intel_iommu: add support for split irqchip
[qemu.git] / hw / i386 / intel_iommu.c
blobc7ded0fc818893969475ee8c66e9465b30c9fa56
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/pci_bus.h"
28 #include "hw/i386/pc.h"
29 #include "hw/boards.h"
30 #include "hw/i386/x86-iommu.h"
31 #include "hw/pci-host/q35.h"
33 /*#define DEBUG_INTEL_IOMMU*/
34 #ifdef DEBUG_INTEL_IOMMU
35 enum {
36 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
37 DEBUG_CACHE, DEBUG_IR,
39 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
40 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
42 #define VTD_DPRINTF(what, fmt, ...) do { \
43 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
44 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
45 ## __VA_ARGS__); } \
46 } while (0)
47 #else
48 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
49 #endif
51 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
52 uint64_t wmask, uint64_t w1cmask)
54 stq_le_p(&s->csr[addr], val);
55 stq_le_p(&s->wmask[addr], wmask);
56 stq_le_p(&s->w1cmask[addr], w1cmask);
59 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
61 stq_le_p(&s->womask[addr], mask);
64 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
65 uint32_t wmask, uint32_t w1cmask)
67 stl_le_p(&s->csr[addr], val);
68 stl_le_p(&s->wmask[addr], wmask);
69 stl_le_p(&s->w1cmask[addr], w1cmask);
72 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
74 stl_le_p(&s->womask[addr], mask);
77 /* "External" get/set operations */
78 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
80 uint64_t oldval = ldq_le_p(&s->csr[addr]);
81 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
82 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
83 stq_le_p(&s->csr[addr],
84 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
87 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
89 uint32_t oldval = ldl_le_p(&s->csr[addr]);
90 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
91 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
92 stl_le_p(&s->csr[addr],
93 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
96 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
98 uint64_t val = ldq_le_p(&s->csr[addr]);
99 uint64_t womask = ldq_le_p(&s->womask[addr]);
100 return val & ~womask;
103 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
105 uint32_t val = ldl_le_p(&s->csr[addr]);
106 uint32_t womask = ldl_le_p(&s->womask[addr]);
107 return val & ~womask;
110 /* "Internal" get/set operations */
111 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
113 return ldq_le_p(&s->csr[addr]);
116 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
118 return ldl_le_p(&s->csr[addr]);
121 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
123 stq_le_p(&s->csr[addr], val);
126 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
127 uint32_t clear, uint32_t mask)
129 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
130 stl_le_p(&s->csr[addr], new_val);
131 return new_val;
134 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
135 uint64_t clear, uint64_t mask)
137 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
138 stq_le_p(&s->csr[addr], new_val);
139 return new_val;
142 /* GHashTable functions */
143 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
145 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
148 static guint vtd_uint64_hash(gconstpointer v)
150 return (guint)*(const uint64_t *)v;
153 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
154 gpointer user_data)
156 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
157 uint16_t domain_id = *(uint16_t *)user_data;
158 return entry->domain_id == domain_id;
161 /* The shift of an addr for a certain level of paging structure */
162 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
164 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
167 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
169 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
172 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
173 gpointer user_data)
175 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
176 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
177 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
178 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
179 return (entry->domain_id == info->domain_id) &&
180 (((entry->gfn & info->mask) == gfn) ||
181 (entry->gfn == gfn_tlb));
184 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
185 * IntelIOMMUState to 1.
187 static void vtd_reset_context_cache(IntelIOMMUState *s)
189 VTDAddressSpace *vtd_as;
190 VTDBus *vtd_bus;
191 GHashTableIter bus_it;
192 uint32_t devfn_it;
194 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
196 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
197 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
198 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
199 vtd_as = vtd_bus->dev_as[devfn_it];
200 if (!vtd_as) {
201 continue;
203 vtd_as->context_cache_entry.context_cache_gen = 0;
206 s->context_cache_gen = 1;
209 static void vtd_reset_iotlb(IntelIOMMUState *s)
211 assert(s->iotlb);
212 g_hash_table_remove_all(s->iotlb);
215 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
216 uint32_t level)
218 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
219 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
222 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
224 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
227 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
228 hwaddr addr)
230 VTDIOTLBEntry *entry;
231 uint64_t key;
232 int level;
234 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
235 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
236 source_id, level);
237 entry = g_hash_table_lookup(s->iotlb, &key);
238 if (entry) {
239 goto out;
243 out:
244 return entry;
247 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
248 uint16_t domain_id, hwaddr addr, uint64_t slpte,
249 bool read_flags, bool write_flags,
250 uint32_t level)
252 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
253 uint64_t *key = g_malloc(sizeof(*key));
254 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
256 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
257 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
258 domain_id);
259 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
260 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
261 vtd_reset_iotlb(s);
264 entry->gfn = gfn;
265 entry->domain_id = domain_id;
266 entry->slpte = slpte;
267 entry->read_flags = read_flags;
268 entry->write_flags = write_flags;
269 entry->mask = vtd_slpt_level_page_mask(level);
270 *key = vtd_get_iotlb_key(gfn, source_id, level);
271 g_hash_table_replace(s->iotlb, key, entry);
274 /* Given the reg addr of both the message data and address, generate an
275 * interrupt via MSI.
277 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
278 hwaddr mesg_data_reg)
280 hwaddr addr;
281 uint32_t data;
283 assert(mesg_data_reg < DMAR_REG_SIZE);
284 assert(mesg_addr_reg < DMAR_REG_SIZE);
286 addr = vtd_get_long_raw(s, mesg_addr_reg);
287 data = vtd_get_long_raw(s, mesg_data_reg);
289 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
290 address_space_stl_le(&address_space_memory, addr, data,
291 MEMTXATTRS_UNSPECIFIED, NULL);
294 /* Generate a fault event to software via MSI if conditions are met.
295 * Notice that the value of FSTS_REG being passed to it should be the one
296 * before any update.
298 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
300 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
301 pre_fsts & VTD_FSTS_IQE) {
302 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
303 "to be serviced by software, fault event is not generated "
304 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
305 return;
307 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
308 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
309 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
310 } else {
311 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
312 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
316 /* Check if the Fault (F) field of the Fault Recording Register referenced by
317 * @index is Set.
319 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
321 /* Each reg is 128-bit */
322 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
323 addr += 8; /* Access the high 64-bit half */
325 assert(index < DMAR_FRCD_REG_NR);
327 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
330 /* Update the PPF field of Fault Status Register.
331 * Should be called whenever change the F field of any fault recording
332 * registers.
334 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
336 uint32_t i;
337 uint32_t ppf_mask = 0;
339 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
340 if (vtd_is_frcd_set(s, i)) {
341 ppf_mask = VTD_FSTS_PPF;
342 break;
345 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
346 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
349 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
351 /* Each reg is 128-bit */
352 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
353 addr += 8; /* Access the high 64-bit half */
355 assert(index < DMAR_FRCD_REG_NR);
357 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
358 vtd_update_fsts_ppf(s);
361 /* Must not update F field now, should be done later */
362 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
363 uint16_t source_id, hwaddr addr,
364 VTDFaultReason fault, bool is_write)
366 uint64_t hi = 0, lo;
367 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
369 assert(index < DMAR_FRCD_REG_NR);
371 lo = VTD_FRCD_FI(addr);
372 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
373 if (!is_write) {
374 hi |= VTD_FRCD_T;
376 vtd_set_quad_raw(s, frcd_reg_addr, lo);
377 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
378 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
379 ", lo 0x%"PRIx64, index, hi, lo);
382 /* Try to collapse multiple pending faults from the same requester */
383 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
385 uint32_t i;
386 uint64_t frcd_reg;
387 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
389 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
390 frcd_reg = vtd_get_quad_raw(s, addr);
391 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
392 if ((frcd_reg & VTD_FRCD_F) &&
393 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
394 return true;
396 addr += 16; /* 128-bit for each */
398 return false;
401 /* Log and report an DMAR (address translation) fault to software */
402 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
403 hwaddr addr, VTDFaultReason fault,
404 bool is_write)
406 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
408 assert(fault < VTD_FR_MAX);
410 if (fault == VTD_FR_RESERVED_ERR) {
411 /* This is not a normal fault reason case. Drop it. */
412 return;
414 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
415 ", is_write %d", source_id, fault, addr, is_write);
416 if (fsts_reg & VTD_FSTS_PFO) {
417 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
418 "Primary Fault Overflow");
419 return;
421 if (vtd_try_collapse_fault(s, source_id)) {
422 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423 "compression of faults");
424 return;
426 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
427 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
428 "new fault is not recorded, set PFO field");
429 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
430 return;
433 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
435 if (fsts_reg & VTD_FSTS_PPF) {
436 VTD_DPRINTF(FLOG, "there are pending faults already, "
437 "fault event is not generated");
438 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
439 s->next_frcd_reg++;
440 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
441 s->next_frcd_reg = 0;
443 } else {
444 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
445 VTD_FSTS_FRI(s->next_frcd_reg));
446 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
447 s->next_frcd_reg++;
448 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
449 s->next_frcd_reg = 0;
451 /* This case actually cause the PPF to be Set.
452 * So generate fault event (interrupt).
454 vtd_generate_fault_event(s, fsts_reg);
458 /* Handle Invalidation Queue Errors of queued invalidation interface error
459 * conditions.
461 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
463 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
465 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
466 vtd_generate_fault_event(s, fsts_reg);
469 /* Set the IWC field and try to generate an invalidation completion interrupt */
470 static void vtd_generate_completion_event(IntelIOMMUState *s)
472 VTD_DPRINTF(INV, "completes an invalidation wait command with "
473 "Interrupt Flag");
474 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
475 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
476 "serviced by software, "
477 "new invalidation event is not generated");
478 return;
480 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
481 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
482 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
483 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
484 "event is not generated");
485 return;
486 } else {
487 /* Generate the interrupt event */
488 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
489 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
493 static inline bool vtd_root_entry_present(VTDRootEntry *root)
495 return root->val & VTD_ROOT_ENTRY_P;
498 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
499 VTDRootEntry *re)
501 dma_addr_t addr;
503 addr = s->root + index * sizeof(*re);
504 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
505 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
506 " + %"PRIu8, s->root, index);
507 re->val = 0;
508 return -VTD_FR_ROOT_TABLE_INV;
510 re->val = le64_to_cpu(re->val);
511 return 0;
514 static inline bool vtd_context_entry_present(VTDContextEntry *context)
516 return context->lo & VTD_CONTEXT_ENTRY_P;
519 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
520 VTDContextEntry *ce)
522 dma_addr_t addr;
524 if (!vtd_root_entry_present(root)) {
525 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
526 return -VTD_FR_ROOT_ENTRY_P;
528 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
529 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
530 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
531 " + %"PRIu8,
532 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
533 return -VTD_FR_CONTEXT_TABLE_INV;
535 ce->lo = le64_to_cpu(ce->lo);
536 ce->hi = le64_to_cpu(ce->hi);
537 return 0;
540 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
542 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
545 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
547 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
550 /* Whether the pte indicates the address of the page frame */
551 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
553 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
556 /* Get the content of a spte located in @base_addr[@index] */
557 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
559 uint64_t slpte;
561 assert(index < VTD_SL_PT_ENTRY_NR);
563 if (dma_memory_read(&address_space_memory,
564 base_addr + index * sizeof(slpte), &slpte,
565 sizeof(slpte))) {
566 slpte = (uint64_t)-1;
567 return slpte;
569 slpte = le64_to_cpu(slpte);
570 return slpte;
573 /* Given a gpa and the level of paging structure, return the offset of current
574 * level.
576 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
578 return (gpa >> vtd_slpt_level_shift(level)) &
579 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
582 /* Check Capability Register to see if the @level of page-table is supported */
583 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
585 return VTD_CAP_SAGAW_MASK & s->cap &
586 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
589 /* Get the page-table level that hardware should use for the second-level
590 * page-table walk from the Address Width field of context-entry.
592 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
594 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
597 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
599 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
602 static const uint64_t vtd_paging_entry_rsvd_field[] = {
603 [0] = ~0ULL,
604 /* For not large page */
605 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
606 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
607 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
608 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
609 /* For large page */
610 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
618 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
619 /* Maybe large page */
620 return slpte & vtd_paging_entry_rsvd_field[level + 4];
621 } else {
622 return slpte & vtd_paging_entry_rsvd_field[level];
626 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
627 * of the translation, can be used for deciding the size of large page.
629 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
630 uint64_t *slptep, uint32_t *slpte_level,
631 bool *reads, bool *writes)
633 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
634 uint32_t level = vtd_get_level_from_context_entry(ce);
635 uint32_t offset;
636 uint64_t slpte;
637 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
638 uint64_t access_right_check;
640 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
641 * and AW in context-entry.
643 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
644 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
645 return -VTD_FR_ADDR_BEYOND_MGAW;
648 /* FIXME: what is the Atomics request here? */
649 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
651 while (true) {
652 offset = vtd_gpa_level_offset(gpa, level);
653 slpte = vtd_get_slpte(addr, offset);
655 if (slpte == (uint64_t)-1) {
656 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
657 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
658 level, gpa);
659 if (level == vtd_get_level_from_context_entry(ce)) {
660 /* Invalid programming of context-entry */
661 return -VTD_FR_CONTEXT_ENTRY_INV;
662 } else {
663 return -VTD_FR_PAGING_ENTRY_INV;
666 *reads = (*reads) && (slpte & VTD_SL_R);
667 *writes = (*writes) && (slpte & VTD_SL_W);
668 if (!(slpte & access_right_check)) {
669 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
670 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
671 (is_write ? "write" : "read"), gpa, slpte);
672 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
674 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
675 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
676 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
677 level, slpte);
678 return -VTD_FR_PAGING_ENTRY_RSVD;
681 if (vtd_is_last_slpte(slpte, level)) {
682 *slptep = slpte;
683 *slpte_level = level;
684 return 0;
686 addr = vtd_get_slpte_addr(slpte);
687 level--;
691 /* Map a device to its corresponding domain (context-entry) */
692 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
693 uint8_t devfn, VTDContextEntry *ce)
695 VTDRootEntry re;
696 int ret_fr;
698 ret_fr = vtd_get_root_entry(s, bus_num, &re);
699 if (ret_fr) {
700 return ret_fr;
703 if (!vtd_root_entry_present(&re)) {
704 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
705 bus_num);
706 return -VTD_FR_ROOT_ENTRY_P;
707 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
708 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
709 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
710 return -VTD_FR_ROOT_ENTRY_RSVD;
713 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
714 if (ret_fr) {
715 return ret_fr;
718 if (!vtd_context_entry_present(ce)) {
719 VTD_DPRINTF(GENERAL,
720 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
721 "is not present", devfn, bus_num);
722 return -VTD_FR_CONTEXT_ENTRY_P;
723 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
724 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
725 VTD_DPRINTF(GENERAL,
726 "error: non-zero reserved field in context-entry "
727 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
728 return -VTD_FR_CONTEXT_ENTRY_RSVD;
730 /* Check if the programming of context-entry is valid */
731 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
732 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
733 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
734 ce->hi, ce->lo);
735 return -VTD_FR_CONTEXT_ENTRY_INV;
736 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
737 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
738 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739 ce->hi, ce->lo);
740 return -VTD_FR_CONTEXT_ENTRY_INV;
742 return 0;
745 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
747 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
750 static const bool vtd_qualified_faults[] = {
751 [VTD_FR_RESERVED] = false,
752 [VTD_FR_ROOT_ENTRY_P] = false,
753 [VTD_FR_CONTEXT_ENTRY_P] = true,
754 [VTD_FR_CONTEXT_ENTRY_INV] = true,
755 [VTD_FR_ADDR_BEYOND_MGAW] = true,
756 [VTD_FR_WRITE] = true,
757 [VTD_FR_READ] = true,
758 [VTD_FR_PAGING_ENTRY_INV] = true,
759 [VTD_FR_ROOT_TABLE_INV] = false,
760 [VTD_FR_CONTEXT_TABLE_INV] = false,
761 [VTD_FR_ROOT_ENTRY_RSVD] = false,
762 [VTD_FR_PAGING_ENTRY_RSVD] = true,
763 [VTD_FR_CONTEXT_ENTRY_TT] = true,
764 [VTD_FR_RESERVED_ERR] = false,
765 [VTD_FR_MAX] = false,
768 /* To see if a fault condition is "qualified", which is reported to software
769 * only if the FPD field in the context-entry used to process the faulting
770 * request is 0.
772 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
774 return vtd_qualified_faults[fault];
777 static inline bool vtd_is_interrupt_addr(hwaddr addr)
779 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
782 /* Map dev to context-entry then do a paging-structures walk to do a iommu
783 * translation.
785 * Called from RCU critical section.
787 * @bus_num: The bus number
788 * @devfn: The devfn, which is the combined of device and function number
789 * @is_write: The access is a write operation
790 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
792 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
793 uint8_t devfn, hwaddr addr, bool is_write,
794 IOMMUTLBEntry *entry)
796 IntelIOMMUState *s = vtd_as->iommu_state;
797 VTDContextEntry ce;
798 uint8_t bus_num = pci_bus_num(bus);
799 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
800 uint64_t slpte, page_mask;
801 uint32_t level;
802 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
803 int ret_fr;
804 bool is_fpd_set = false;
805 bool reads = true;
806 bool writes = true;
807 VTDIOTLBEntry *iotlb_entry;
809 /* Check if the request is in interrupt address range */
810 if (vtd_is_interrupt_addr(addr)) {
811 if (is_write) {
812 /* FIXME: since we don't know the length of the access here, we
813 * treat Non-DWORD length write requests without PASID as
814 * interrupt requests, too. Withoud interrupt remapping support,
815 * we just use 1:1 mapping.
817 VTD_DPRINTF(MMU, "write request to interrupt address "
818 "gpa 0x%"PRIx64, addr);
819 entry->iova = addr & VTD_PAGE_MASK_4K;
820 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
821 entry->addr_mask = ~VTD_PAGE_MASK_4K;
822 entry->perm = IOMMU_WO;
823 return;
824 } else {
825 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
826 "gpa 0x%"PRIx64, addr);
827 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
828 return;
831 /* Try to fetch slpte form IOTLB */
832 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
833 if (iotlb_entry) {
834 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
835 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
836 iotlb_entry->slpte, iotlb_entry->domain_id);
837 slpte = iotlb_entry->slpte;
838 reads = iotlb_entry->read_flags;
839 writes = iotlb_entry->write_flags;
840 page_mask = iotlb_entry->mask;
841 goto out;
843 /* Try to fetch context-entry from cache first */
844 if (cc_entry->context_cache_gen == s->context_cache_gen) {
845 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
846 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
847 bus_num, devfn, cc_entry->context_entry.hi,
848 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
849 ce = cc_entry->context_entry;
850 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
851 } else {
852 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
853 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
854 if (ret_fr) {
855 ret_fr = -ret_fr;
856 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
857 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
858 "requests through this context-entry "
859 "(with FPD Set)");
860 } else {
861 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
863 return;
865 /* Update context-cache */
866 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
867 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
868 bus_num, devfn, ce.hi, ce.lo,
869 cc_entry->context_cache_gen, s->context_cache_gen);
870 cc_entry->context_entry = ce;
871 cc_entry->context_cache_gen = s->context_cache_gen;
874 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
875 &reads, &writes);
876 if (ret_fr) {
877 ret_fr = -ret_fr;
878 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
879 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
880 "through this context-entry (with FPD Set)");
881 } else {
882 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
884 return;
887 page_mask = vtd_slpt_level_page_mask(level);
888 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
889 reads, writes, level);
890 out:
891 entry->iova = addr & page_mask;
892 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
893 entry->addr_mask = ~page_mask;
894 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
897 static void vtd_root_table_setup(IntelIOMMUState *s)
899 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
900 s->root_extended = s->root & VTD_RTADDR_RTT;
901 s->root &= VTD_RTADDR_ADDR_MASK;
903 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
904 (s->root_extended ? "(extended)" : ""));
907 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
909 uint64_t value = 0;
910 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
911 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
912 s->intr_root = value & VTD_IRTA_ADDR_MASK;
914 /* TODO: invalidate interrupt entry cache */
916 VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
917 s->intr_root, s->intr_size);
920 static void vtd_context_global_invalidate(IntelIOMMUState *s)
922 s->context_cache_gen++;
923 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
924 vtd_reset_context_cache(s);
929 /* Find the VTD address space currently associated with a given bus number,
931 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
933 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
934 if (!vtd_bus) {
935 /* Iterate over the registered buses to find the one
936 * which currently hold this bus number, and update the bus_num lookup table:
938 GHashTableIter iter;
940 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
941 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
942 if (pci_bus_num(vtd_bus->bus) == bus_num) {
943 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
944 return vtd_bus;
948 return vtd_bus;
951 /* Do a context-cache device-selective invalidation.
952 * @func_mask: FM field after shifting
954 static void vtd_context_device_invalidate(IntelIOMMUState *s,
955 uint16_t source_id,
956 uint16_t func_mask)
958 uint16_t mask;
959 VTDBus *vtd_bus;
960 VTDAddressSpace *vtd_as;
961 uint16_t devfn;
962 uint16_t devfn_it;
964 switch (func_mask & 3) {
965 case 0:
966 mask = 0; /* No bits in the SID field masked */
967 break;
968 case 1:
969 mask = 4; /* Mask bit 2 in the SID field */
970 break;
971 case 2:
972 mask = 6; /* Mask bit 2:1 in the SID field */
973 break;
974 case 3:
975 mask = 7; /* Mask bit 2:0 in the SID field */
976 break;
978 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
979 " mask %"PRIu16, source_id, mask);
980 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
981 if (vtd_bus) {
982 devfn = VTD_SID_TO_DEVFN(source_id);
983 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
984 vtd_as = vtd_bus->dev_as[devfn_it];
985 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
986 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
987 devfn_it);
988 vtd_as->context_cache_entry.context_cache_gen = 0;
994 /* Context-cache invalidation
995 * Returns the Context Actual Invalidation Granularity.
996 * @val: the content of the CCMD_REG
998 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1000 uint64_t caig;
1001 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1003 switch (type) {
1004 case VTD_CCMD_DOMAIN_INVL:
1005 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1006 (uint16_t)VTD_CCMD_DID(val));
1007 /* Fall through */
1008 case VTD_CCMD_GLOBAL_INVL:
1009 VTD_DPRINTF(INV, "global invalidation");
1010 caig = VTD_CCMD_GLOBAL_INVL_A;
1011 vtd_context_global_invalidate(s);
1012 break;
1014 case VTD_CCMD_DEVICE_INVL:
1015 caig = VTD_CCMD_DEVICE_INVL_A;
1016 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1017 break;
1019 default:
1020 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1021 caig = 0;
1023 return caig;
1026 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1028 vtd_reset_iotlb(s);
1031 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1033 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1034 &domain_id);
1037 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1038 hwaddr addr, uint8_t am)
1040 VTDIOTLBPageInvInfo info;
1042 assert(am <= VTD_MAMV);
1043 info.domain_id = domain_id;
1044 info.addr = addr;
1045 info.mask = ~((1 << am) - 1);
1046 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1049 /* Flush IOTLB
1050 * Returns the IOTLB Actual Invalidation Granularity.
1051 * @val: the content of the IOTLB_REG
1053 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1055 uint64_t iaig;
1056 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1057 uint16_t domain_id;
1058 hwaddr addr;
1059 uint8_t am;
1061 switch (type) {
1062 case VTD_TLB_GLOBAL_FLUSH:
1063 VTD_DPRINTF(INV, "global invalidation");
1064 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1065 vtd_iotlb_global_invalidate(s);
1066 break;
1068 case VTD_TLB_DSI_FLUSH:
1069 domain_id = VTD_TLB_DID(val);
1070 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1071 domain_id);
1072 iaig = VTD_TLB_DSI_FLUSH_A;
1073 vtd_iotlb_domain_invalidate(s, domain_id);
1074 break;
1076 case VTD_TLB_PSI_FLUSH:
1077 domain_id = VTD_TLB_DID(val);
1078 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1079 am = VTD_IVA_AM(addr);
1080 addr = VTD_IVA_ADDR(addr);
1081 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1082 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1083 if (am > VTD_MAMV) {
1084 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1085 "%"PRIu8, (uint8_t)VTD_MAMV);
1086 iaig = 0;
1087 break;
1089 iaig = VTD_TLB_PSI_FLUSH_A;
1090 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1091 break;
1093 default:
1094 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1095 iaig = 0;
1097 return iaig;
1100 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1102 return s->iq_tail == 0;
1105 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1107 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1108 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1111 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1113 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1115 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1116 if (en) {
1117 if (vtd_queued_inv_enable_check(s)) {
1118 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1119 /* 2^(x+8) entries */
1120 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1121 s->qi_enabled = true;
1122 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1123 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1124 s->iq, s->iq_size);
1125 /* Ok - report back to driver */
1126 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1127 } else {
1128 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1129 "tail %"PRIu16, s->iq_tail);
1131 } else {
1132 if (vtd_queued_inv_disable_check(s)) {
1133 /* disable Queued Invalidation */
1134 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1135 s->iq_head = 0;
1136 s->qi_enabled = false;
1137 /* Ok - report back to driver */
1138 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1139 } else {
1140 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1141 "head %"PRIu16 ", tail %"PRIu16
1142 ", last_descriptor %"PRIu8,
1143 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1148 /* Set Root Table Pointer */
1149 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1151 VTD_DPRINTF(CSR, "set Root Table Pointer");
1153 vtd_root_table_setup(s);
1154 /* Ok - report back to driver */
1155 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1158 /* Set Interrupt Remap Table Pointer */
1159 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1161 VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1163 vtd_interrupt_remap_table_setup(s);
1164 /* Ok - report back to driver */
1165 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1168 /* Handle Translation Enable/Disable */
1169 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1171 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1173 if (en) {
1174 s->dmar_enabled = true;
1175 /* Ok - report back to driver */
1176 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1177 } else {
1178 s->dmar_enabled = false;
1180 /* Clear the index of Fault Recording Register */
1181 s->next_frcd_reg = 0;
1182 /* Ok - report back to driver */
1183 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1187 /* Handle Interrupt Remap Enable/Disable */
1188 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1190 VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1192 if (en) {
1193 s->intr_enabled = true;
1194 /* Ok - report back to driver */
1195 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1196 } else {
1197 s->intr_enabled = false;
1198 /* Ok - report back to driver */
1199 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1203 /* Handle write to Global Command Register */
1204 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1206 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1207 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1208 uint32_t changed = status ^ val;
1210 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1211 if (changed & VTD_GCMD_TE) {
1212 /* Translation enable/disable */
1213 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1215 if (val & VTD_GCMD_SRTP) {
1216 /* Set/update the root-table pointer */
1217 vtd_handle_gcmd_srtp(s);
1219 if (changed & VTD_GCMD_QIE) {
1220 /* Queued Invalidation Enable */
1221 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1223 if (val & VTD_GCMD_SIRTP) {
1224 /* Set/update the interrupt remapping root-table pointer */
1225 vtd_handle_gcmd_sirtp(s);
1227 if (changed & VTD_GCMD_IRE) {
1228 /* Interrupt remap enable/disable */
1229 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1233 /* Handle write to Context Command Register */
1234 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1236 uint64_t ret;
1237 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1239 /* Context-cache invalidation request */
1240 if (val & VTD_CCMD_ICC) {
1241 if (s->qi_enabled) {
1242 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1243 "should not use register-based invalidation");
1244 return;
1246 ret = vtd_context_cache_invalidate(s, val);
1247 /* Invalidation completed. Change something to show */
1248 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1249 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1250 ret);
1251 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1255 /* Handle write to IOTLB Invalidation Register */
1256 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1258 uint64_t ret;
1259 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1261 /* IOTLB invalidation request */
1262 if (val & VTD_TLB_IVT) {
1263 if (s->qi_enabled) {
1264 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1265 "should not use register-based invalidation");
1266 return;
1268 ret = vtd_iotlb_flush(s, val);
1269 /* Invalidation completed. Change something to show */
1270 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1271 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1272 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1273 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1277 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1278 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1279 VTDInvDesc *inv_desc)
1281 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1282 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1283 sizeof(*inv_desc))) {
1284 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1285 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1286 inv_desc->lo = 0;
1287 inv_desc->hi = 0;
1289 return false;
1291 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1292 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1293 return true;
1296 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1298 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1299 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1300 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1301 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1302 inv_desc->hi, inv_desc->lo);
1303 return false;
1305 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1306 /* Status Write */
1307 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1308 VTD_INV_DESC_WAIT_DATA_SHIFT);
1310 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1312 /* FIXME: need to be masked with HAW? */
1313 dma_addr_t status_addr = inv_desc->hi;
1314 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1315 status_data, status_addr);
1316 status_data = cpu_to_le32(status_data);
1317 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1318 sizeof(status_data))) {
1319 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1320 return false;
1322 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1323 /* Interrupt flag */
1324 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1325 vtd_generate_completion_event(s);
1326 } else {
1327 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1328 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1329 return false;
1331 return true;
1334 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1335 VTDInvDesc *inv_desc)
1337 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1338 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1339 "Invalidate Descriptor");
1340 return false;
1342 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1343 case VTD_INV_DESC_CC_DOMAIN:
1344 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1345 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1346 /* Fall through */
1347 case VTD_INV_DESC_CC_GLOBAL:
1348 VTD_DPRINTF(INV, "global invalidation");
1349 vtd_context_global_invalidate(s);
1350 break;
1352 case VTD_INV_DESC_CC_DEVICE:
1353 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1354 VTD_INV_DESC_CC_FM(inv_desc->lo));
1355 break;
1357 default:
1358 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1359 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1360 inv_desc->hi, inv_desc->lo);
1361 return false;
1363 return true;
1366 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1368 uint16_t domain_id;
1369 uint8_t am;
1370 hwaddr addr;
1372 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1373 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1374 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1375 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1376 inv_desc->hi, inv_desc->lo);
1377 return false;
1380 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1381 case VTD_INV_DESC_IOTLB_GLOBAL:
1382 VTD_DPRINTF(INV, "global invalidation");
1383 vtd_iotlb_global_invalidate(s);
1384 break;
1386 case VTD_INV_DESC_IOTLB_DOMAIN:
1387 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1388 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1389 domain_id);
1390 vtd_iotlb_domain_invalidate(s, domain_id);
1391 break;
1393 case VTD_INV_DESC_IOTLB_PAGE:
1394 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1395 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1396 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1397 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1398 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1399 if (am > VTD_MAMV) {
1400 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1401 "%"PRIu8, (uint8_t)VTD_MAMV);
1402 return false;
1404 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1405 break;
1407 default:
1408 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1409 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1410 inv_desc->hi, inv_desc->lo);
1411 return false;
1413 return true;
1416 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1418 VTDInvDesc inv_desc;
1419 uint8_t desc_type;
1421 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1422 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1423 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1424 return false;
1426 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1427 /* FIXME: should update at first or at last? */
1428 s->iq_last_desc_type = desc_type;
1430 switch (desc_type) {
1431 case VTD_INV_DESC_CC:
1432 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1433 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1434 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1435 return false;
1437 break;
1439 case VTD_INV_DESC_IOTLB:
1440 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1441 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1442 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1443 return false;
1445 break;
1447 case VTD_INV_DESC_WAIT:
1448 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1449 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1450 if (!vtd_process_wait_desc(s, &inv_desc)) {
1451 return false;
1453 break;
1455 case VTD_INV_DESC_IEC:
1456 VTD_DPRINTF(INV, "Interrupt Entry Cache Invalidation "
1457 "not implemented yet");
1459 * Since currently we do not cache interrupt entries, we can
1460 * just mark this descriptor as "good" and move on.
1462 break;
1464 default:
1465 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1466 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1467 inv_desc.hi, inv_desc.lo, desc_type);
1468 return false;
1470 s->iq_head++;
1471 if (s->iq_head == s->iq_size) {
1472 s->iq_head = 0;
1474 return true;
1477 /* Try to fetch and process more Invalidation Descriptors */
1478 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1480 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1481 if (s->iq_tail >= s->iq_size) {
1482 /* Detects an invalid Tail pointer */
1483 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1484 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1485 vtd_handle_inv_queue_error(s);
1486 return;
1488 while (s->iq_head != s->iq_tail) {
1489 if (!vtd_process_inv_desc(s)) {
1490 /* Invalidation Queue Errors */
1491 vtd_handle_inv_queue_error(s);
1492 break;
1494 /* Must update the IQH_REG in time */
1495 vtd_set_quad_raw(s, DMAR_IQH_REG,
1496 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1497 VTD_IQH_QH_MASK);
1501 /* Handle write to Invalidation Queue Tail Register */
1502 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1504 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1506 s->iq_tail = VTD_IQT_QT(val);
1507 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1508 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1509 /* Process Invalidation Queue here */
1510 vtd_fetch_inv_desc(s);
1514 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1516 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1517 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1518 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1520 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1521 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1522 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1523 "IP field of FECTL_REG");
1525 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1526 * Descriptors if there are any when Queued Invalidation is enabled?
1530 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1532 uint32_t fectl_reg;
1533 /* FIXME: when software clears the IM field, check the IP field. But do we
1534 * need to compare the old value and the new value to conclude that
1535 * software clears the IM field? Or just check if the IM field is zero?
1537 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1538 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1539 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1540 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1541 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1542 "fault event interrupt");
1546 static void vtd_handle_ics_write(IntelIOMMUState *s)
1548 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1549 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1551 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1553 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1554 "clear IP field of IECTL_REG");
1558 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1560 uint32_t iectl_reg;
1561 /* FIXME: when software clears the IM field, check the IP field. But do we
1562 * need to compare the old value and the new value to conclude that
1563 * software clears the IM field? Or just check if the IM field is zero?
1565 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1566 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1567 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1568 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1569 VTD_DPRINTF(INV, "IM field is cleared, generate "
1570 "invalidation event interrupt");
1574 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1576 IntelIOMMUState *s = opaque;
1577 uint64_t val;
1579 if (addr + size > DMAR_REG_SIZE) {
1580 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1581 ", got 0x%"PRIx64 " %d",
1582 (uint64_t)DMAR_REG_SIZE, addr, size);
1583 return (uint64_t)-1;
1586 switch (addr) {
1587 /* Root Table Address Register, 64-bit */
1588 case DMAR_RTADDR_REG:
1589 if (size == 4) {
1590 val = s->root & ((1ULL << 32) - 1);
1591 } else {
1592 val = s->root;
1594 break;
1596 case DMAR_RTADDR_REG_HI:
1597 assert(size == 4);
1598 val = s->root >> 32;
1599 break;
1601 /* Invalidation Queue Address Register, 64-bit */
1602 case DMAR_IQA_REG:
1603 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1604 if (size == 4) {
1605 val = val & ((1ULL << 32) - 1);
1607 break;
1609 case DMAR_IQA_REG_HI:
1610 assert(size == 4);
1611 val = s->iq >> 32;
1612 break;
1614 default:
1615 if (size == 4) {
1616 val = vtd_get_long(s, addr);
1617 } else {
1618 val = vtd_get_quad(s, addr);
1621 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1622 addr, size, val);
1623 return val;
1626 static void vtd_mem_write(void *opaque, hwaddr addr,
1627 uint64_t val, unsigned size)
1629 IntelIOMMUState *s = opaque;
1631 if (addr + size > DMAR_REG_SIZE) {
1632 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1633 ", got 0x%"PRIx64 " %d",
1634 (uint64_t)DMAR_REG_SIZE, addr, size);
1635 return;
1638 switch (addr) {
1639 /* Global Command Register, 32-bit */
1640 case DMAR_GCMD_REG:
1641 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1642 ", size %d, val 0x%"PRIx64, addr, size, val);
1643 vtd_set_long(s, addr, val);
1644 vtd_handle_gcmd_write(s);
1645 break;
1647 /* Context Command Register, 64-bit */
1648 case DMAR_CCMD_REG:
1649 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1650 ", size %d, val 0x%"PRIx64, addr, size, val);
1651 if (size == 4) {
1652 vtd_set_long(s, addr, val);
1653 } else {
1654 vtd_set_quad(s, addr, val);
1655 vtd_handle_ccmd_write(s);
1657 break;
1659 case DMAR_CCMD_REG_HI:
1660 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1661 ", size %d, val 0x%"PRIx64, addr, size, val);
1662 assert(size == 4);
1663 vtd_set_long(s, addr, val);
1664 vtd_handle_ccmd_write(s);
1665 break;
1667 /* IOTLB Invalidation Register, 64-bit */
1668 case DMAR_IOTLB_REG:
1669 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1670 ", size %d, val 0x%"PRIx64, addr, size, val);
1671 if (size == 4) {
1672 vtd_set_long(s, addr, val);
1673 } else {
1674 vtd_set_quad(s, addr, val);
1675 vtd_handle_iotlb_write(s);
1677 break;
1679 case DMAR_IOTLB_REG_HI:
1680 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1681 ", size %d, val 0x%"PRIx64, addr, size, val);
1682 assert(size == 4);
1683 vtd_set_long(s, addr, val);
1684 vtd_handle_iotlb_write(s);
1685 break;
1687 /* Invalidate Address Register, 64-bit */
1688 case DMAR_IVA_REG:
1689 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1690 ", size %d, val 0x%"PRIx64, addr, size, val);
1691 if (size == 4) {
1692 vtd_set_long(s, addr, val);
1693 } else {
1694 vtd_set_quad(s, addr, val);
1696 break;
1698 case DMAR_IVA_REG_HI:
1699 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1700 ", size %d, val 0x%"PRIx64, addr, size, val);
1701 assert(size == 4);
1702 vtd_set_long(s, addr, val);
1703 break;
1705 /* Fault Status Register, 32-bit */
1706 case DMAR_FSTS_REG:
1707 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1708 ", size %d, val 0x%"PRIx64, addr, size, val);
1709 assert(size == 4);
1710 vtd_set_long(s, addr, val);
1711 vtd_handle_fsts_write(s);
1712 break;
1714 /* Fault Event Control Register, 32-bit */
1715 case DMAR_FECTL_REG:
1716 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1717 ", size %d, val 0x%"PRIx64, addr, size, val);
1718 assert(size == 4);
1719 vtd_set_long(s, addr, val);
1720 vtd_handle_fectl_write(s);
1721 break;
1723 /* Fault Event Data Register, 32-bit */
1724 case DMAR_FEDATA_REG:
1725 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1726 ", size %d, val 0x%"PRIx64, addr, size, val);
1727 assert(size == 4);
1728 vtd_set_long(s, addr, val);
1729 break;
1731 /* Fault Event Address Register, 32-bit */
1732 case DMAR_FEADDR_REG:
1733 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1734 ", size %d, val 0x%"PRIx64, addr, size, val);
1735 assert(size == 4);
1736 vtd_set_long(s, addr, val);
1737 break;
1739 /* Fault Event Upper Address Register, 32-bit */
1740 case DMAR_FEUADDR_REG:
1741 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1742 ", size %d, val 0x%"PRIx64, addr, size, val);
1743 assert(size == 4);
1744 vtd_set_long(s, addr, val);
1745 break;
1747 /* Protected Memory Enable Register, 32-bit */
1748 case DMAR_PMEN_REG:
1749 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1750 ", size %d, val 0x%"PRIx64, addr, size, val);
1751 assert(size == 4);
1752 vtd_set_long(s, addr, val);
1753 break;
1755 /* Root Table Address Register, 64-bit */
1756 case DMAR_RTADDR_REG:
1757 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1758 ", size %d, val 0x%"PRIx64, addr, size, val);
1759 if (size == 4) {
1760 vtd_set_long(s, addr, val);
1761 } else {
1762 vtd_set_quad(s, addr, val);
1764 break;
1766 case DMAR_RTADDR_REG_HI:
1767 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1768 ", size %d, val 0x%"PRIx64, addr, size, val);
1769 assert(size == 4);
1770 vtd_set_long(s, addr, val);
1771 break;
1773 /* Invalidation Queue Tail Register, 64-bit */
1774 case DMAR_IQT_REG:
1775 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1776 ", size %d, val 0x%"PRIx64, addr, size, val);
1777 if (size == 4) {
1778 vtd_set_long(s, addr, val);
1779 } else {
1780 vtd_set_quad(s, addr, val);
1782 vtd_handle_iqt_write(s);
1783 break;
1785 case DMAR_IQT_REG_HI:
1786 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1787 ", size %d, val 0x%"PRIx64, addr, size, val);
1788 assert(size == 4);
1789 vtd_set_long(s, addr, val);
1790 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1791 break;
1793 /* Invalidation Queue Address Register, 64-bit */
1794 case DMAR_IQA_REG:
1795 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1796 ", size %d, val 0x%"PRIx64, addr, size, val);
1797 if (size == 4) {
1798 vtd_set_long(s, addr, val);
1799 } else {
1800 vtd_set_quad(s, addr, val);
1802 break;
1804 case DMAR_IQA_REG_HI:
1805 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1806 ", size %d, val 0x%"PRIx64, addr, size, val);
1807 assert(size == 4);
1808 vtd_set_long(s, addr, val);
1809 break;
1811 /* Invalidation Completion Status Register, 32-bit */
1812 case DMAR_ICS_REG:
1813 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1814 ", size %d, val 0x%"PRIx64, addr, size, val);
1815 assert(size == 4);
1816 vtd_set_long(s, addr, val);
1817 vtd_handle_ics_write(s);
1818 break;
1820 /* Invalidation Event Control Register, 32-bit */
1821 case DMAR_IECTL_REG:
1822 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1823 ", size %d, val 0x%"PRIx64, addr, size, val);
1824 assert(size == 4);
1825 vtd_set_long(s, addr, val);
1826 vtd_handle_iectl_write(s);
1827 break;
1829 /* Invalidation Event Data Register, 32-bit */
1830 case DMAR_IEDATA_REG:
1831 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1832 ", size %d, val 0x%"PRIx64, addr, size, val);
1833 assert(size == 4);
1834 vtd_set_long(s, addr, val);
1835 break;
1837 /* Invalidation Event Address Register, 32-bit */
1838 case DMAR_IEADDR_REG:
1839 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1840 ", size %d, val 0x%"PRIx64, addr, size, val);
1841 assert(size == 4);
1842 vtd_set_long(s, addr, val);
1843 break;
1845 /* Invalidation Event Upper Address Register, 32-bit */
1846 case DMAR_IEUADDR_REG:
1847 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1848 ", size %d, val 0x%"PRIx64, addr, size, val);
1849 assert(size == 4);
1850 vtd_set_long(s, addr, val);
1851 break;
1853 /* Fault Recording Registers, 128-bit */
1854 case DMAR_FRCD_REG_0_0:
1855 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1856 ", size %d, val 0x%"PRIx64, addr, size, val);
1857 if (size == 4) {
1858 vtd_set_long(s, addr, val);
1859 } else {
1860 vtd_set_quad(s, addr, val);
1862 break;
1864 case DMAR_FRCD_REG_0_1:
1865 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1866 ", size %d, val 0x%"PRIx64, addr, size, val);
1867 assert(size == 4);
1868 vtd_set_long(s, addr, val);
1869 break;
1871 case DMAR_FRCD_REG_0_2:
1872 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1873 ", size %d, val 0x%"PRIx64, addr, size, val);
1874 if (size == 4) {
1875 vtd_set_long(s, addr, val);
1876 } else {
1877 vtd_set_quad(s, addr, val);
1878 /* May clear bit 127 (Fault), update PPF */
1879 vtd_update_fsts_ppf(s);
1881 break;
1883 case DMAR_FRCD_REG_0_3:
1884 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1885 ", size %d, val 0x%"PRIx64, addr, size, val);
1886 assert(size == 4);
1887 vtd_set_long(s, addr, val);
1888 /* May clear bit 127 (Fault), update PPF */
1889 vtd_update_fsts_ppf(s);
1890 break;
1892 case DMAR_IRTA_REG:
1893 VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1894 ", size %d, val 0x%"PRIx64, addr, size, val);
1895 if (size == 4) {
1896 vtd_set_long(s, addr, val);
1897 } else {
1898 vtd_set_quad(s, addr, val);
1900 break;
1902 case DMAR_IRTA_REG_HI:
1903 VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1904 ", size %d, val 0x%"PRIx64, addr, size, val);
1905 assert(size == 4);
1906 vtd_set_long(s, addr, val);
1907 break;
1909 default:
1910 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1911 ", size %d, val 0x%"PRIx64, addr, size, val);
1912 if (size == 4) {
1913 vtd_set_long(s, addr, val);
1914 } else {
1915 vtd_set_quad(s, addr, val);
1920 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1921 bool is_write)
1923 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1924 IntelIOMMUState *s = vtd_as->iommu_state;
1925 IOMMUTLBEntry ret = {
1926 .target_as = &address_space_memory,
1927 .iova = addr,
1928 .translated_addr = 0,
1929 .addr_mask = ~(hwaddr)0,
1930 .perm = IOMMU_NONE,
1933 if (!s->dmar_enabled) {
1934 /* DMAR disabled, passthrough, use 4k-page*/
1935 ret.iova = addr & VTD_PAGE_MASK_4K;
1936 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1937 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1938 ret.perm = IOMMU_RW;
1939 return ret;
1942 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1943 is_write, &ret);
1944 VTD_DPRINTF(MMU,
1945 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1946 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1947 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1948 vtd_as->devfn, addr, ret.translated_addr);
1949 return ret;
1952 static void vtd_iommu_notify_started(MemoryRegion *iommu)
1954 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1956 hw_error("Device at bus %s addr %02x.%d requires iommu notifier which "
1957 "is currently not supported by intel-iommu emulation",
1958 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1959 PCI_FUNC(vtd_as->devfn));
1962 static const VMStateDescription vtd_vmstate = {
1963 .name = "iommu-intel",
1964 .unmigratable = 1,
1967 static const MemoryRegionOps vtd_mem_ops = {
1968 .read = vtd_mem_read,
1969 .write = vtd_mem_write,
1970 .endianness = DEVICE_LITTLE_ENDIAN,
1971 .impl = {
1972 .min_access_size = 4,
1973 .max_access_size = 8,
1975 .valid = {
1976 .min_access_size = 4,
1977 .max_access_size = 8,
1981 static Property vtd_properties[] = {
1982 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1983 DEFINE_PROP_END_OF_LIST(),
1986 /* Read IRTE entry with specific index */
1987 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
1988 VTD_IRTE *entry)
1990 dma_addr_t addr = 0x00;
1992 addr = iommu->intr_root + index * sizeof(*entry);
1993 if (dma_memory_read(&address_space_memory, addr, entry,
1994 sizeof(*entry))) {
1995 VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
1996 " + %"PRIu16, iommu->intr_root, index);
1997 return -VTD_FR_IR_ROOT_INVAL;
2000 if (!entry->present) {
2001 VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2002 " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2003 index, le64_to_cpu(entry->data[1]),
2004 le64_to_cpu(entry->data[0]));
2005 return -VTD_FR_IR_ENTRY_P;
2008 if (entry->__reserved_0 || entry->__reserved_1 || \
2009 entry->__reserved_2) {
2010 VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2011 " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2012 index, le64_to_cpu(entry->data[1]),
2013 le64_to_cpu(entry->data[0]));
2014 return -VTD_FR_IR_IRTE_RSVD;
2018 * TODO: Check Source-ID corresponds to SVT (Source Validation
2019 * Type) bits
2022 return 0;
2025 /* Fetch IRQ information of specific IR index */
2026 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, VTDIrq *irq)
2028 VTD_IRTE irte = {};
2029 int ret = 0;
2031 ret = vtd_irte_get(iommu, index, &irte);
2032 if (ret) {
2033 return ret;
2036 irq->trigger_mode = irte.trigger_mode;
2037 irq->vector = irte.vector;
2038 irq->delivery_mode = irte.delivery_mode;
2039 /* Not support EIM yet: please refer to vt-d 9.10 DST bits */
2040 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2041 #define VTD_IR_APIC_DEST_SHIFT (8)
2042 irq->dest = (le32_to_cpu(irte.dest_id) & VTD_IR_APIC_DEST_MASK) >> \
2043 VTD_IR_APIC_DEST_SHIFT;
2044 irq->dest_mode = irte.dest_mode;
2045 irq->redir_hint = irte.redir_hint;
2047 VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2048 "deliver:%u,dest:%u,dest_mode:%u", index,
2049 irq->trigger_mode, irq->vector, irq->delivery_mode,
2050 irq->dest, irq->dest_mode);
2052 return 0;
2055 /* Generate one MSI message from VTDIrq info */
2056 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2058 VTD_MSIMessage msg = {};
2060 /* Generate address bits */
2061 msg.dest_mode = irq->dest_mode;
2062 msg.redir_hint = irq->redir_hint;
2063 msg.dest = irq->dest;
2064 msg.__addr_head = cpu_to_le32(0xfee);
2065 /* Keep this from original MSI address bits */
2066 msg.__not_used = irq->msi_addr_last_bits;
2068 /* Generate data bits */
2069 msg.vector = irq->vector;
2070 msg.delivery_mode = irq->delivery_mode;
2071 msg.level = 1;
2072 msg.trigger_mode = irq->trigger_mode;
2074 msg_out->address = msg.msi_addr;
2075 msg_out->data = msg.msi_data;
2078 /* Interrupt remapping for MSI/MSI-X entry */
2079 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2080 MSIMessage *origin,
2081 MSIMessage *translated)
2083 int ret = 0;
2084 VTD_IR_MSIAddress addr;
2085 uint16_t index;
2086 VTDIrq irq = {};
2088 assert(origin && translated);
2090 if (!iommu || !iommu->intr_enabled) {
2091 goto do_not_translate;
2094 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2095 VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2096 " during interrupt remapping: 0x%"PRIx32,
2097 (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2098 VTD_MSI_ADDR_HI_SHIFT));
2099 return -VTD_FR_IR_REQ_RSVD;
2102 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2103 if (le16_to_cpu(addr.__head) != 0xfee) {
2104 VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2105 "0x%"PRIx32, addr.data);
2106 return -VTD_FR_IR_REQ_RSVD;
2109 /* This is compatible mode. */
2110 if (addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2111 goto do_not_translate;
2114 index = addr.index_h << 15 | le16_to_cpu(addr.index_l);
2116 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2117 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2119 if (addr.sub_valid) {
2120 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2121 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2124 ret = vtd_remap_irq_get(iommu, index, &irq);
2125 if (ret) {
2126 return ret;
2129 if (addr.sub_valid) {
2130 VTD_DPRINTF(IR, "received MSI interrupt");
2131 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2132 VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2133 "interrupt remappable entry: 0x%"PRIx32,
2134 origin->data);
2135 return -VTD_FR_IR_REQ_RSVD;
2137 } else {
2138 uint8_t vector = origin->data & 0xff;
2139 VTD_DPRINTF(IR, "received IOAPIC interrupt");
2140 /* IOAPIC entry vector should be aligned with IRTE vector
2141 * (see vt-d spec 5.1.5.1). */
2142 if (vector != irq.vector) {
2143 VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2144 "entry: %d, IRTE: %d, index: %d",
2145 vector, irq.vector, index);
2150 * We'd better keep the last two bits, assuming that guest OS
2151 * might modify it. Keep it does not hurt after all.
2153 irq.msi_addr_last_bits = addr.__not_care;
2155 /* Translate VTDIrq to MSI message */
2156 vtd_generate_msi_message(&irq, translated);
2158 VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2159 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2160 translated->address, translated->data);
2161 return 0;
2163 do_not_translate:
2164 memcpy(translated, origin, sizeof(*origin));
2165 return 0;
2168 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2169 MSIMessage *dst, uint16_t sid)
2171 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), src, dst);
2174 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2175 uint64_t *data, unsigned size,
2176 MemTxAttrs attrs)
2178 return MEMTX_OK;
2181 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2182 uint64_t value, unsigned size,
2183 MemTxAttrs attrs)
2185 int ret = 0;
2186 MSIMessage from = {}, to = {};
2188 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2189 from.data = (uint32_t) value;
2191 ret = vtd_interrupt_remap_msi(opaque, &from, &to);
2192 if (ret) {
2193 /* TODO: report error */
2194 VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2195 " data 0x%"PRIx32, from.address, from.data);
2196 /* Drop this interrupt */
2197 return MEMTX_ERROR;
2200 VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2201 " for device sid 0x%04x",
2202 to.address, to.data, sid);
2204 if (dma_memory_write(&address_space_memory, to.address,
2205 &to.data, size)) {
2206 VTD_DPRINTF(GENERAL, "error: fail to write 0x%"PRIx64
2207 " value 0x%"PRIx32, to.address, to.data);
2210 return MEMTX_OK;
2213 static const MemoryRegionOps vtd_mem_ir_ops = {
2214 .read_with_attrs = vtd_mem_ir_read,
2215 .write_with_attrs = vtd_mem_ir_write,
2216 .endianness = DEVICE_LITTLE_ENDIAN,
2217 .impl = {
2218 .min_access_size = 4,
2219 .max_access_size = 4,
2221 .valid = {
2222 .min_access_size = 4,
2223 .max_access_size = 4,
2227 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2229 uintptr_t key = (uintptr_t)bus;
2230 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2231 VTDAddressSpace *vtd_dev_as;
2233 if (!vtd_bus) {
2234 /* No corresponding free() */
2235 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2236 X86_IOMMU_PCI_DEVFN_MAX);
2237 vtd_bus->bus = bus;
2238 key = (uintptr_t)bus;
2239 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
2242 vtd_dev_as = vtd_bus->dev_as[devfn];
2244 if (!vtd_dev_as) {
2245 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2247 vtd_dev_as->bus = bus;
2248 vtd_dev_as->devfn = (uint8_t)devfn;
2249 vtd_dev_as->iommu_state = s;
2250 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2251 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2252 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2253 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2254 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2255 VTD_INTERRUPT_ADDR_SIZE);
2256 memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2257 &vtd_dev_as->iommu_ir);
2258 address_space_init(&vtd_dev_as->as,
2259 &vtd_dev_as->iommu, "intel_iommu");
2261 return vtd_dev_as;
2264 /* Do the initialization. It will also be called when reset, so pay
2265 * attention when adding new initialization stuff.
2267 static void vtd_init(IntelIOMMUState *s)
2269 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2271 memset(s->csr, 0, DMAR_REG_SIZE);
2272 memset(s->wmask, 0, DMAR_REG_SIZE);
2273 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2274 memset(s->womask, 0, DMAR_REG_SIZE);
2276 s->iommu_ops.translate = vtd_iommu_translate;
2277 s->iommu_ops.notify_started = vtd_iommu_notify_started;
2278 s->root = 0;
2279 s->root_extended = false;
2280 s->dmar_enabled = false;
2281 s->iq_head = 0;
2282 s->iq_tail = 0;
2283 s->iq = 0;
2284 s->iq_size = 0;
2285 s->qi_enabled = false;
2286 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2287 s->next_frcd_reg = 0;
2288 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2289 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2290 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2292 if (x86_iommu->intr_supported) {
2293 s->ecap |= VTD_ECAP_IR;
2296 vtd_reset_context_cache(s);
2297 vtd_reset_iotlb(s);
2299 /* Define registers with default values and bit semantics */
2300 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2301 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2302 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2303 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2304 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2305 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2306 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2307 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2308 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2310 /* Advanced Fault Logging not supported */
2311 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2312 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2313 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2314 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2316 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2317 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2319 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2321 /* Treated as RO for implementations that PLMR and PHMR fields reported
2322 * as Clear in the CAP_REG.
2323 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2325 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2327 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2328 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2329 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2330 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2331 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2332 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2333 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2334 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2335 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2337 /* IOTLB registers */
2338 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2339 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2340 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2342 /* Fault Recording Registers, 128-bit */
2343 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2344 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2347 * Interrupt remapping registers, not support extended interrupt
2348 * mode for now.
2350 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff00fULL, 0);
2353 /* Should not reset address_spaces when reset because devices will still use
2354 * the address space they got at first (won't ask the bus again).
2356 static void vtd_reset(DeviceState *dev)
2358 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2360 VTD_DPRINTF(GENERAL, "");
2361 vtd_init(s);
2364 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2366 IntelIOMMUState *s = opaque;
2367 VTDAddressSpace *vtd_as;
2369 assert(0 <= devfn && devfn <= X86_IOMMU_PCI_DEVFN_MAX);
2371 vtd_as = vtd_find_add_as(s, bus, devfn);
2372 return &vtd_as->as;
2375 static void vtd_realize(DeviceState *dev, Error **errp)
2377 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2378 PCIBus *bus = pcms->bus;
2379 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2381 VTD_DPRINTF(GENERAL, "");
2382 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2383 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2384 "intel_iommu", DMAR_REG_SIZE);
2385 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2386 /* No corresponding destroy */
2387 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2388 g_free, g_free);
2389 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2390 g_free, g_free);
2391 vtd_init(s);
2392 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2393 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2394 /* Pseudo address space under root PCI bus. */
2395 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2398 static void vtd_class_init(ObjectClass *klass, void *data)
2400 DeviceClass *dc = DEVICE_CLASS(klass);
2401 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2403 dc->reset = vtd_reset;
2404 dc->vmsd = &vtd_vmstate;
2405 dc->props = vtd_properties;
2406 dc->hotpluggable = false;
2407 x86_class->realize = vtd_realize;
2408 x86_class->int_remap = vtd_int_remap;
2411 static const TypeInfo vtd_info = {
2412 .name = TYPE_INTEL_IOMMU_DEVICE,
2413 .parent = TYPE_X86_IOMMU_DEVICE,
2414 .instance_size = sizeof(IntelIOMMUState),
2415 .class_init = vtd_class_init,
2418 static void vtd_register_types(void)
2420 VTD_DPRINTF(GENERAL, "");
2421 type_register_static(&vtd_info);
2424 type_init(vtd_register_types)