize;
2177 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2178 DIRTY_CLIENTS_ALL);
2179 memory_region_set_size(block->mr, newsize);
2180 if (block->resized) {
2181 block->resized(block->idstr, newsize, block->host);
2183 return 0;
2186 /* Called with ram_list.mutex held */
2187 static void dirty_memory_extend(ram_addr_t old_ram_size,
2188 ram_addr_t new_ram_size)
2190 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2191 DIRTY_MEMORY_BLOCK_SIZE);
2192 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2193 DIRTY_MEMORY_BLOCK_SIZE);
2194 int i;
2196 /* Only need to extend if block count increased */
2197 if (new_num_blocks <= old_num_blocks) {
2198 return;
2201 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2202 DirtyMemoryBlocks *old_blocks;
2203 DirtyMemoryBlocks *new_blocks;
2204 int j;
2206 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2207 new_blocks = g_malloc(sizeof(*new_blocks) +
2208 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2210 if (old_num_blocks) {
2211 memcpy(new_blocks->blocks, old_blocks->blocks,
2212 old_num_blocks * sizeof(old_blocks->blocks[0]));
2215 for (j = old_num_blocks; j < new_num_blocks; j++) {
2216 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2219 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2221 if (old_blocks) {
2222 g_free_rcu(old_blocks, rcu);
2227 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2229 RAMBlock *block;
2230 RAMBlock *last_block = NULL;
2231 ram_addr_t old_ram_size, new_ram_size;
2232 Error *err = NULL;
2234 old_ram_size = last_ram_page();
2236 qemu_mutex_lock_ramlist();
2237 new_block->offset = find_ram_offset(new_block->max_length);
2239 if (!new_block->host) {
2240 if (xen_enabled()) {
2241 xen_ram_alloc(new_block->offset, new_block->max_length,
2242 new_block->mr, &err);
2243 if (err) {
2244 error_propagate(errp, err);
2245 qemu_mutex_unlock_ramlist();
2246 return;
2248 } else {
2249 new_block->host = phys_mem_alloc(new_block->max_length,
2250 &new_block->mr->align, shared);
2251 if (!new_block->host) {
2252 error_setg_errno(errp, errno,
2253 "cannot set up guest memory '%s'",
2254 memory_region_name(new_block->mr));
2255 qemu_mutex_unlock_ramlist();
2256 return;
2258 memory_try_enable_merging(new_block->host, new_block->max_length);
2262 new_ram_size = MAX(old_ram_size,
2263 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2264 if (new_ram_size > old_ram_size) {
2265 dirty_memory_extend(old_ram_size, new_ram_size);
2267 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2268 * QLIST (which has an RCU-friendly variant) does not have insertion at
2269 * tail, so save the last element in last_block.
2271 RAMBLOCK_FOREACH(block) {
2272 last_block = block;
2273 if (block->max_length < new_block->max_length) {
2274 break;
2277 if (block) {
2278 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2279 } else if (last_block) {
2280 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2281 } else { /* list is empty */
2282 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2284 ram_list.mru_block = NULL;
2286 /* Write list before version */
2287 smp_wmb();
2288 ram_list.version++;
2289 qemu_mutex_unlock_ramlist();
2291 cpu_physical_memory_set_dirty_range(new_block->offset,
2292 new_block->used_length,
2293 DIRTY_CLIENTS_ALL);
2295 if (new_block->host) {
2296 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2297 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2298 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2299 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2300 ram_block_notify_add(new_block->host, new_block->max_length);
2304 #ifdef CONFIG_POSIX
2305 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2306 uint32_t ram_flags, int fd,
2307 Error **errp)
2309 RAMBlock *new_block;
2310 Error *local_err = NULL;
2311 int64_t file_size;
2313 /* Just support these ram flags by now. */
2314 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2316 if (xen_enabled()) {
2317 error_setg(errp, "-mem-path not supported with Xen");
2318 return NULL;
2321 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2322 error_setg(errp,
2323 "host lacks kvm mmu notifiers, -mem-path unsupported");
2324 return NULL;
2327 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2329 * file_ram_alloc() needs to allocate just like
2330 * phys_mem_alloc, but we haven't bothered to provide
2331 * a hook there.
2333 error_setg(errp,
2334 "-mem-path not supported with this accelerator");
2335 return NULL;
2338 size = HOST_PAGE_ALIGN(size);
2339 file_size = get_file_size(fd);
2340 if (file_size > 0 && file_size < size) {
2341 error_setg(errp, "backing store %s size 0x%" PRIx64
2342 " does not match 'size' option 0x" RAM_ADDR_FMT,
2343 mem_path, file_size, size);
2344 return NULL;
2347 new_block = g_malloc0(sizeof(*new_block));
2348 new_block->mr = mr;
2349 new_block->used_length = size;
2350 new_block->max_length = size;
2351 new_block->flags = ram_flags;
2352 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2353 if (!new_block->host) {
2354 g_free(new_block);
2355 return NULL;
2358 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2359 if (local_err) {
2360 g_free(new_block);
2361 error_propagate(errp, local_err);
2362 return NULL;
2364 return new_block;
2369 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2370 uint32_t ram_flags, const char *mem_path,
2371 Error **errp)
2373 int fd;
2374 bool created;
2375 RAMBlock *block;
2377 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2378 if (fd < 0) {
2379 return NULL;
2382 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2383 if (!block) {
2384 if (created) {
2385 unlink(mem_path);
2387 close(fd);
2388 return NULL;
2391 return block;
2393 #endif
2395 static
2396 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2397 void (*resized)(const char*,
2398 uint64_t length,
2399 void *host),
2400 void *host, bool resizeable, bool share,
2401 MemoryRegion *mr, Error **errp)
2403 RAMBlock *new_block;
2404 Error *local_err = NULL;
2406 size = HOST_PAGE_ALIGN(size);
2407 max_size = HOST_PAGE_ALIGN(max_size);
2408 new_block = g_malloc0(sizeof(*new_block));
2409 new_block->mr = mr;
2410 new_block->resized = resized;
2411 new_block->used_length = size;
2412 new_block->max_length = max_size;
2413 assert(max_size >= size);
2414 new_block->fd = -1;
2415 new_block->page_size = getpagesize();
2416 new_block->host = host;
2417 if (host) {
2418 new_block->flags |= RAM_PREALLOC;
2420 if (resizeable) {
2421 new_block->flags |= RAM_RESIZEABLE;
2423 ram_block_add(new_block, &local_err, share);
2424 if (local_err) {
2425 g_free(new_block);
2426 error_propagate(errp, local_err);
2427 return NULL;
2429 return new_block;
2432 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2433 MemoryRegion *mr, Error **errp)
2435 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2436 false, mr, errp);
2439 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2440 MemoryRegion *mr, Error **errp)
2442 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2443 share, mr, errp);
2446 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2447 void (*resized)(const char*,
2448 uint64_t length,
2449 void *host),
2450 MemoryRegion *mr, Error **errp)
2452 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2453 false, mr, errp);
2456 static void reclaim_ramblock(RAMBlock *block)
2458 if (block->flags & RAM_PREALLOC) {
2460 } else if (xen_enabled()) {
2461 xen_invalidate_map_cache_entry(block->host);
2462 #ifndef _WIN32
2463 } else if (block->fd >= 0) {
2464 qemu_ram_munmap(block->fd, block->host, block->max_length);
2465 close(block->fd);
2466 #endif
2467 } else {
2468 qemu_anon_ram_free(block->host, block->max_length);
2470 g_free(block);
2473 void qemu_ram_free(RAMBlock *block)
2475 if (!block) {
2476 return;
2479 if (block->host) {
2480 ram_block_notify_remove(block->host, block->max_length);
2483 qemu_mutex_lock_ramlist();
2484 QLIST_REMOVE_RCU(block, next);
2485 ram_list.mru_block = NULL;
2486 /* Write list before version */
2487 smp_wmb();
2488 ram_list.version++;
2489 call_rcu(block, reclaim_ramblock, rcu);
2490 qemu_mutex_unlock_ramlist();
2493 #ifndef _WIN32
2494 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2496 RAMBlock *block;
2497 ram_addr_t offset;
2498 int flags;
2499 void *area, *vaddr;
2501 RAMBLOCK_FOREACH(block) {
2502 offset = addr - block->offset;
2503 if (offset < block->max_length) {
2504 vaddr = ramblock_ptr(block, offset);
2505 if (block->flags & RAM_PREALLOC) {
2507 } else if (xen_enabled()) {
2508 abort();
2509 } else {
2510 flags = MAP_FIXED;
2511 if (block->fd >= 0) {
2512 flags |= (block->flags & RAM_SHARED ?
2513 MAP_SHARED : MAP_PRIVATE);
2514 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2515 flags, block->fd, offset);
2516 } else {
2518 * Remap needs to match alloc. Accelerators that
2519 * set phys_mem_alloc never remap. If they did,
2520 * we'd need a remap hook here.
2522 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2524 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, -1, 0);
2528 if (area != vaddr) {
2529 error_report("Could not remap addr: "
2530 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2531 length, addr);
2532 exit(1);
2534 memory_try_enable_merging(vaddr, length);
2535 qemu_ram_setup_dump(vaddr, length);
2540 #endif /* !_WIN32 */
2542 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2543 * This should not be used for general purpose DMA. Use address_space_map
2544 * or address_space_rw instead. For local memory (e.g. video ram) that the
2545 * device owns, use memory_region_get_ram_ptr.
2547 * Called within RCU critical section.
2549 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2551 RAMBlock *block = ram_block;
2553 if (block == NULL) {
2554 block = qemu_get_ram_block(addr);
2555 addr -= block->offset;
2558 if (xen_enabled() && block->host == NULL) {
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map until the end of the page.
2563 if (block->offset == 0) {
2564 return xen_map_cache(addr, 0, 0, false);
2567 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2569 return ramblock_ptr(block, addr);
2572 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2573 * but takes a size argument.
2575 * Called within RCU critical section.
2577 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2578 hwaddr *size, bool lock)
2580 RAMBlock *block = ram_block;
2581 if (*size == 0) {
2582 return NULL;
2585 if (block == NULL) {
2586 block = qemu_get_ram_block(addr);
2587 addr -= block->offset;
2589 *size = MIN(*size, block->max_length - addr);
2591 if (xen_enabled() && block->host == NULL) {
2592 /* We need to check if the requested address is in the RAM
2593 * because we don't want to map the entire memory in QEMU.
2594 * In that case just map the requested area.
2596 if (block->offset == 0) {
2597 return xen_map_cache(addr, *size, lock, lock);
2600 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2603 return ramblock_ptr(block, addr);
2606 /* Return the offset of a hostpointer within a ramblock */
2607 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2609 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2610 assert((uintptr_t)host >= (uintptr_t)rb->host);
2611 assert(res < rb->max_length);
2613 return res;
2617 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2618 * in that RAMBlock.
2620 * ptr: Host pointer to look up
2621 * round_offset: If true round the result offset down to a page boundary
2622 * *ram_addr: set to result ram_addr
2623 * *offset: set to result offset within the RAMBlock
2625 * Returns: RAMBlock (or NULL if not found)
2627 * By the time this function returns, the returned pointer is not protected
2628 * by RCU anymore. If the caller is not within an RCU critical section and
2629 * does not hold the iothread lock, it must have other means of protecting the
2630 * pointer, such as a reference to the region that includes the incoming
2631 * ram_addr_t.
2633 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2634 ram_addr_t *offset)
2636 RAMBlock *block;
2637 uint8_t *host = ptr;
2639 if (xen_enabled()) {
2640 ram_addr_t ram_addr;
2641 rcu_read_lock();
2642 ram_addr = xen_ram_addr_from_mapcache(ptr);
2643 block = qemu_get_ram_block(ram_addr);
2644 if (block) {
2645 *offset = ram_addr - block->offset;
2647 rcu_read_unlock();
2648 return block;
2651 rcu_read_lock();
2652 block = atomic_rcu_read(&ram_list.mru_block);
2653 if (block && block->host && host - block->host < block->max_length) {
2654 goto found;
2657 RAMBLOCK_FOREACH(block) {
2658 /* This case append when the block is not mapped. */
2659 if (block->host == NULL) {
2660 continue;
2662 if (host - block->host < block->max_length) {
2663 goto found;
2667 rcu_read_unlock();
2668 return NULL;
2670 found:
2671 *offset = (host - block->host);
2672 if (round_offset) {
2673 *offset &= TARGET_PAGE_MASK;
2675 rcu_read_unlock();
2676 return block;
2680 * Finds the named RAMBlock
2682 * name: The name of RAMBlock to find
2684 * Returns: RAMBlock (or NULL if not found)
2686 RAMBlock *qemu_ram_block_by_name(const char *name)
2688 RAMBlock *block;
2690 RAMBLOCK_FOREACH(block) {
2691 if (!strcmp(name, block->idstr)) {
2692 return block;
2696 return NULL;
2699 /* Some of the softmmu routines need to translate from a host pointer
2700 (typically a TLB entry) back to a ram offset. */
2701 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2703 RAMBlock *block;
2704 ram_addr_t offset;
2706 block = qemu_ram_block_from_host(ptr, false, &offset);
2707 if (!block) {
2708 return RAM_ADDR_INVALID;
2711 return block->offset + offset;
2714 /* Called within RCU critical section. */
2715 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2716 CPUState *cpu,
2717 vaddr mem_vaddr,
2718 ram_addr_t ram_addr,
2719 unsigned size)
2721 ndi->cpu = cpu;
2722 ndi->ram_addr = ram_addr;
2723 ndi->mem_vaddr = mem_vaddr;
2724 ndi->size = size;
2725 ndi->pages = NULL;
2727 assert(tcg_enabled());
2728 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2729 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2730 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2734 /* Called within RCU critical section. */
2735 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2737 if (ndi->pages) {
2738 assert(tcg_enabled());
2739 page_collection_unlock(ndi->pages);
2740 ndi->pages = NULL;
2743 /* Set both VGA and migration bits for simplicity and to remove
2744 * the notdirty callback faster.
2746 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2747 DIRTY_CLIENTS_NOCODE);
2748 /* we remove the notdirty callback only if the code has been
2749 flushed */
2750 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2751 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2755 /* Called within RCU critical section. */
2756 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2757 uint64_t val, unsigned size)
2759 NotDirtyInfo ndi;
2761 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2762 ram_addr, size);
2764 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2765 memory_notdirty_write_complete(&ndi);
2768 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2769 unsigned size, bool is_write,
2770 MemTxAttrs attrs)
2772 return is_write;
2775 static const MemoryRegionOps notdirty_mem_ops = {
2776 .write = notdirty_mem_write,
2777 .valid.accepts = notdirty_mem_accepts,
2778 .endianness = DEVICE_NATIVE_ENDIAN,
2779 .valid = {
2780 .min_access_size = 1,
2781 .max_access_size = 8,
2782 .unaligned = false,
2784 .impl = {
2785 .min_access_size = 1,
2786 .max_access_size = 8,
2787 .unaligned = false,
2791 /* Generate a debug exception if a watchpoint has been hit. */
2792 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2794 CPUState *cpu = current_cpu;
2795 CPUClass *cc = CPU_GET_CLASS(cpu);
2796 target_ulong vaddr;
2797 CPUWatchpoint *wp;
2799 assert(tcg_enabled());
2800 if (cpu->watchpoint_hit) {
2801 /* We re-entered the check after replacing the TB. Now raise
2802 * the debug interrupt so that is will trigger after the
2803 * current instruction. */
2804 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2805 return;
2807 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2808 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2809 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2810 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2811 && (wp->flags & flags)) {
2812 if (flags == BP_MEM_READ) {
2813 wp->flags |= BP_WATCHPOINT_HIT_READ;
2814 } else {
2815 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2817 wp->hitaddr = vaddr;
2818 wp->hitattrs = attrs;
2819 if (!cpu->watchpoint_hit) {
2820 if (wp->flags & BP_CPU &&
2821 !cc->debug_check_watchpoint(cpu, wp)) {
2822 wp->flags &= ~BP_WATCHPOINT_HIT;
2823 continue;
2825 cpu->watchpoint_hit = wp;
2827 mmap_lock();
2828 tb_check_watchpoint(cpu);
2829 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2830 cpu->exception_index = EXCP_DEBUG;
2831 mmap_unlock();
2832 cpu_loop_exit(cpu);
2833 } else {
2834 /* Force execution of one insn next time. */
2835 cpu->cflags_next_tb = 1 | curr_cflags();
2836 mmap_unlock();
2837 cpu_loop_exit_noexc(cpu);
2840 } else {
2841 wp->flags &= ~BP_WATCHPOINT_HIT;
2846 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2847 so these check for a hit then pass through to the normal out-of-line
2848 phys routines. */
2849 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2850 unsigned size, MemTxAttrs attrs)
2852 MemTxResult res;
2853 uint64_t data;
2854 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2855 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2857 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2858 switch (size) {
2859 case 1:
2860 data = address_space_ldub(as, addr, attrs, &res);
2861 break;
2862 case 2:
2863 data = address_space_lduw(as, addr, attrs, &res);
2864 break;
2865 case 4:
2866 data = address_space_ldl(as, addr, attrs, &res);
2867 break;
2868 case 8:
2869 data = address_space_ldq(as, addr, attrs, &res);
2870 break;
2871 default: abort();
2873 *pdata = data;
2874 return res;
2877 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2878 uint64_t val, unsigned size,
2879 MemTxAttrs attrs)
2881 MemTxResult res;
2882 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2883 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2885 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2886 switch (size) {
2887 case 1:
2888 address_space_stb(as, addr, val, attrs, &res);
2889 break;
2890 case 2:
2891 address_space_stw(as, addr, val, attrs, &res);
2892 break;
2893 case 4:
2894 address_space_stl(as, addr, val, attrs, &res);
2895 break;
2896 case 8:
2897 address_space_stq(as, addr, val, attrs, &res);
2898 break;
2899 default: abort();
2901 return res;
2904 static const MemoryRegionOps watch_mem_ops = {
2905 .read_with_attrs = watch_mem_read,
2906 .write_with_attrs = watch_mem_write,
2907 .endianness = DEVICE_NATIVE_ENDIAN,
2908 .valid = {
2909 .min_access_size = 1,
2910 .max_access_size = 8,
2911 .unaligned = false,
2913 .impl = {
2914 .min_access_size = 1,
2915 .max_access_size = 8,
2916 .unaligned = false,
2920 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2921 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2922 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2923 const uint8_t *buf, hwaddr len);
2924 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2925 bool is_write, MemTxAttrs attrs);
2927 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2928 unsigned len, MemTxAttrs attrs)
2930 subpage_t *subpage = opaque;
2931 uint8_t buf[8];
2932 MemTxResult res;
2934 #if defined(DEBUG_SUBPAGE)
2935 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2936 subpage, len, addr);
2937 #endif
2938 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2939 if (res) {
2940 return res;
2942 *data = ldn_p(buf, len);
2943 return MEMTX_OK;
2946 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2947 uint64_t value, unsigned len, MemTxAttrs attrs)
2949 subpage_t *subpage = opaque;
2950 uint8_t buf[8];
2952 #if defined(DEBUG_SUBPAGE)
2953 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2954 " value %"PRIx64"\n",
2955 __func__, subpage, len, addr, value);
2956 #endif
2957 stn_p(buf, len, value);
2958 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2961 static bool subpage_accepts(void *opaque, hwaddr addr,
2962 unsigned len, bool is_write,
2963 MemTxAttrs attrs)
2965 subpage_t *subpage = opaque;
2966 #if defined(DEBUG_SUBPAGE)
2967 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2968 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2969 #endif
2971 return flatview_access_valid(subpage->fv, addr + subpage->base,
2972 len, is_write, attrs);
2975 static const MemoryRegionOps subpage_ops = {
2976 .read_with_attrs = subpage_read,
2977 .write_with_attrs = subpage_write,
2978 .impl.min_access_size = 1,
2979 .impl.max_access_size = 8,
2980 .valid.min_access_size = 1,
2981 .valid.max_access_size = 8,
2982 .valid.accepts = subpage_accepts,
2983 .endianness = DEVICE_NATIVE_ENDIAN,
2986 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2987 uint16_t section)
2989 int idx, eidx;
2991 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2992 return -1;
2993 idx = SUBPAGE_IDX(start);
2994 eidx = SUBPAGE_IDX(end);
2995 #if defined(DEBUG_SUBPAGE)
2996 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2997 __func__, mmio, start, end, idx, eidx, section);
2998 #endif
2999 for (; idx <= eidx; idx++) {
3000 mmio->sub_section[idx] = section;
3003 return 0;
3006 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3008 subpage_t *mmio;
3010 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3011 mmio->fv = fv;
3012 mmio->base = base;
3013 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3014 NULL, TARGET_PAGE_SIZE);
3015 mmio->iomem.subpage = true;
3016 #if defined(DEBUG_SUBPAGE)
3017 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3018 mmio, base, TARGET_PAGE_SIZE);
3019 #endif
3020 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3022 return mmio;
3025 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3027 assert(fv);
3028 MemoryRegionSection section = {
3029 .fv = fv,
3030 .mr = mr,
3031 .offset_within_address_space = 0,
3032 .offset_within_region = 0,
3033 .size = int128_2_64(),
3036 return phys_section_add(map, &section);
3039 static void readonly_mem_write(void *opaque, hwaddr addr,
3040 uint64_t val, unsigned size)
3042 /* Ignore any write to ROM. */
3045 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3046 unsigned size, bool is_write,
3047 MemTxAttrs attrs)
3049 return is_write;
3052 /* This will only be used for writes, because reads are special cased
3053 * to directly access the underlying host ram.
3055 static const MemoryRegionOps readonly_mem_ops = {
3056 .write = readonly_mem_write,
3057 .valid.accepts = readonly_mem_accepts,
3058 .endianness = DEVICE_NATIVE_ENDIAN,
3059 .valid = {
3060 .min_access_size = 1,
3061 .max_access_size = 8,
3062 .unaligned = false,
3064 .impl = {
3065 .min_access_size = 1,
3066 .max_access_size = 8,
3067 .unaligned = false,
3071 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3072 hwaddr index, MemTxAttrs attrs)
3074 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3075 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3076 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3077 MemoryRegionSection *sections = d->map.sections;
3079 return &sections[index & ~TARGET_PAGE_MASK];
3082 static void io_mem_init(void)
3084 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3085 NULL, NULL, UINT64_MAX);
3086 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3087 NULL, UINT64_MAX);
3089 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3090 * which can be called without the iothread mutex.
3092 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3093 NULL, UINT64_MAX);
3094 memory_region_clear_global_locking(&io_mem_notdirty);
3096 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3097 NULL, UINT64_MAX);
3100 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3102 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3103 uint16_t n;
3105 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3106 assert(n == PHYS_SECTION_UNASSIGNED);
3107 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3108 assert(n == PHYS_SECTION_NOTDIRTY);
3109 n = dummy_section(&d->map, fv, &io_mem_rom);
3110 assert(n == PHYS_SECTION_ROM);
3111 n = dummy_section(&d->map, fv, &io_mem_watch);
3112 assert(n == PHYS_SECTION_WATCH);
3114 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3116 return d;
3119 void address_space_dispatch_free(AddressSpaceDispatch *d)
3121 phys_sections_free(&d->map);
3122 g_free(d);
3125 static void tcg_commit(MemoryListener *listener)
3127 CPUAddressSpace *cpuas;
3128 AddressSpaceDispatch *d;
3130 assert(tcg_enabled());
3131 /* since each CPU stores ram addresses in its TLB cache, we must
3132 reset the modified entries */
3133 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3134 cpu_reloading_memory_map();
3135 /* The CPU and TLB are protected by the iothread lock.
3136 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3137 * may have split the RCU critical section.
3139 d = address_space_to_dispatch(cpuas->as);
3140 atomic_rcu_set(&cpuas->memory_dispatch, d);
3141 tlb_flush(cpuas->cpu);
3144 static void memory_map_init(void)
3146 system_memory = g_malloc(sizeof(*system_memory));
3148 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3149 address_space_init(&address_space_memory, system_memory, "memory");
3151 system_io = g_malloc(sizeof(*system_io));
3152 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3153 65536);
3154 address_space_init(&address_space_io, system_io, "I/O");
3157 MemoryRegion *get_system_memory(void)
3159 return system_memory;
3162 MemoryRegion *get_system_io(void)
3164 return system_io;
3167 #endif /* !defined(CONFIG_USER_ONLY) */
3169 /* physical memory access (slow version, mainly for debug) */
3170 #if defined(CONFIG_USER_ONLY)
3171 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3172 uint8_t *buf, target_ulong len, int is_write)
3174 int flags;
3175 target_ulong l, page;
3176 void * p;
3178 while (len > 0) {
3179 page = addr & TARGET_PAGE_MASK;
3180 l = (page + TARGET_PAGE_SIZE) - addr;
3181 if (l > len)
3182 l = len;
3183 flags = page_get_flags(page);
3184 if (!(flags & PAGE_VALID))
3185 return -1;
3186 if (is_write) {
3187 if (!(flags & PAGE_WRITE))
3188 return -1;
3189 /* XXX: this code should not depend on lock_user */
3190 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3191 return -1;
3192 memcpy(p, buf, l);
3193 unlock_user(p, addr, l);
3194 } else {
3195 if (!(flags & PAGE_READ))
3196 return -1;
3197 /* XXX: this code should not depend on lock_user */
3198 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3199 return -1;
3200 memcpy(buf, p, l);
3201 unlock_user(p, addr, 0);
3203 len -= l;
3204 buf += l;
3205 addr += l;
3207 return 0;
3210 #else
3212 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3213 hwaddr length)
3215 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3216 addr += memory_region_get_ram_addr(mr);
3218 /* No early return if dirty_log_mask is or becomes 0, because
3219 * cpu_physical_memory_set_dirty_range will still call
3220 * xen_modified_memory.
3222 if (dirty_log_mask) {
3223 dirty_log_mask =
3224 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3226 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3227 assert(tcg_enabled());
3228 tb_invalidate_phys_range(addr, addr + length);
3229 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3231 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3234 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3237 * In principle this function would work on other memory region types too,
3238 * but the ROM device use case is the only one where this operation is
3239 * necessary. Other memory regions should use the
3240 * address_space_read/write() APIs.
3242 assert(memory_region_is_romd(mr));
3244 invalidate_and_set_dirty(mr, addr, size);
3247 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3249 unsigned access_size_max = mr->ops->valid.max_access_size;
3251 /* Regions are assumed to support 1-4 byte accesses unless
3252 otherwise specified. */
3253 if (access_size_max == 0) {
3254 access_size_max = 4;
3257 /* Bound the maximum access by the alignment of the address. */
3258 if (!mr->ops->impl.unaligned) {
3259 unsigned align_size_max = addr & -addr;
3260 if (align_size_max != 0 && align_size_max < access_size_max) {
3261 access_size_max = align_size_max;
3265 /* Don't attempt accesses larger than the maximum. */
3266 if (l > access_size_max) {
3267 l = access_size_max;
3269 l = pow2floor(l);
3271 return l;
3274 static bool prepare_mmio_access(MemoryRegion *mr)
3276 bool unlocked = !qemu_mutex_iothread_locked();
3277 bool release_lock = false;
3279 if (unlocked && mr->global_locking) {
3280 qemu_mutex_lock_iothread();
3281 unlocked = false;
3282 release_lock = true;
3284 if (mr->flush_coalesced_mmio) {
3285 if (unlocked) {
3286 qemu_mutex_lock_iothread();
3288 qemu_flush_coalesced_mmio_buffer();
3289 if (unlocked) {
3290 qemu_mutex_unlock_iothread();
3294 return release_lock;
3297 /* Called within RCU critical section. */
3298 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3299 MemTxAttrs attrs,
3300 const uint8_t *buf,
3301 hwaddr len, hwaddr addr1,
3302 hwaddr l, MemoryRegion *mr)
3304 uint8_t *ptr;
3305 uint64_t val;
3306 MemTxResult result = MEMTX_OK;
3307 bool release_lock = false;
3309 for (;;) {
3310 if (!memory_access_is_direct(mr, true)) {
3311 release_lock |= prepare_mmio_access(mr);
3312 l = memory_access_size(mr, l, addr1);
3313 /* XXX: could force current_cpu to NULL to avoid
3314 potential bugs */
3315 val = ldn_p(buf, l);
3316 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3317 } else {
3318 /* RAM case */
3319 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3320 memcpy(ptr, buf, l);
3321 invalidate_and_set_dirty(mr, addr1, l);
3324 if (release_lock) {
3325 qemu_mutex_unlock_iothread();
3326 release_lock = false;
3329 len -= l;
3330 buf += l;
3331 addr += l;
3333 if (!len) {
3334 break;
3337 l = len;
3338 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3341 return result;
3344 /* Called from RCU critical section. */
3345 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3346 const uint8_t *buf, hwaddr len)
3348 hwaddr l;
3349 hwaddr addr1;
3350 MemoryRegion *mr;
3351 MemTxResult result = MEMTX_OK;
3353 l = len;
3354 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3355 result = flatview_write_continue(fv, addr, attrs, buf, len,
3356 addr1, l, mr);
3358 return result;
3361 /* Called within RCU critical section. */
3362 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3363 MemTxAttrs attrs, uint8_t *buf,
3364 hwaddr len, hwaddr addr1, hwaddr l,
3365 MemoryRegion *mr)
3367 uint8_t *ptr;
3368 uint64_t val;
3369 MemTxResult result = MEMTX_OK;
3370 bool release_lock = false;
3372 for (;;) {
3373 if (!memory_access_is_direct(mr, false)) {
3374 /* I/O case */
3375 release_lock |= prepare_mmio_access(mr);
3376 l = memory_access_size(mr, l, addr1);
3377 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3378 stn_p(buf, l, val);
3379 } else {
3380 /* RAM case */
3381 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3382 memcpy(buf, ptr, l);
3385 if (release_lock) {
3386 qemu_mutex_unlock_iothread();
3387 release_lock = false;
3390 len -= l;
3391 buf += l;
3392 addr += l;
3394 if (!len) {
3395 break;
3398 l = len;
3399 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3402 return result;
3405 /* Called from RCU critical section. */
3406 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3407 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3409 hwaddr l;
3410 hwaddr addr1;
3411 MemoryRegion *mr;
3413 l = len;
3414 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3415 return flatview_read_continue(fv, addr, attrs, buf, len,
3416 addr1, l, mr);
3419 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3420 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3422 MemTxResult result = MEMTX_OK;
3423 FlatView *fv;
3425 if (len > 0) {
3426 rcu_read_lock();
3427 fv = address_space_to_flatview(as);
3428 result = flatview_read(fv, addr, attrs, buf, len);
3429 rcu_read_unlock();
3432 return result;
3435 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3436 MemTxAttrs attrs,
3437 const uint8_t *buf, hwaddr len)
3439 MemTxResult result = MEMTX_OK;
3440 FlatView *fv;
3442 if (len > 0) {
3443 rcu_read_lock();
3444 fv = address_space_to_flatview(as);
3445 result = flatview_write(fv, addr, attrs, buf, len);
3446 rcu_read_unlock();
3449 return result;
3452 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3453 uint8_t *buf, hwaddr len, bool is_write)
3455 if (is_write) {
3456 return address_space_write(as, addr, attrs, buf, len);
3457 } else {
3458 return address_space_read_full(as, addr, attrs, buf, len);
3462 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3463 hwaddr len, int is_write)
3465 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3466 buf, len, is_write);
3469 enum write_rom_type {
3470 WRITE_DATA,
3471 FLUSH_CACHE,
3474 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3475 hwaddr addr,
3476 MemTxAttrs attrs,
3477 const uint8_t *buf,
3478 hwaddr len,
3479 enum write_rom_type type)
3481 hwaddr l;
3482 uint8_t *ptr;
3483 hwaddr addr1;
3484 MemoryRegion *mr;
3486 rcu_read_lock();
3487 while (len > 0) {
3488 l = len;
3489 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3491 if (!(memory_region_is_ram(mr) ||
3492 memory_region_is_romd(mr))) {
3493 l = memory_access_size(mr, l, addr1);
3494 } else {
3495 /* ROM/RAM case */
3496 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3497 switch (type) {
3498 case WRITE_DATA:
3499 memcpy(ptr, buf, l);
3500 invalidate_and_set_dirty(mr, addr1, l);
3501 break;
3502 case FLUSH_CACHE:
3503 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3504 break;
3507 len -= l;
3508 buf += l;
3509 addr += l;
3511 rcu_read_unlock();
3512 return MEMTX_OK;
3515 /* used for ROM loading : can write in RAM and ROM */
3516 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3517 MemTxAttrs attrs,
3518 const uint8_t *buf, hwaddr len)
3520 return address_space_write_rom_internal(as, addr, attrs,
3521 buf, len, WRITE_DATA);
3524 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3527 * This function should do the same thing as an icache flush that was
3528 * triggered from within the guest. For TCG we are always cache coherent,
3529 * so there is no need to flush anything. For KVM / Xen we need to flush
3530 * the host's instruction cache at least.
3532 if (tcg_enabled()) {
3533 return;
3536 address_space_write_rom_internal(&address_space_memory,
3537 start, MEMTXATTRS_UNSPECIFIED,
3538 NULL, len, FLUSH_CACHE);
3541 typedef struct {
3542 MemoryRegion *mr;
3543 void *buffer;
3544 hwaddr addr;
3545 hwaddr len;
3546 bool in_use;
3547 } BounceBuffer;
3549 static BounceBuffer bounce;
3551 typedef struct MapClient {
3552 QEMUBH *bh;
3553 QLIST_ENTRY(MapClient) link;
3554 } MapClient;
3556 QemuMutex map_client_list_lock;
3557 static QLIST_HEAD(, MapClient) map_client_list
3558 = QLIST_HEAD_INITIALIZER(map_client_list);
3560 static void cpu_unregister_map_client_do(MapClient *client)
3562 QLIST_REMOVE(client, link);
3563 g_free(client);
3566 static void cpu_notify_map_clients_locked(void)
3568 MapClient *client;
3570 while (!QLIST_EMPTY(&map_client_list)) {
3571 client = QLIST_FIRST(&map_client_list);
3572 qemu_bh_schedule(client->bh);
3573 cpu_unregister_map_client_do(client);
3577 void cpu_register_map_client(QEMUBH *bh)
3579 MapClient *client = g_malloc(sizeof(*client));
3581 qemu_mutex_lock(&map_client_list_lock);
3582 client->bh = bh;
3583 QLIST_INSERT_HEAD(&map_client_list, client, link);
3584 if (!atomic_read(&bounce.in_use)) {
3585 cpu_notify_map_clients_locked();
3587 qemu_mutex_unlock(&map_client_list_lock);
3590 void cpu_exec_init_all(void)
3592 qemu_mutex_init(&ram_list.mutex);
3593 /* The data structures we set up here depend on knowing the page size,
3594 * so no more changes can be made after this point.
3595 * In an ideal world, nothing we did before we had finished the
3596 * machine setup would care about the target page size, and we could
3597 * do this much later, rather than requiring board models to state
3598 * up front what their requirements are.
3600 finalize_target_page_bits();
3601 io_mem_init();
3602 memory_map_init();
3603 qemu_mutex_init(&map_client_list_lock);
3606 void cpu_unregister_map_client(QEMUBH *bh)
3608 MapClient *client;
3610 qemu_mutex_lock(&map_client_list_lock);
3611 QLIST_FOREACH(client, &map_client_list, link) {
3612 if (client->bh == bh) {
3613 cpu_unregister_map_client_do(client);
3614 break;
3617 qemu_mutex_unlock(&map_client_list_lock);
3620 static void cpu_notify_map_clients(void)
3622 qemu_mutex_lock(&map_client_list_lock);
3623 cpu_notify_map_clients_locked();
3624 qemu_mutex_unlock(&map_client_list_lock);
3627 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3628 bool is_write, MemTxAttrs attrs)
3630 MemoryRegion *mr;
3631 hwaddr l, xlat;
3633 while (len > 0) {
3634 l = len;
3635 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3636 if (!memory_access_is_direct(mr, is_write)) {
3637 l = memory_access_size(mr, l, addr);
3638 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3639 return false;
3643 len -= l;
3644 addr += l;
3646 return true;
3649 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3650 hwaddr len, bool is_write,
3651 MemTxAttrs attrs)
3653 FlatView *fv;
3654 bool result;
3656 rcu_read_lock();
3657 fv = address_space_to_flatview(as);
3658 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3659 rcu_read_unlock();
3660 return result;
3663 static hwaddr
3664 flatview_extend_translation(FlatView *fv, hwaddr addr,
3665 hwaddr target_len,
3666 MemoryRegion *mr, hwaddr base, hwaddr len,
3667 bool is_write, MemTxAttrs attrs)
3669 hwaddr done = 0;
3670 hwaddr xlat;
3671 MemoryRegion *this_mr;
3673 for (;;) {
3674 target_len -= len;
3675 addr += len;
3676 done += len;
3677 if (target_len == 0) {
3678 return done;
3681 len = target_len;
3682 this_mr = flatview_translate(fv, addr, &xlat,
3683 &len, is_write, attrs);
3684 if (this_mr != mr || xlat != base + done) {
3685 return done;
3690 /* Map a physical memory region into a host virtual address.
3691 * May map a subset of the requested range, given by and returned in *plen.
3692 * May return NULL if resources needed to perform the mapping are exhausted.
3693 * Use only for reads OR writes - not for read-modify-write operations.
3694 * Use cpu_register_map_client() to know when retrying the map operation is
3695 * likely to succeed.
3697 void *address_space_map(AddressSpace *as,
3698 hwaddr addr,
3699 hwaddr *plen,
3700 bool is_write,
3701 MemTxAttrs attrs)
3703 hwaddr len = *plen;
3704 hwaddr l, xlat;
3705 MemoryRegion *mr;
3706 void *ptr;
3707 FlatView *fv;
3709 if (len == 0) {
3710 return NULL;
3713 l = len;
3714 rcu_read_lock();
3715 fv = address_space_to_flatview(as);
3716 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3718 if (!memory_access_is_direct(mr, is_write)) {
3719 if (atomic_xchg(&bounce.in_use, true)) {
3720 rcu_read_unlock();
3721 return NULL;
3723 /* Avoid unbounded allocations */
3724 l = MIN(l, TARGET_PAGE_SIZE);
3725 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3726 bounce.addr = addr;
3727 bounce.len = l;
3729 memory_region_ref(mr);
3730 bounce.mr = mr;
3731 if (!is_write) {
3732 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3733 bounce.buffer, l);
3736 rcu_read_unlock();
3737 *plen = l;
3738 return bounce.buffer;
3742 memory_region_ref(mr);
3743 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3744 l, is_write, attrs);
3745 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3746 rcu_read_unlock();
3748 return ptr;
3751 /* Unmaps a memory region previously mapped by address_space_map().
3752 * Will also mark the memory as dirty if is_write == 1. access_len gives
3753 * the amount of memory that was actually read or written by the caller.
3755 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3756 int is_write, hwaddr access_len)
3758 if (buffer != bounce.buffer) {
3759 MemoryRegion *mr;
3760 ram_addr_t addr1;
3762 mr = memory_region_from_host(buffer, &addr1);
3763 assert(mr != NULL);
3764 if (is_write) {
3765 invalidate_and_set_dirty(mr, addr1, access_len);
3767 if (xen_enabled()) {
3768 xen_invalidate_map_cache_entry(buffer);
3770 memory_region_unref(mr);
3771 return;
3773 if (is_write) {
3774 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3775 bounce.buffer, access_len);
3777 qemu_vfree(bounce.buffer);
3778 bounce.buffer = NULL;
3779 memory_region_unref(bounce.mr);
3780 atomic_mb_set(&bounce.in_use, false);
3781 cpu_notify_map_clients();
3784 void *cpu_physical_memory_map(hwaddr addr,
3785 hwaddr *plen,
3786 int is_write)
3788 return address_space_map(&address_space_memory, addr, plen, is_write,
3789 MEMTXATTRS_UNSPECIFIED);
3792 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3793 int is_write, hwaddr access_len)
3795 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3798 #define ARG1_DECL AddressSpace *as
3799 #define ARG1 as
3800 #define SUFFIX
3801 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3802 #define RCU_READ_LOCK(...) rcu_read_lock()
3803 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3804 #include "memory_ldst.inc.c"
3806 int64_t address_space_cache_init(MemoryRegionCache *cache,
3807 AddressSpace *as,
3808 hwaddr addr,
3809 hwaddr len,
3810 bool is_write)
3812 AddressSpaceDispatch *d;
3813 hwaddr l;
3814 MemoryRegion *mr;
3816 assert(len > 0);
3818 l = len;
3819 cache->fv = address_space_get_flatview(as);
3820 d = flatview_to_dispatch(cache->fv);
3821 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3823 mr = cache->mrs.mr;
3824 memory_region_ref(mr);
3825 if (memory_access_is_direct(mr, is_write)) {
3826 /* We don't care about the memory attributes here as we're only
3827 * doing this if we found actual RAM, which behaves the same
3828 * regardless of attributes; so UNSPECIFIED is fine.
3830 l = flatview_extend_translation(cache->fv, addr, len, mr,
3831 cache->xlat, l, is_write,
3832 MEMTXATTRS_UNSPECIFIED);
3833 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3834 } else {
3835 cache->ptr = NULL;
3838 cache->len = l;
3839 cache->is_write = is_write;
3840 return l;
3843 void address_space_cache_invalidate(MemoryRegionCache *cache,
3844 hwaddr addr,
3845 hwaddr access_len)
3847 assert(cache->is_write);
3848 if (likely(cache->ptr)) {
3849 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3853 void address_space_cache_destroy(MemoryRegionCache *cache)
3855 if (!cache->mrs.mr) {
3856 return;
3859 if (xen_enabled()) {
3860 xen_invalidate_map_cache_entry(cache->ptr);
3862 memory_region_unref(cache->mrs.mr);
3863 flatview_unref(cache->fv);
3864 cache->mrs.mr = NULL;
3865 cache->fv = NULL;
3868 /* Called from RCU critical section. This function has the same
3869 * semantics as address_space_translate, but it only works on a
3870 * predefined range of a MemoryRegion that was mapped with
3871 * address_space_cache_init.
3873 static inline MemoryRegion *address_space_translate_cached(
3874 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3875 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3877 MemoryRegionSection section;
3878 MemoryRegion *mr;
3879 IOMMUMemoryRegion *iommu_mr;
3880 AddressSpace *target_as;
3882 assert(!cache->ptr);
3883 *xlat = addr + cache->xlat;
3885 mr = cache->mrs.mr;
3886 iommu_mr = memory_region_get_iommu(mr);
3887 if (!iommu_mr) {
3888 /* MMIO region. */
3889 return mr;
3892 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3893 NULL, is_write, true,
3894 &target_as, attrs);
3895 return section.mr;
3898 /* Called from RCU critical section. address_space_read_cached uses this
3899 * out of line function when the target is an MMIO or IOMMU region.
3901 void
3902 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3903 void *buf, hwaddr len)
3905 hwaddr addr1, l;
3906 MemoryRegion *mr;
3908 l = len;
3909 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3910 MEMTXATTRS_UNSPECIFIED);
3911 flatview_read_continue(cache->fv,
3912 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3913 addr1, l, mr);
3916 /* Called from RCU critical section. address_space_write_cached uses this
3917 * out of line function when the target is an MMIO or IOMMU region.
3919 void
3920 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3921 const void *buf, hwaddr len)
3923 hwaddr addr1, l;
3924 MemoryRegion *mr;
3926 l = len;
3927 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3928 MEMTXATTRS_UNSPECIFIED);
3929 flatview_write_continue(cache->fv,
3930 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3931 addr1, l, mr);
3934 #define ARG1_DECL MemoryRegionCache *cache
3935 #define ARG1 cache
3936 #define SUFFIX _cached_slow
3937 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3938 #define RCU_READ_LOCK() ((void)0)
3939 #define RCU_READ_UNLOCK() ((void)0)
3940 #include "memory_ldst.inc.c"
3942 /* virtual memory access for debug (includes writing to ROM) */
3943 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3944 uint8_t *buf, target_ulong len, int is_write)
3946 hwaddr phys_addr;
3947 target_ulong l, page;
3949 cpu_synchronize_state(cpu);
3950 while (len > 0) {
3951 int asidx;
3952 MemTxAttrs attrs;
3954 page = addr & TARGET_PAGE_MASK;
3955 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3956 asidx = cpu_asidx_from_attrs(cpu, attrs);
3957 /* if no physical page mapped, return an error */
3958 if (phys_addr == -1)
3959 return -1;
3960 l = (page + TARGET_PAGE_SIZE) - addr;
3961 if (l > len)
3962 l = len;
3963 phys_addr += (addr & ~TARGET_PAGE_MASK);
3964 if (is_write) {
3965 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3966 attrs, buf, l);
3967 } else {
3968 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3969 attrs, buf, l, 0);
3971 len -= l;
3972 buf += l;
3973 addr += l;
3975 return 0;
3979 * Allows code that needs to deal with migration bitmaps etc to still be built
3980 * target independent.
3982 size_t qemu_target_page_size(void)
3984 return TARGET_PAGE_SIZE;
3987 int qemu_target_page_bits(void)
3989 return TARGET_PAGE_BITS;
3992 int qemu_target_page_bits_min(void)
3994 return TARGET_PAGE_BITS_MIN;
3996 #endif
3998 bool target_words_bigendian(void)
4000 #if defined(TARGET_WORDS_BIGENDIAN)
4001 return true;
4002 #else
4003 return false;
4004 #endif
4007 #ifndef CONFIG_USER_ONLY
4008 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4010 MemoryRegion*mr;
4011 hwaddr l = 1;
4012 bool res;
4014 rcu_read_lock();
4015 mr = address_space_translate(&address_space_memory,
4016 phys_addr, &phys_addr, &l, false,
4017 MEMTXATTRS_UNSPECIFIED);
4019 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4020 rcu_read_unlock();
4021 return res;
4024 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4026 RAMBlock *block;
4027 int ret = 0;
4029 rcu_read_lock();
4030 RAMBLOCK_FOREACH(block) {
4031 ret = func(block, opaque);
4032 if (ret) {
4033 break;
4036 rcu_read_unlock();
4037 return ret;
4041 * Unmap pages of memory from start to start+length such that
4042 * they a) read as 0, b) Trigger whatever fault mechanism
4043 * the OS provides for postcopy.
4044 * The pages must be unmapped by the end of the function.
4045 * Returns: 0 on success, none-0 on failure
4048 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4050 int ret = -1;
4052 uint8_t *host_startaddr = rb->host + start;
4054 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4055 error_report("ram_block_discard_range: Unaligned start address: %p",
4056 host_startaddr);
4057 goto err;
4060 if ((start + length) <= rb->used_length) {
4061 bool need_madvise, need_fallocate;
4062 uint8_t *host_endaddr = host_startaddr + length;
4063 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4064 error_report("ram_block_discard_range: Unaligned end address: %p",
4065 host_endaddr);
4066 goto err;
4069 errno = ENOTSUP; /* If we are missing MADVISE etc */
4071 /* The logic here is messy;
4072 * madvise DONTNEED fails for hugepages
4073 * fallocate works on hugepages and shmem
4075 need_madvise = (rb->page_size == qemu_host_page_size);
4076 need_fallocate = rb->fd != -1;
4077 if (need_fallocate) {
4078 /* For a file, this causes the area of the file to be zero'd
4079 * if read, and for hugetlbfs also causes it to be unmapped
4080 * so a userfault will trigger.
4082 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4083 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4084 start, length);
4085 if (ret) {
4086 ret = -errno;
4087 error_report("ram_block_discard_range: Failed to fallocate "
4088 "%s:%" PRIx64 " +%zx (%d)",
4089 rb->idstr, start, length, ret);
4090 goto err;
4092 #else
4093 ret = -ENOSYS;
4094 error_report("ram_block_discard_range: fallocate not available/file"
4095 "%s:%" PRIx64 " +%zx (%d)",
4096 rb->idstr, start, length, ret);
4097 goto err;
4098 #endif
4100 if (need_madvise) {
4101 /* For normal RAM this causes it to be unmapped,
4102 * for shared memory it causes the local mapping to disappear
4103 * and to fall back on the file contents (which we just
4104 * fallocate'd away).
4106 #if defined(CONFIG_MADVISE)
4107 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4108 if (ret) {
4109 ret = -errno;
4110 error_report("ram_block_discard_range: Failed to discard range "
4111 "%s:%" PRIx64 " +%zx (%d)",
4112 rb->idstr, start, length, ret);
4113 goto err;
4115 #else
4116 ret = -ENOSYS;
4117 error_report("ram_block_discard_range: MADVISE not available"
4118 "%s:%" PRIx64 " +%zx (%d)",
4119 rb->idstr, start, length, ret);
4120 goto err;
4121 #endif
4123 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4124 need_madvise, need_fallocate, ret);
4125 } else {
4126 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4127 "/%zx/" RAM_ADDR_FMT")",
4128 rb->idstr, start, length, rb->used_length);
4131 err:
4132 return ret;
4135 bool ramblock_is_pmem(RAMBlock *rb)
4137 return rb->flags & RAM_PMEM;
4140 #endif
4142 void page_size_init(void)
4144 /* NOTE: we can always suppose that qemu_host_page_size >=
4145 TARGET_PAGE_SIZE */
4146 if (qemu_host_page_size == 0) {
4147 qemu_host_page_size = qemu_real_host_page_size;
4149 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4150 qemu_host_page_size = TARGET_PAGE_SIZE;
4152 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4155 #if !defined(CONFIG_USER_ONLY)
4157 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4159 if (start == end - 1) {
4160 qemu_printf("\t%3d ", start);
4161 } else {
4162 qemu_printf("\t%3d..%-3d ", start, end - 1);
4164 qemu_printf(" skip=%d ", skip);
4165 if (ptr == PHYS_MAP_NODE_NIL) {
4166 qemu_printf(" ptr=NIL");
4167 } else if (!skip) {
4168 qemu_printf(" ptr=#%d", ptr);
4169 } else {
4170 qemu_printf(" ptr=[%d]", ptr);
4172 qemu_printf("\n");
4175 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4176 int128_sub((size), int128_one())) : 0)
4178 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4180 int i;
4182 qemu_printf(" Dispatch\n");
4183 qemu_printf(" Physical sections\n");
4185 for (i = 0; i < d->map.sections_nb; ++i) {
4186 MemoryRegionSection *s = d->map.sections + i;
4187 const char *names[] = { " [unassigned]", " [not dirty]",
4188 " [ROM]", " [watch]" };
4190 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4191 " %s%s%s%s%s",
4193 s->offset_within_address_space,
4194 s->offset_within_address_space + MR_SIZE(s->mr->size),
4195 s->mr->name ? s->mr->name : "(noname)",
4196 i < ARRAY_SIZE(names) ? names[i] : "",
4197 s->mr == root ? " [ROOT]" : "",
4198 s == d->mru_section ? " [MRU]" : "",
4199 s->mr->is_iommu ? " [iommu]" : "");
4201 if (s->mr->alias) {
4202 qemu_printf(" alias=%s", s->mr->alias->name ?
4203 s->mr->alias->name : "noname");
4205 qemu_printf("\n");
4208 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4209 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4210 for (i = 0; i < d->map.nodes_nb; ++i) {
4211 int j, jprev;
4212 PhysPageEntry prev;
4213 Node *n = d->map.nodes + i;
4215 qemu_printf(" [%d]\n", i);
4217 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4218 PhysPageEntry *pe = *n + j;
4220 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4221 continue;
4224 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4226 jprev = j;
4227 prev = *pe;
4230 if (jprev != ARRAY_SIZE(*n)) {
4231 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4236 #endif