qemu-option: qemu_opts_create(): use error_set()
[qemu.git] / cpu-all.h
blob2b77f66b35c9707bff29dbad2375f41af071017e
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "qemu-tls.h"
24 #include "cpu-common.h"
25 #include "memory_mapping.h"
26 #include "dump.h"
28 /* some important defines:
30 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
31 * memory accesses.
33 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
34 * otherwise little endian.
36 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
38 * TARGET_WORDS_BIGENDIAN : same for target cpu
41 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42 #define BSWAP_NEEDED
43 #endif
45 #ifdef BSWAP_NEEDED
47 static inline uint16_t tswap16(uint16_t s)
49 return bswap16(s);
52 static inline uint32_t tswap32(uint32_t s)
54 return bswap32(s);
57 static inline uint64_t tswap64(uint64_t s)
59 return bswap64(s);
62 static inline void tswap16s(uint16_t *s)
64 *s = bswap16(*s);
67 static inline void tswap32s(uint32_t *s)
69 *s = bswap32(*s);
72 static inline void tswap64s(uint64_t *s)
74 *s = bswap64(*s);
77 #else
79 static inline uint16_t tswap16(uint16_t s)
81 return s;
84 static inline uint32_t tswap32(uint32_t s)
86 return s;
89 static inline uint64_t tswap64(uint64_t s)
91 return s;
94 static inline void tswap16s(uint16_t *s)
98 static inline void tswap32s(uint32_t *s)
102 static inline void tswap64s(uint64_t *s)
106 #endif
108 #if TARGET_LONG_SIZE == 4
109 #define tswapl(s) tswap32(s)
110 #define tswapls(s) tswap32s((uint32_t *)(s))
111 #define bswaptls(s) bswap32s(s)
112 #else
113 #define tswapl(s) tswap64(s)
114 #define tswapls(s) tswap64s((uint64_t *)(s))
115 #define bswaptls(s) bswap64s(s)
116 #endif
118 /* CPU memory access without any memory or io remapping */
121 * the generic syntax for the memory accesses is:
123 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
125 * store: st{type}{size}{endian}_{access_type}(ptr, val)
127 * type is:
128 * (empty): integer access
129 * f : float access
131 * sign is:
132 * (empty): for floats or 32 bit size
133 * u : unsigned
134 * s : signed
136 * size is:
137 * b: 8 bits
138 * w: 16 bits
139 * l: 32 bits
140 * q: 64 bits
142 * endian is:
143 * (empty): target cpu endianness or 8 bit access
144 * r : reversed target cpu endianness (not implemented yet)
145 * be : big endian (not implemented yet)
146 * le : little endian (not implemented yet)
148 * access_type is:
149 * raw : host memory access
150 * user : user mode access using soft MMU
151 * kernel : kernel mode access using soft MMU
154 /* target-endianness CPU memory access functions */
155 #if defined(TARGET_WORDS_BIGENDIAN)
156 #define lduw_p(p) lduw_be_p(p)
157 #define ldsw_p(p) ldsw_be_p(p)
158 #define ldl_p(p) ldl_be_p(p)
159 #define ldq_p(p) ldq_be_p(p)
160 #define ldfl_p(p) ldfl_be_p(p)
161 #define ldfq_p(p) ldfq_be_p(p)
162 #define stw_p(p, v) stw_be_p(p, v)
163 #define stl_p(p, v) stl_be_p(p, v)
164 #define stq_p(p, v) stq_be_p(p, v)
165 #define stfl_p(p, v) stfl_be_p(p, v)
166 #define stfq_p(p, v) stfq_be_p(p, v)
167 #else
168 #define lduw_p(p) lduw_le_p(p)
169 #define ldsw_p(p) ldsw_le_p(p)
170 #define ldl_p(p) ldl_le_p(p)
171 #define ldq_p(p) ldq_le_p(p)
172 #define ldfl_p(p) ldfl_le_p(p)
173 #define ldfq_p(p) ldfq_le_p(p)
174 #define stw_p(p, v) stw_le_p(p, v)
175 #define stl_p(p, v) stl_le_p(p, v)
176 #define stq_p(p, v) stq_le_p(p, v)
177 #define stfl_p(p, v) stfl_le_p(p, v)
178 #define stfq_p(p, v) stfq_le_p(p, v)
179 #endif
181 /* MMU memory access macros */
183 #if defined(CONFIG_USER_ONLY)
184 #include <assert.h>
185 #include "qemu-types.h"
187 /* On some host systems the guest address space is reserved on the host.
188 * This allows the guest address space to be offset to a convenient location.
190 #if defined(CONFIG_USE_GUEST_BASE)
191 extern unsigned long guest_base;
192 extern int have_guest_base;
193 extern unsigned long reserved_va;
194 #define GUEST_BASE guest_base
195 #define RESERVED_VA reserved_va
196 #else
197 #define GUEST_BASE 0ul
198 #define RESERVED_VA 0ul
199 #endif
201 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
202 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
204 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
205 #define h2g_valid(x) 1
206 #else
207 #define h2g_valid(x) ({ \
208 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
209 (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
210 (!RESERVED_VA || (__guest < RESERVED_VA)); \
212 #endif
214 #define h2g(x) ({ \
215 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
216 /* Check if given address fits target address space */ \
217 assert(h2g_valid(x)); \
218 (abi_ulong)__ret; \
221 #define saddr(x) g2h(x)
222 #define laddr(x) g2h(x)
224 #else /* !CONFIG_USER_ONLY */
225 /* NOTE: we use double casts if pointers and target_ulong have
226 different sizes */
227 #define saddr(x) (uint8_t *)(intptr_t)(x)
228 #define laddr(x) (uint8_t *)(intptr_t)(x)
229 #endif
231 #define ldub_raw(p) ldub_p(laddr((p)))
232 #define ldsb_raw(p) ldsb_p(laddr((p)))
233 #define lduw_raw(p) lduw_p(laddr((p)))
234 #define ldsw_raw(p) ldsw_p(laddr((p)))
235 #define ldl_raw(p) ldl_p(laddr((p)))
236 #define ldq_raw(p) ldq_p(laddr((p)))
237 #define ldfl_raw(p) ldfl_p(laddr((p)))
238 #define ldfq_raw(p) ldfq_p(laddr((p)))
239 #define stb_raw(p, v) stb_p(saddr((p)), v)
240 #define stw_raw(p, v) stw_p(saddr((p)), v)
241 #define stl_raw(p, v) stl_p(saddr((p)), v)
242 #define stq_raw(p, v) stq_p(saddr((p)), v)
243 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
244 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
247 #if defined(CONFIG_USER_ONLY)
249 /* if user mode, no other memory access functions */
250 #define ldub(p) ldub_raw(p)
251 #define ldsb(p) ldsb_raw(p)
252 #define lduw(p) lduw_raw(p)
253 #define ldsw(p) ldsw_raw(p)
254 #define ldl(p) ldl_raw(p)
255 #define ldq(p) ldq_raw(p)
256 #define ldfl(p) ldfl_raw(p)
257 #define ldfq(p) ldfq_raw(p)
258 #define stb(p, v) stb_raw(p, v)
259 #define stw(p, v) stw_raw(p, v)
260 #define stl(p, v) stl_raw(p, v)
261 #define stq(p, v) stq_raw(p, v)
262 #define stfl(p, v) stfl_raw(p, v)
263 #define stfq(p, v) stfq_raw(p, v)
265 #ifndef CONFIG_TCG_PASS_AREG0
266 #define ldub_code(p) ldub_raw(p)
267 #define ldsb_code(p) ldsb_raw(p)
268 #define lduw_code(p) lduw_raw(p)
269 #define ldsw_code(p) ldsw_raw(p)
270 #define ldl_code(p) ldl_raw(p)
271 #define ldq_code(p) ldq_raw(p)
272 #else
273 #define cpu_ldub_code(env1, p) ldub_raw(p)
274 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
275 #define cpu_lduw_code(env1, p) lduw_raw(p)
276 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
277 #define cpu_ldl_code(env1, p) ldl_raw(p)
278 #define cpu_ldq_code(env1, p) ldq_raw(p)
279 #endif
281 #define ldub_kernel(p) ldub_raw(p)
282 #define ldsb_kernel(p) ldsb_raw(p)
283 #define lduw_kernel(p) lduw_raw(p)
284 #define ldsw_kernel(p) ldsw_raw(p)
285 #define ldl_kernel(p) ldl_raw(p)
286 #define ldq_kernel(p) ldq_raw(p)
287 #define ldfl_kernel(p) ldfl_raw(p)
288 #define ldfq_kernel(p) ldfq_raw(p)
289 #define stb_kernel(p, v) stb_raw(p, v)
290 #define stw_kernel(p, v) stw_raw(p, v)
291 #define stl_kernel(p, v) stl_raw(p, v)
292 #define stq_kernel(p, v) stq_raw(p, v)
293 #define stfl_kernel(p, v) stfl_raw(p, v)
294 #define stfq_kernel(p, vt) stfq_raw(p, v)
296 #endif /* defined(CONFIG_USER_ONLY) */
298 /* page related stuff */
300 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
301 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
302 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
304 /* ??? These should be the larger of uintptr_t and target_ulong. */
305 extern uintptr_t qemu_real_host_page_size;
306 extern uintptr_t qemu_host_page_size;
307 extern uintptr_t qemu_host_page_mask;
309 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
311 /* same as PROT_xxx */
312 #define PAGE_READ 0x0001
313 #define PAGE_WRITE 0x0002
314 #define PAGE_EXEC 0x0004
315 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
316 #define PAGE_VALID 0x0008
317 /* original state of the write flag (used when tracking self-modifying
318 code */
319 #define PAGE_WRITE_ORG 0x0010
320 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
321 /* FIXME: Code that sets/uses this is broken and needs to go away. */
322 #define PAGE_RESERVED 0x0020
323 #endif
325 #if defined(CONFIG_USER_ONLY)
326 void page_dump(FILE *f);
328 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
329 abi_ulong, unsigned long);
330 int walk_memory_regions(void *, walk_memory_regions_fn);
332 int page_get_flags(target_ulong address);
333 void page_set_flags(target_ulong start, target_ulong end, int flags);
334 int page_check_range(target_ulong start, target_ulong len, int flags);
335 #endif
337 CPUArchState *cpu_copy(CPUArchState *env);
338 CPUArchState *qemu_get_cpu(int cpu);
340 #define CPU_DUMP_CODE 0x00010000
342 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
343 int flags);
344 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
345 int flags);
347 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
348 GCC_FMT_ATTR(2, 3);
349 extern CPUArchState *first_cpu;
350 DECLARE_TLS(CPUArchState *,cpu_single_env);
351 #define cpu_single_env tls_var(cpu_single_env)
353 /* Flags for use in ENV->INTERRUPT_PENDING.
355 The numbers assigned here are non-sequential in order to preserve
356 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
357 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
358 the vmstate dump. */
360 /* External hardware interrupt pending. This is typically used for
361 interrupts from devices. */
362 #define CPU_INTERRUPT_HARD 0x0002
364 /* Exit the current TB. This is typically used when some system-level device
365 makes some change to the memory mapping. E.g. the a20 line change. */
366 #define CPU_INTERRUPT_EXITTB 0x0004
368 /* Halt the CPU. */
369 #define CPU_INTERRUPT_HALT 0x0020
371 /* Debug event pending. */
372 #define CPU_INTERRUPT_DEBUG 0x0080
374 /* Several target-specific external hardware interrupts. Each target/cpu.h
375 should define proper names based on these defines. */
376 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
377 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
378 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
379 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
380 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
382 /* Several target-specific internal interrupts. These differ from the
383 preceding target-specific interrupts in that they are intended to
384 originate from within the cpu itself, typically in response to some
385 instruction being executed. These, therefore, are not masked while
386 single-stepping within the debugger. */
387 #define CPU_INTERRUPT_TGT_INT_0 0x0100
388 #define CPU_INTERRUPT_TGT_INT_1 0x0400
389 #define CPU_INTERRUPT_TGT_INT_2 0x0800
390 #define CPU_INTERRUPT_TGT_INT_3 0x2000
392 /* First unused bit: 0x4000. */
394 /* The set of all bits that should be masked when single-stepping. */
395 #define CPU_INTERRUPT_SSTEP_MASK \
396 (CPU_INTERRUPT_HARD \
397 | CPU_INTERRUPT_TGT_EXT_0 \
398 | CPU_INTERRUPT_TGT_EXT_1 \
399 | CPU_INTERRUPT_TGT_EXT_2 \
400 | CPU_INTERRUPT_TGT_EXT_3 \
401 | CPU_INTERRUPT_TGT_EXT_4)
403 #ifndef CONFIG_USER_ONLY
404 typedef void (*CPUInterruptHandler)(CPUArchState *, int);
406 extern CPUInterruptHandler cpu_interrupt_handler;
408 static inline void cpu_interrupt(CPUArchState *s, int mask)
410 cpu_interrupt_handler(s, mask);
412 #else /* USER_ONLY */
413 void cpu_interrupt(CPUArchState *env, int mask);
414 #endif /* USER_ONLY */
416 void cpu_reset_interrupt(CPUArchState *env, int mask);
418 void cpu_exit(CPUArchState *s);
420 bool qemu_cpu_has_work(CPUArchState *env);
422 /* Breakpoint/watchpoint flags */
423 #define BP_MEM_READ 0x01
424 #define BP_MEM_WRITE 0x02
425 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
426 #define BP_STOP_BEFORE_ACCESS 0x04
427 #define BP_WATCHPOINT_HIT 0x08
428 #define BP_GDB 0x10
429 #define BP_CPU 0x20
431 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
432 CPUBreakpoint **breakpoint);
433 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
434 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
435 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
436 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
437 int flags, CPUWatchpoint **watchpoint);
438 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
439 target_ulong len, int flags);
440 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
441 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
443 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
444 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
445 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
447 void cpu_single_step(CPUArchState *env, int enabled);
448 void cpu_state_reset(CPUArchState *s);
449 int cpu_is_stopped(CPUArchState *env);
450 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
452 #define CPU_LOG_TB_OUT_ASM (1 << 0)
453 #define CPU_LOG_TB_IN_ASM (1 << 1)
454 #define CPU_LOG_TB_OP (1 << 2)
455 #define CPU_LOG_TB_OP_OPT (1 << 3)
456 #define CPU_LOG_INT (1 << 4)
457 #define CPU_LOG_EXEC (1 << 5)
458 #define CPU_LOG_PCALL (1 << 6)
459 #define CPU_LOG_IOPORT (1 << 7)
460 #define CPU_LOG_TB_CPU (1 << 8)
461 #define CPU_LOG_RESET (1 << 9)
463 /* define log items */
464 typedef struct CPULogItem {
465 int mask;
466 const char *name;
467 const char *help;
468 } CPULogItem;
470 extern const CPULogItem cpu_log_items[];
472 void cpu_set_log(int log_flags);
473 void cpu_set_log_filename(const char *filename);
474 int cpu_str_to_log_mask(const char *str);
476 #if !defined(CONFIG_USER_ONLY)
478 /* Return the physical page corresponding to a virtual one. Use it
479 only for debugging because no protection checks are done. Return -1
480 if no page found. */
481 target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
483 /* memory API */
485 extern int phys_ram_fd;
486 extern ram_addr_t ram_size;
488 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
489 #define RAM_PREALLOC_MASK (1 << 0)
491 typedef struct RAMBlock {
492 struct MemoryRegion *mr;
493 uint8_t *host;
494 ram_addr_t offset;
495 ram_addr_t length;
496 uint32_t flags;
497 char idstr[256];
498 QLIST_ENTRY(RAMBlock) next;
499 #if defined(__linux__) && !defined(TARGET_S390X)
500 int fd;
501 #endif
502 } RAMBlock;
504 typedef struct RAMList {
505 uint8_t *phys_dirty;
506 QLIST_HEAD(, RAMBlock) blocks;
507 } RAMList;
508 extern RAMList ram_list;
510 extern const char *mem_path;
511 extern int mem_prealloc;
513 /* Flags stored in the low bits of the TLB virtual address. These are
514 defined so that fast path ram access is all zeros. */
515 /* Zero if TLB entry is valid. */
516 #define TLB_INVALID_MASK (1 << 3)
517 /* Set if TLB entry references a clean RAM page. The iotlb entry will
518 contain the page physical address. */
519 #define TLB_NOTDIRTY (1 << 4)
520 /* Set if TLB entry is an IO callback. */
521 #define TLB_MMIO (1 << 5)
523 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
524 #endif /* !CONFIG_USER_ONLY */
526 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
527 uint8_t *buf, int len, int is_write);
529 #if defined(CONFIG_HAVE_GET_MEMORY_MAPPING)
530 int cpu_get_memory_mapping(MemoryMappingList *list, CPUArchState *env);
531 bool cpu_paging_enabled(CPUArchState *env);
532 #else
533 static inline int cpu_get_memory_mapping(MemoryMappingList *list,
534 CPUArchState *env)
536 return -1;
539 static inline bool cpu_paging_enabled(CPUArchState *env)
541 return true;
543 #endif
545 typedef int (*write_core_dump_function)(void *buf, size_t size, void *opaque);
546 #if defined(CONFIG_HAVE_CORE_DUMP)
547 int cpu_write_elf64_note(write_core_dump_function f, CPUArchState *env,
548 int cpuid, void *opaque);
549 int cpu_write_elf32_note(write_core_dump_function f, CPUArchState *env,
550 int cpuid, void *opaque);
551 int cpu_write_elf64_qemunote(write_core_dump_function f, CPUArchState *env,
552 void *opaque);
553 int cpu_write_elf32_qemunote(write_core_dump_function f, CPUArchState *env,
554 void *opaque);
555 int cpu_get_dump_info(ArchDumpInfo *info);
556 size_t cpu_get_note_size(int class, int machine, int nr_cpus);
557 #else
558 static inline int cpu_write_elf64_note(write_core_dump_function f,
559 CPUArchState *env, int cpuid,
560 void *opaque)
562 return -1;
565 static inline int cpu_write_elf32_note(write_core_dump_function f,
566 CPUArchState *env, int cpuid,
567 void *opaque)
569 return -1;
572 static inline int cpu_write_elf64_qemunote(write_core_dump_function f,
573 CPUArchState *env,
574 void *opaque)
576 return -1;
579 static inline int cpu_write_elf32_qemunote(write_core_dump_function f,
580 CPUArchState *env,
581 void *opaque)
583 return -1;
586 static inline int cpu_get_dump_info(ArchDumpInfo *info)
588 return -1;
591 static inline int cpu_get_note_size(int class, int machine, int nr_cpus)
593 return -1;
595 #endif
597 #endif /* CPU_ALL_H */