s390x/cpumodel: introduce CPU feature group definitions
[qemu.git] / translate-all.c
blob0dd6466e071fdaec586f69c4032d2468284958a8
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/address-spaces.h"
50 #endif
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/timer.h"
57 #include "exec/log.h"
59 //#define DEBUG_TB_INVALIDATE
60 //#define DEBUG_FLUSH
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
66 #undef DEBUG_TB_CHECK
67 #endif
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
74 #ifdef CONFIG_SOFTMMU
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #else
80 unsigned long flags;
81 #endif
82 } PageDesc;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
120 /* code generation context */
121 TCGContext tcg_ctx;
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
128 void tb_lock(void)
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
137 void tb_unlock(void)
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
146 void tb_lock_reset(void)
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
153 #endif
156 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
158 void cpu_gen_init(void)
160 tcg_context_init(&tcg_ctx);
163 /* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
167 int more, byte;
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
177 *p++ = byte;
178 } while (more);
180 return p;
183 /* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185 static target_long decode_sleb128(uint8_t **pp)
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
200 *pp = p;
201 return val;
204 /* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
216 static int encode_search(TranslationBlock *tb, uint8_t *block)
218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
219 uint8_t *p = block;
220 int i, j, n;
222 tb->tc_search = block;
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
247 return p - block;
250 /* The cpu state corresponding to 'searched_pc' is restored. */
251 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
252 uintptr_t searched_pc)
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
256 CPUArchState *env = cpu->env_ptr;
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
259 #ifdef CONFIG_PROFILER
260 int64_t ti = profile_getclock();
261 #endif
263 if (searched_pc < host_pc) {
264 return -1;
267 /* Reconstruct the stored insn data while looking for the point at
268 which the end of the insn exceeds the searched_pc. */
269 for (i = 0; i < num_insns; ++i) {
270 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
271 data[j] += decode_sleb128(&p);
273 host_pc += decode_sleb128(&p);
274 if (host_pc > searched_pc) {
275 goto found;
278 return -1;
280 found:
281 if (tb->cflags & CF_USE_ICOUNT) {
282 assert(use_icount);
283 /* Reset the cycle counter to the start of the block. */
284 cpu->icount_decr.u16.low += num_insns;
285 /* Clear the IO flag. */
286 cpu->can_do_io = 0;
288 cpu->icount_decr.u16.low -= i;
289 restore_state_to_opc(env, tb, data);
291 #ifdef CONFIG_PROFILER
292 tcg_ctx.restore_time += profile_getclock() - ti;
293 tcg_ctx.restore_count++;
294 #endif
295 return 0;
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
300 TranslationBlock *tb;
302 tb = tb_find_pc(retaddr);
303 if (tb) {
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 tb_phys_invalidate(tb, -1);
308 tb_free(tb);
310 return true;
312 return false;
315 void page_size_init(void)
317 /* NOTE: we can always suppose that qemu_host_page_size >=
318 TARGET_PAGE_SIZE */
319 qemu_real_host_page_size = getpagesize();
320 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
321 if (qemu_host_page_size == 0) {
322 qemu_host_page_size = qemu_real_host_page_size;
324 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
325 qemu_host_page_size = TARGET_PAGE_SIZE;
327 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
330 static void page_init(void)
332 page_size_init();
333 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
335 #ifdef HAVE_KINFO_GETVMMAP
336 struct kinfo_vmentry *freep;
337 int i, cnt;
339 freep = kinfo_getvmmap(getpid(), &cnt);
340 if (freep) {
341 mmap_lock();
342 for (i = 0; i < cnt; i++) {
343 unsigned long startaddr, endaddr;
345 startaddr = freep[i].kve_start;
346 endaddr = freep[i].kve_end;
347 if (h2g_valid(startaddr)) {
348 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
350 if (h2g_valid(endaddr)) {
351 endaddr = h2g(endaddr);
352 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
353 } else {
354 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
355 endaddr = ~0ul;
356 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
357 #endif
361 free(freep);
362 mmap_unlock();
364 #else
365 FILE *f;
367 last_brk = (unsigned long)sbrk(0);
369 f = fopen("/compat/linux/proc/self/maps", "r");
370 if (f) {
371 mmap_lock();
373 do {
374 unsigned long startaddr, endaddr;
375 int n;
377 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
379 if (n == 2 && h2g_valid(startaddr)) {
380 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
382 if (h2g_valid(endaddr)) {
383 endaddr = h2g(endaddr);
384 } else {
385 endaddr = ~0ul;
387 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
389 } while (!feof(f));
391 fclose(f);
392 mmap_unlock();
394 #endif
396 #endif
399 /* If alloc=1:
400 * Called with mmap_lock held for user-mode emulation.
402 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
404 PageDesc *pd;
405 void **lp;
406 int i;
408 /* Level 1. Always allocated. */
409 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
411 /* Level 2..N-1. */
412 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
413 void **p = atomic_rcu_read(lp);
415 if (p == NULL) {
416 if (!alloc) {
417 return NULL;
419 p = g_new0(void *, V_L2_SIZE);
420 atomic_rcu_set(lp, p);
423 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
426 pd = atomic_rcu_read(lp);
427 if (pd == NULL) {
428 if (!alloc) {
429 return NULL;
431 pd = g_new0(PageDesc, V_L2_SIZE);
432 atomic_rcu_set(lp, pd);
435 return pd + (index & (V_L2_SIZE - 1));
438 static inline PageDesc *page_find(tb_page_addr_t index)
440 return page_find_alloc(index, 0);
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used. */
446 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
447 region in which the guest needs to run. Revisit this. */
448 #define USE_STATIC_CODE_GEN_BUFFER
449 #endif
451 /* Minimum size of the code gen buffer. This number is randomly chosen,
452 but not so small that we can't have a fair number of TB's live. */
453 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
456 indicated, this is constrained by the range of direct branches on the
457 host cpu, as used by the TCG implementation of goto_tb. */
458 #if defined(__x86_64__)
459 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460 #elif defined(__sparc__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__powerpc64__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__powerpc__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
466 #elif defined(__aarch64__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
468 #elif defined(__arm__)
469 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
470 #elif defined(__s390x__)
471 /* We have a +- 4GB range on the branches; leave some slop. */
472 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
473 #elif defined(__mips__)
474 /* We have a 256MB branch region, but leave room to make sure the
475 main executable is also within that region. */
476 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
477 #else
478 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479 #endif
481 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
484 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
485 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487 static inline size_t size_code_gen_buffer(size_t tb_size)
489 /* Size the buffer. */
490 if (tb_size == 0) {
491 #ifdef USE_STATIC_CODE_GEN_BUFFER
492 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
493 #else
494 /* ??? Needs adjustments. */
495 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
496 static buffer, we could size this on RESERVED_VA, on the text
497 segment size of the executable, or continue to use the default. */
498 tb_size = (unsigned long)(ram_size / 4);
499 #endif
501 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 return tb_size;
510 #ifdef __mips__
511 /* In order to use J and JAL within the code_gen_buffer, we require
512 that the buffer not cross a 256MB boundary. */
513 static inline bool cross_256mb(void *addr, size_t size)
515 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
518 /* We weren't able to allocate a buffer without crossing that boundary,
519 so make do with the larger portion of the buffer that doesn't cross.
520 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
521 static inline void *split_cross_256mb(void *buf1, size_t size1)
523 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
524 size_t size2 = buf1 + size1 - buf2;
526 size1 = buf2 - buf1;
527 if (size1 < size2) {
528 size1 = size2;
529 buf1 = buf2;
532 tcg_ctx.code_gen_buffer_size = size1;
533 return buf1;
535 #endif
537 #ifdef USE_STATIC_CODE_GEN_BUFFER
538 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
539 __attribute__((aligned(CODE_GEN_ALIGN)));
541 # ifdef _WIN32
542 static inline void do_protect(void *addr, long size, int prot)
544 DWORD old_protect;
545 VirtualProtect(addr, size, prot, &old_protect);
548 static inline void map_exec(void *addr, long size)
550 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553 static inline void map_none(void *addr, long size)
555 do_protect(addr, size, PAGE_NOACCESS);
557 # else
558 static inline void do_protect(void *addr, long size, int prot)
560 uintptr_t start, end;
562 start = (uintptr_t)addr;
563 start &= qemu_real_host_page_mask;
565 end = (uintptr_t)addr + size;
566 end = ROUND_UP(end, qemu_real_host_page_size);
568 mprotect((void *)start, end - start, prot);
571 static inline void map_exec(void *addr, long size)
573 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576 static inline void map_none(void *addr, long size)
578 do_protect(addr, size, PROT_NONE);
580 # endif /* WIN32 */
582 static inline void *alloc_code_gen_buffer(void)
584 void *buf = static_code_gen_buffer;
585 size_t full_size, size;
587 /* The size of the buffer, rounded down to end on a page boundary. */
588 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
589 & qemu_real_host_page_mask) - (uintptr_t)buf;
591 /* Reserve a guard page. */
592 size = full_size - qemu_real_host_page_size;
594 /* Honor a command-line option limiting the size of the buffer. */
595 if (size > tcg_ctx.code_gen_buffer_size) {
596 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
599 tcg_ctx.code_gen_buffer_size = size;
601 #ifdef __mips__
602 if (cross_256mb(buf, size)) {
603 buf = split_cross_256mb(buf, size);
604 size = tcg_ctx.code_gen_buffer_size;
606 #endif
608 map_exec(buf, size);
609 map_none(buf + size, qemu_real_host_page_size);
610 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
612 return buf;
614 #elif defined(_WIN32)
615 static inline void *alloc_code_gen_buffer(void)
617 size_t size = tcg_ctx.code_gen_buffer_size;
618 void *buf1, *buf2;
620 /* Perform the allocation in two steps, so that the guard page
621 is reserved but uncommitted. */
622 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
623 MEM_RESERVE, PAGE_NOACCESS);
624 if (buf1 != NULL) {
625 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
626 assert(buf1 == buf2);
629 return buf1;
631 #else
632 static inline void *alloc_code_gen_buffer(void)
634 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
635 uintptr_t start = 0;
636 size_t size = tcg_ctx.code_gen_buffer_size;
637 void *buf;
639 /* Constrain the position of the buffer based on the host cpu.
640 Note that these addresses are chosen in concert with the
641 addresses assigned in the relevant linker script file. */
642 # if defined(__PIE__) || defined(__PIC__)
643 /* Don't bother setting a preferred location if we're building
644 a position-independent executable. We're more likely to get
645 an address near the main executable if we let the kernel
646 choose the address. */
647 # elif defined(__x86_64__) && defined(MAP_32BIT)
648 /* Force the memory down into low memory with the executable.
649 Leave the choice of exact location with the kernel. */
650 flags |= MAP_32BIT;
651 /* Cannot expect to map more than 800MB in low memory. */
652 if (size > 800u * 1024 * 1024) {
653 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
655 # elif defined(__sparc__)
656 start = 0x40000000ul;
657 # elif defined(__s390x__)
658 start = 0x90000000ul;
659 # elif defined(__mips__)
660 # if _MIPS_SIM == _ABI64
661 start = 0x128000000ul;
662 # else
663 start = 0x08000000ul;
664 # endif
665 # endif
667 buf = mmap((void *)start, size + qemu_real_host_page_size,
668 PROT_NONE, flags, -1, 0);
669 if (buf == MAP_FAILED) {
670 return NULL;
673 #ifdef __mips__
674 if (cross_256mb(buf, size)) {
675 /* Try again, with the original still mapped, to avoid re-acquiring
676 that 256mb crossing. This time don't specify an address. */
677 size_t size2;
678 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
679 PROT_NONE, flags, -1, 0);
680 switch (buf2 != MAP_FAILED) {
681 case 1:
682 if (!cross_256mb(buf2, size)) {
683 /* Success! Use the new buffer. */
684 munmap(buf, size + qemu_real_host_page_size);
685 break;
687 /* Failure. Work with what we had. */
688 munmap(buf2, size + qemu_real_host_page_size);
689 /* fallthru */
690 default:
691 /* Split the original buffer. Free the smaller half. */
692 buf2 = split_cross_256mb(buf, size);
693 size2 = tcg_ctx.code_gen_buffer_size;
694 if (buf == buf2) {
695 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
696 } else {
697 munmap(buf, size - size2);
699 size = size2;
700 break;
702 buf = buf2;
704 #endif
706 /* Make the final buffer accessible. The guard page at the end
707 will remain inaccessible with PROT_NONE. */
708 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
710 /* Request large pages for the buffer. */
711 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
713 return buf;
715 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
717 static inline void code_gen_alloc(size_t tb_size)
719 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
720 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
721 if (tcg_ctx.code_gen_buffer == NULL) {
722 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
723 exit(1);
726 /* Estimate a good size for the number of TBs we can support. We
727 still haven't deducted the prologue from the buffer size here,
728 but that's minimal and won't affect the estimate much. */
729 tcg_ctx.code_gen_max_blocks
730 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
731 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
733 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 static void tb_htable_init(void)
738 unsigned int mode = QHT_MODE_AUTO_RESIZE;
740 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
743 /* Must be called before using the QEMU cpus. 'tb_size' is the size
744 (in bytes) allocated to the translation buffer. Zero means default
745 size. */
746 void tcg_exec_init(unsigned long tb_size)
748 cpu_gen_init();
749 page_init();
750 tb_htable_init();
751 code_gen_alloc(tb_size);
752 #if defined(CONFIG_SOFTMMU)
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756 #endif
759 bool tcg_enabled(void)
761 return tcg_ctx.code_gen_buffer != NULL;
764 /* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766 static TranslationBlock *tb_alloc(target_ulong pc)
768 TranslationBlock *tb;
770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 return NULL;
773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
779 void tb_free(TranslationBlock *tb)
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
787 tcg_ctx.tb_ctx.nb_tbs--;
791 static inline void invalidate_page_bitmap(PageDesc *p)
793 #ifdef CONFIG_SOFTMMU
794 g_free(p->code_bitmap);
795 p->code_bitmap = NULL;
796 p->code_write_count = 0;
797 #endif
800 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
801 static void page_flush_tb_1(int level, void **lp)
803 int i;
805 if (*lp == NULL) {
806 return;
808 if (level == 0) {
809 PageDesc *pd = *lp;
811 for (i = 0; i < V_L2_SIZE; ++i) {
812 pd[i].first_tb = NULL;
813 invalidate_page_bitmap(pd + i);
815 } else {
816 void **pp = *lp;
818 for (i = 0; i < V_L2_SIZE; ++i) {
819 page_flush_tb_1(level - 1, pp + i);
824 static void page_flush_tb(void)
826 int i;
828 for (i = 0; i < V_L1_SIZE; i++) {
829 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
833 /* flush all the translation blocks */
834 /* XXX: tb_flush is currently not thread safe */
835 void tb_flush(CPUState *cpu)
837 if (!tcg_enabled()) {
838 return;
840 #if defined(DEBUG_FLUSH)
841 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
842 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
843 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
844 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
845 tcg_ctx.tb_ctx.nb_tbs : 0);
846 #endif
847 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
848 > tcg_ctx.code_gen_buffer_size) {
849 cpu_abort(cpu, "Internal error: code buffer overflow\n");
851 tcg_ctx.tb_ctx.nb_tbs = 0;
853 CPU_FOREACH(cpu) {
854 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
855 cpu->tb_flushed = true;
858 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
859 page_flush_tb();
861 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
862 /* XXX: flush processor icache at this point if cache flush is
863 expensive */
864 tcg_ctx.tb_ctx.tb_flush_count++;
867 #ifdef DEBUG_TB_CHECK
869 static void
870 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
872 TranslationBlock *tb = p;
873 target_ulong addr = *(target_ulong *)userp;
875 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
876 printf("ERROR invalidate: address=" TARGET_FMT_lx
877 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
881 static void tb_invalidate_check(target_ulong address)
883 address &= TARGET_PAGE_MASK;
884 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
887 static void
888 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
890 TranslationBlock *tb = p;
891 int flags1, flags2;
893 flags1 = page_get_flags(tb->pc);
894 flags2 = page_get_flags(tb->pc + tb->size - 1);
895 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
896 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
897 (long)tb->pc, tb->size, flags1, flags2);
901 /* verify that all the pages have correct rights for code */
902 static void tb_page_check(void)
904 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
907 #endif
909 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
911 TranslationBlock *tb1;
912 unsigned int n1;
914 for (;;) {
915 tb1 = *ptb;
916 n1 = (uintptr_t)tb1 & 3;
917 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
918 if (tb1 == tb) {
919 *ptb = tb1->page_next[n1];
920 break;
922 ptb = &tb1->page_next[n1];
926 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
927 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
929 TranslationBlock *tb1;
930 uintptr_t *ptb, ntb;
931 unsigned int n1;
933 ptb = &tb->jmp_list_next[n];
934 if (*ptb) {
935 /* find tb(n) in circular list */
936 for (;;) {
937 ntb = *ptb;
938 n1 = ntb & 3;
939 tb1 = (TranslationBlock *)(ntb & ~3);
940 if (n1 == n && tb1 == tb) {
941 break;
943 if (n1 == 2) {
944 ptb = &tb1->jmp_list_first;
945 } else {
946 ptb = &tb1->jmp_list_next[n1];
949 /* now we can suppress tb(n) from the list */
950 *ptb = tb->jmp_list_next[n];
952 tb->jmp_list_next[n] = (uintptr_t)NULL;
956 /* reset the jump entry 'n' of a TB so that it is not chained to
957 another TB */
958 static inline void tb_reset_jump(TranslationBlock *tb, int n)
960 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
961 tb_set_jmp_target(tb, n, addr);
964 /* remove any jumps to the TB */
965 static inline void tb_jmp_unlink(TranslationBlock *tb)
967 TranslationBlock *tb1;
968 uintptr_t *ptb, ntb;
969 unsigned int n1;
971 ptb = &tb->jmp_list_first;
972 for (;;) {
973 ntb = *ptb;
974 n1 = ntb & 3;
975 tb1 = (TranslationBlock *)(ntb & ~3);
976 if (n1 == 2) {
977 break;
979 tb_reset_jump(tb1, n1);
980 *ptb = tb1->jmp_list_next[n1];
981 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
985 /* invalidate one TB */
986 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
988 CPUState *cpu;
989 PageDesc *p;
990 uint32_t h;
991 tb_page_addr_t phys_pc;
993 /* remove the TB from the hash list */
994 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
995 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
996 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
998 /* remove the TB from the page list */
999 if (tb->page_addr[0] != page_addr) {
1000 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1001 tb_page_remove(&p->first_tb, tb);
1002 invalidate_page_bitmap(p);
1004 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1005 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1006 tb_page_remove(&p->first_tb, tb);
1007 invalidate_page_bitmap(p);
1010 /* remove the TB from the hash list */
1011 h = tb_jmp_cache_hash_func(tb->pc);
1012 CPU_FOREACH(cpu) {
1013 if (cpu->tb_jmp_cache[h] == tb) {
1014 cpu->tb_jmp_cache[h] = NULL;
1018 /* suppress this TB from the two jump lists */
1019 tb_remove_from_jmp_list(tb, 0);
1020 tb_remove_from_jmp_list(tb, 1);
1022 /* suppress any remaining jumps to this TB */
1023 tb_jmp_unlink(tb);
1025 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1028 #ifdef CONFIG_SOFTMMU
1029 static void build_page_bitmap(PageDesc *p)
1031 int n, tb_start, tb_end;
1032 TranslationBlock *tb;
1034 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1036 tb = p->first_tb;
1037 while (tb != NULL) {
1038 n = (uintptr_t)tb & 3;
1039 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1041 if (n == 0) {
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1045 tb_end = tb_start + tb->size;
1046 if (tb_end > TARGET_PAGE_SIZE) {
1047 tb_end = TARGET_PAGE_SIZE;
1049 } else {
1050 tb_start = 0;
1051 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1054 tb = tb->page_next[n];
1057 #endif
1059 /* add the tb in the target page and protect it if necessary
1061 * Called with mmap_lock held for user-mode emulation.
1063 static inline void tb_alloc_page(TranslationBlock *tb,
1064 unsigned int n, tb_page_addr_t page_addr)
1066 PageDesc *p;
1067 #ifndef CONFIG_USER_ONLY
1068 bool page_already_protected;
1069 #endif
1071 tb->page_addr[n] = page_addr;
1072 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1073 tb->page_next[n] = p->first_tb;
1074 #ifndef CONFIG_USER_ONLY
1075 page_already_protected = p->first_tb != NULL;
1076 #endif
1077 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1078 invalidate_page_bitmap(p);
1080 #if defined(CONFIG_USER_ONLY)
1081 if (p->flags & PAGE_WRITE) {
1082 target_ulong addr;
1083 PageDesc *p2;
1084 int prot;
1086 /* force the host page as non writable (writes will have a
1087 page fault + mprotect overhead) */
1088 page_addr &= qemu_host_page_mask;
1089 prot = 0;
1090 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1091 addr += TARGET_PAGE_SIZE) {
1093 p2 = page_find(addr >> TARGET_PAGE_BITS);
1094 if (!p2) {
1095 continue;
1097 prot |= p2->flags;
1098 p2->flags &= ~PAGE_WRITE;
1100 mprotect(g2h(page_addr), qemu_host_page_size,
1101 (prot & PAGE_BITS) & ~PAGE_WRITE);
1102 #ifdef DEBUG_TB_INVALIDATE
1103 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1104 page_addr);
1105 #endif
1107 #else
1108 /* if some code is already present, then the pages are already
1109 protected. So we handle the case where only the first TB is
1110 allocated in a physical page */
1111 if (!page_already_protected) {
1112 tlb_protect_code(page_addr);
1114 #endif
1117 /* add a new TB and link it to the physical page tables. phys_page2 is
1118 * (-1) to indicate that only one page contains the TB.
1120 * Called with mmap_lock held for user-mode emulation.
1122 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1123 tb_page_addr_t phys_page2)
1125 uint32_t h;
1127 /* add in the hash table */
1128 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1129 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1131 /* add in the page list */
1132 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1133 if (phys_page2 != -1) {
1134 tb_alloc_page(tb, 1, phys_page2);
1135 } else {
1136 tb->page_addr[1] = -1;
1139 #ifdef DEBUG_TB_CHECK
1140 tb_page_check();
1141 #endif
1144 /* Called with mmap_lock held for user mode emulation. */
1145 TranslationBlock *tb_gen_code(CPUState *cpu,
1146 target_ulong pc, target_ulong cs_base,
1147 uint32_t flags, int cflags)
1149 CPUArchState *env = cpu->env_ptr;
1150 TranslationBlock *tb;
1151 tb_page_addr_t phys_pc, phys_page2;
1152 target_ulong virt_page2;
1153 tcg_insn_unit *gen_code_buf;
1154 int gen_code_size, search_size;
1155 #ifdef CONFIG_PROFILER
1156 int64_t ti;
1157 #endif
1159 phys_pc = get_page_addr_code(env, pc);
1160 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1161 cflags |= CF_USE_ICOUNT;
1164 tb = tb_alloc(pc);
1165 if (unlikely(!tb)) {
1166 buffer_overflow:
1167 /* flush must be done */
1168 tb_flush(cpu);
1169 /* cannot fail at this point */
1170 tb = tb_alloc(pc);
1171 assert(tb != NULL);
1174 gen_code_buf = tcg_ctx.code_gen_ptr;
1175 tb->tc_ptr = gen_code_buf;
1176 tb->cs_base = cs_base;
1177 tb->flags = flags;
1178 tb->cflags = cflags;
1180 #ifdef CONFIG_PROFILER
1181 tcg_ctx.tb_count1++; /* includes aborted translations because of
1182 exceptions */
1183 ti = profile_getclock();
1184 #endif
1186 tcg_func_start(&tcg_ctx);
1188 tcg_ctx.cpu = ENV_GET_CPU(env);
1189 gen_intermediate_code(env, tb);
1190 tcg_ctx.cpu = NULL;
1192 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1194 /* generate machine code */
1195 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1196 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1197 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1198 #ifdef USE_DIRECT_JUMP
1199 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1200 tcg_ctx.tb_jmp_target_addr = NULL;
1201 #else
1202 tcg_ctx.tb_jmp_insn_offset = NULL;
1203 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1204 #endif
1206 #ifdef CONFIG_PROFILER
1207 tcg_ctx.tb_count++;
1208 tcg_ctx.interm_time += profile_getclock() - ti;
1209 tcg_ctx.code_time -= profile_getclock();
1210 #endif
1212 /* ??? Overflow could be handled better here. In particular, we
1213 don't need to re-do gen_intermediate_code, nor should we re-do
1214 the tcg optimization currently hidden inside tcg_gen_code. All
1215 that should be required is to flush the TBs, allocate a new TB,
1216 re-initialize it per above, and re-do the actual code generation. */
1217 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1218 if (unlikely(gen_code_size < 0)) {
1219 goto buffer_overflow;
1221 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1222 if (unlikely(search_size < 0)) {
1223 goto buffer_overflow;
1226 #ifdef CONFIG_PROFILER
1227 tcg_ctx.code_time += profile_getclock();
1228 tcg_ctx.code_in_len += tb->size;
1229 tcg_ctx.code_out_len += gen_code_size;
1230 tcg_ctx.search_out_len += search_size;
1231 #endif
1233 #ifdef DEBUG_DISAS
1234 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1235 qemu_log_in_addr_range(tb->pc)) {
1236 qemu_log("OUT: [size=%d]\n", gen_code_size);
1237 log_disas(tb->tc_ptr, gen_code_size);
1238 qemu_log("\n");
1239 qemu_log_flush();
1241 #endif
1243 tcg_ctx.code_gen_ptr = (void *)
1244 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1245 CODE_GEN_ALIGN);
1247 /* init jump list */
1248 assert(((uintptr_t)tb & 3) == 0);
1249 tb->jmp_list_first = (uintptr_t)tb | 2;
1250 tb->jmp_list_next[0] = (uintptr_t)NULL;
1251 tb->jmp_list_next[1] = (uintptr_t)NULL;
1253 /* init original jump addresses wich has been set during tcg_gen_code() */
1254 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1255 tb_reset_jump(tb, 0);
1257 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1258 tb_reset_jump(tb, 1);
1261 /* check next page if needed */
1262 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1263 phys_page2 = -1;
1264 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1265 phys_page2 = get_page_addr_code(env, virt_page2);
1267 /* As long as consistency of the TB stuff is provided by tb_lock in user
1268 * mode and is implicit in single-threaded softmmu emulation, no explicit
1269 * memory barrier is required before tb_link_page() makes the TB visible
1270 * through the physical hash table and physical page list.
1272 tb_link_page(tb, phys_pc, phys_page2);
1273 return tb;
1277 * Invalidate all TBs which intersect with the target physical address range
1278 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1279 * 'is_cpu_write_access' should be true if called from a real cpu write
1280 * access: the virtual CPU will exit the current TB if code is modified inside
1281 * this TB.
1283 * Called with mmap_lock held for user-mode emulation
1285 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1287 while (start < end) {
1288 tb_invalidate_phys_page_range(start, end, 0);
1289 start &= TARGET_PAGE_MASK;
1290 start += TARGET_PAGE_SIZE;
1295 * Invalidate all TBs which intersect with the target physical address range
1296 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1297 * 'is_cpu_write_access' should be true if called from a real cpu write
1298 * access: the virtual CPU will exit the current TB if code is modified inside
1299 * this TB.
1301 * Called with mmap_lock held for user-mode emulation
1303 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1304 int is_cpu_write_access)
1306 TranslationBlock *tb, *tb_next;
1307 #if defined(TARGET_HAS_PRECISE_SMC)
1308 CPUState *cpu = current_cpu;
1309 CPUArchState *env = NULL;
1310 #endif
1311 tb_page_addr_t tb_start, tb_end;
1312 PageDesc *p;
1313 int n;
1314 #ifdef TARGET_HAS_PRECISE_SMC
1315 int current_tb_not_found = is_cpu_write_access;
1316 TranslationBlock *current_tb = NULL;
1317 int current_tb_modified = 0;
1318 target_ulong current_pc = 0;
1319 target_ulong current_cs_base = 0;
1320 uint32_t current_flags = 0;
1321 #endif /* TARGET_HAS_PRECISE_SMC */
1323 p = page_find(start >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 return;
1327 #if defined(TARGET_HAS_PRECISE_SMC)
1328 if (cpu != NULL) {
1329 env = cpu->env_ptr;
1331 #endif
1333 /* we remove all the TBs in the range [start, end[ */
1334 /* XXX: see if in some cases it could be faster to invalidate all
1335 the code */
1336 tb = p->first_tb;
1337 while (tb != NULL) {
1338 n = (uintptr_t)tb & 3;
1339 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1340 tb_next = tb->page_next[n];
1341 /* NOTE: this is subtle as a TB may span two physical pages */
1342 if (n == 0) {
1343 /* NOTE: tb_end may be after the end of the page, but
1344 it is not a problem */
1345 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1346 tb_end = tb_start + tb->size;
1347 } else {
1348 tb_start = tb->page_addr[1];
1349 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1351 if (!(tb_end <= start || tb_start >= end)) {
1352 #ifdef TARGET_HAS_PRECISE_SMC
1353 if (current_tb_not_found) {
1354 current_tb_not_found = 0;
1355 current_tb = NULL;
1356 if (cpu->mem_io_pc) {
1357 /* now we have a real cpu fault */
1358 current_tb = tb_find_pc(cpu->mem_io_pc);
1361 if (current_tb == tb &&
1362 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1363 /* If we are modifying the current TB, we must stop
1364 its execution. We could be more precise by checking
1365 that the modification is after the current PC, but it
1366 would require a specialized function to partially
1367 restore the CPU state */
1369 current_tb_modified = 1;
1370 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1371 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1372 &current_flags);
1374 #endif /* TARGET_HAS_PRECISE_SMC */
1375 tb_phys_invalidate(tb, -1);
1377 tb = tb_next;
1379 #if !defined(CONFIG_USER_ONLY)
1380 /* if no code remaining, no need to continue to use slow writes */
1381 if (!p->first_tb) {
1382 invalidate_page_bitmap(p);
1383 tlb_unprotect_code(start);
1385 #endif
1386 #ifdef TARGET_HAS_PRECISE_SMC
1387 if (current_tb_modified) {
1388 /* we generate a block containing just the instruction
1389 modifying the memory. It will ensure that it cannot modify
1390 itself */
1391 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1392 cpu_loop_exit_noexc(cpu);
1394 #endif
1397 #ifdef CONFIG_SOFTMMU
1398 /* len must be <= 8 and start must be a multiple of len */
1399 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1401 PageDesc *p;
1403 #if 0
1404 if (1) {
1405 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1406 cpu_single_env->mem_io_vaddr, len,
1407 cpu_single_env->eip,
1408 cpu_single_env->eip +
1409 (intptr_t)cpu_single_env->segs[R_CS].base);
1411 #endif
1412 p = page_find(start >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 return;
1416 if (!p->code_bitmap &&
1417 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1418 /* build code bitmap */
1419 build_page_bitmap(p);
1421 if (p->code_bitmap) {
1422 unsigned int nr;
1423 unsigned long b;
1425 nr = start & ~TARGET_PAGE_MASK;
1426 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1427 if (b & ((1 << len) - 1)) {
1428 goto do_invalidate;
1430 } else {
1431 do_invalidate:
1432 tb_invalidate_phys_page_range(start, start + len, 1);
1435 #else
1436 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1437 * host PC of the faulting store instruction that caused this invalidate.
1438 * Returns true if the caller needs to abort execution of the current
1439 * TB (because it was modified by this store and the guest CPU has
1440 * precise-SMC semantics).
1442 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1444 TranslationBlock *tb;
1445 PageDesc *p;
1446 int n;
1447 #ifdef TARGET_HAS_PRECISE_SMC
1448 TranslationBlock *current_tb = NULL;
1449 CPUState *cpu = current_cpu;
1450 CPUArchState *env = NULL;
1451 int current_tb_modified = 0;
1452 target_ulong current_pc = 0;
1453 target_ulong current_cs_base = 0;
1454 uint32_t current_flags = 0;
1455 #endif
1457 addr &= TARGET_PAGE_MASK;
1458 p = page_find(addr >> TARGET_PAGE_BITS);
1459 if (!p) {
1460 return false;
1462 tb = p->first_tb;
1463 #ifdef TARGET_HAS_PRECISE_SMC
1464 if (tb && pc != 0) {
1465 current_tb = tb_find_pc(pc);
1467 if (cpu != NULL) {
1468 env = cpu->env_ptr;
1470 #endif
1471 while (tb != NULL) {
1472 n = (uintptr_t)tb & 3;
1473 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1474 #ifdef TARGET_HAS_PRECISE_SMC
1475 if (current_tb == tb &&
1476 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1477 /* If we are modifying the current TB, we must stop
1478 its execution. We could be more precise by checking
1479 that the modification is after the current PC, but it
1480 would require a specialized function to partially
1481 restore the CPU state */
1483 current_tb_modified = 1;
1484 cpu_restore_state_from_tb(cpu, current_tb, pc);
1485 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1486 &current_flags);
1488 #endif /* TARGET_HAS_PRECISE_SMC */
1489 tb_phys_invalidate(tb, addr);
1490 tb = tb->page_next[n];
1492 p->first_tb = NULL;
1493 #ifdef TARGET_HAS_PRECISE_SMC
1494 if (current_tb_modified) {
1495 /* we generate a block containing just the instruction
1496 modifying the memory. It will ensure that it cannot modify
1497 itself */
1498 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1499 return true;
1501 #endif
1502 return false;
1504 #endif
1506 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1507 tb[1].tc_ptr. Return NULL if not found */
1508 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1510 int m_min, m_max, m;
1511 uintptr_t v;
1512 TranslationBlock *tb;
1514 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1515 return NULL;
1517 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1518 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1519 return NULL;
1521 /* binary search (cf Knuth) */
1522 m_min = 0;
1523 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1524 while (m_min <= m_max) {
1525 m = (m_min + m_max) >> 1;
1526 tb = &tcg_ctx.tb_ctx.tbs[m];
1527 v = (uintptr_t)tb->tc_ptr;
1528 if (v == tc_ptr) {
1529 return tb;
1530 } else if (tc_ptr < v) {
1531 m_max = m - 1;
1532 } else {
1533 m_min = m + 1;
1536 return &tcg_ctx.tb_ctx.tbs[m_max];
1539 #if !defined(CONFIG_USER_ONLY)
1540 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1542 ram_addr_t ram_addr;
1543 MemoryRegion *mr;
1544 hwaddr l = 1;
1546 rcu_read_lock();
1547 mr = address_space_translate(as, addr, &addr, &l, false);
1548 if (!(memory_region_is_ram(mr)
1549 || memory_region_is_romd(mr))) {
1550 rcu_read_unlock();
1551 return;
1553 ram_addr = memory_region_get_ram_addr(mr) + addr;
1554 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1555 rcu_read_unlock();
1557 #endif /* !defined(CONFIG_USER_ONLY) */
1559 void tb_check_watchpoint(CPUState *cpu)
1561 TranslationBlock *tb;
1563 tb = tb_find_pc(cpu->mem_io_pc);
1564 if (tb) {
1565 /* We can use retranslation to find the PC. */
1566 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1567 tb_phys_invalidate(tb, -1);
1568 } else {
1569 /* The exception probably happened in a helper. The CPU state should
1570 have been saved before calling it. Fetch the PC from there. */
1571 CPUArchState *env = cpu->env_ptr;
1572 target_ulong pc, cs_base;
1573 tb_page_addr_t addr;
1574 uint32_t flags;
1576 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1577 addr = get_page_addr_code(env, pc);
1578 tb_invalidate_phys_range(addr, addr + 1);
1582 #ifndef CONFIG_USER_ONLY
1583 /* in deterministic execution mode, instructions doing device I/Os
1584 must be at the end of the TB */
1585 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1587 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1588 CPUArchState *env = cpu->env_ptr;
1589 #endif
1590 TranslationBlock *tb;
1591 uint32_t n, cflags;
1592 target_ulong pc, cs_base;
1593 uint32_t flags;
1595 tb = tb_find_pc(retaddr);
1596 if (!tb) {
1597 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1598 (void *)retaddr);
1600 n = cpu->icount_decr.u16.low + tb->icount;
1601 cpu_restore_state_from_tb(cpu, tb, retaddr);
1602 /* Calculate how many instructions had been executed before the fault
1603 occurred. */
1604 n = n - cpu->icount_decr.u16.low;
1605 /* Generate a new TB ending on the I/O insn. */
1606 n++;
1607 /* On MIPS and SH, delay slot instructions can only be restarted if
1608 they were already the first instruction in the TB. If this is not
1609 the first instruction in a TB then re-execute the preceding
1610 branch. */
1611 #if defined(TARGET_MIPS)
1612 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1613 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1614 cpu->icount_decr.u16.low++;
1615 env->hflags &= ~MIPS_HFLAG_BMASK;
1617 #elif defined(TARGET_SH4)
1618 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1619 && n > 1) {
1620 env->pc -= 2;
1621 cpu->icount_decr.u16.low++;
1622 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1624 #endif
1625 /* This should never happen. */
1626 if (n > CF_COUNT_MASK) {
1627 cpu_abort(cpu, "TB too big during recompile");
1630 cflags = n | CF_LAST_IO;
1631 pc = tb->pc;
1632 cs_base = tb->cs_base;
1633 flags = tb->flags;
1634 tb_phys_invalidate(tb, -1);
1635 if (tb->cflags & CF_NOCACHE) {
1636 if (tb->orig_tb) {
1637 /* Invalidate original TB if this TB was generated in
1638 * cpu_exec_nocache() */
1639 tb_phys_invalidate(tb->orig_tb, -1);
1641 tb_free(tb);
1643 /* FIXME: In theory this could raise an exception. In practice
1644 we have already translated the block once so it's probably ok. */
1645 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1646 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1647 the first in the TB) then we end up generating a whole new TB and
1648 repeating the fault, which is horribly inefficient.
1649 Better would be to execute just this insn uncached, or generate a
1650 second new TB. */
1651 cpu_loop_exit_noexc(cpu);
1654 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1656 unsigned int i;
1658 /* Discard jump cache entries for any tb which might potentially
1659 overlap the flushed page. */
1660 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1661 memset(&cpu->tb_jmp_cache[i], 0,
1662 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1664 i = tb_jmp_cache_hash_page(addr);
1665 memset(&cpu->tb_jmp_cache[i], 0,
1666 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1669 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1670 struct qht_stats hst)
1672 uint32_t hgram_opts;
1673 size_t hgram_bins;
1674 char *hgram;
1676 if (!hst.head_buckets) {
1677 return;
1679 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1680 hst.used_head_buckets, hst.head_buckets,
1681 (double)hst.used_head_buckets / hst.head_buckets * 100);
1683 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1684 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1685 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1686 hgram_opts |= QDIST_PR_NODECIMAL;
1688 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1689 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1690 qdist_avg(&hst.occupancy) * 100, hgram);
1691 g_free(hgram);
1693 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1694 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1695 if (hgram_bins > 10) {
1696 hgram_bins = 10;
1697 } else {
1698 hgram_bins = 0;
1699 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1701 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1702 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1703 qdist_avg(&hst.chain), hgram);
1704 g_free(hgram);
1707 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1709 int i, target_code_size, max_target_code_size;
1710 int direct_jmp_count, direct_jmp2_count, cross_page;
1711 TranslationBlock *tb;
1712 struct qht_stats hst;
1714 target_code_size = 0;
1715 max_target_code_size = 0;
1716 cross_page = 0;
1717 direct_jmp_count = 0;
1718 direct_jmp2_count = 0;
1719 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1720 tb = &tcg_ctx.tb_ctx.tbs[i];
1721 target_code_size += tb->size;
1722 if (tb->size > max_target_code_size) {
1723 max_target_code_size = tb->size;
1725 if (tb->page_addr[1] != -1) {
1726 cross_page++;
1728 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1729 direct_jmp_count++;
1730 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1731 direct_jmp2_count++;
1735 /* XXX: avoid using doubles ? */
1736 cpu_fprintf(f, "Translation buffer state:\n");
1737 cpu_fprintf(f, "gen code size %td/%zd\n",
1738 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1739 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1740 cpu_fprintf(f, "TB count %d/%d\n",
1741 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1742 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1743 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1744 tcg_ctx.tb_ctx.nb_tbs : 0,
1745 max_target_code_size);
1746 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1747 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1748 tcg_ctx.code_gen_buffer) /
1749 tcg_ctx.tb_ctx.nb_tbs : 0,
1750 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1751 tcg_ctx.code_gen_buffer) /
1752 target_code_size : 0);
1753 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1754 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1755 tcg_ctx.tb_ctx.nb_tbs : 0);
1756 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1757 direct_jmp_count,
1758 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1759 tcg_ctx.tb_ctx.nb_tbs : 0,
1760 direct_jmp2_count,
1761 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1762 tcg_ctx.tb_ctx.nb_tbs : 0);
1764 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1765 print_qht_statistics(f, cpu_fprintf, hst);
1766 qht_statistics_destroy(&hst);
1768 cpu_fprintf(f, "\nStatistics:\n");
1769 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1770 cpu_fprintf(f, "TB invalidate count %d\n",
1771 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1772 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1773 tcg_dump_info(f, cpu_fprintf);
1776 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1778 tcg_dump_op_count(f, cpu_fprintf);
1781 #else /* CONFIG_USER_ONLY */
1783 void cpu_interrupt(CPUState *cpu, int mask)
1785 cpu->interrupt_request |= mask;
1786 cpu->tcg_exit_req = 1;
1790 * Walks guest process memory "regions" one by one
1791 * and calls callback function 'fn' for each region.
1793 struct walk_memory_regions_data {
1794 walk_memory_regions_fn fn;
1795 void *priv;
1796 target_ulong start;
1797 int prot;
1800 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1801 target_ulong end, int new_prot)
1803 if (data->start != -1u) {
1804 int rc = data->fn(data->priv, data->start, end, data->prot);
1805 if (rc != 0) {
1806 return rc;
1810 data->start = (new_prot ? end : -1u);
1811 data->prot = new_prot;
1813 return 0;
1816 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1817 target_ulong base, int level, void **lp)
1819 target_ulong pa;
1820 int i, rc;
1822 if (*lp == NULL) {
1823 return walk_memory_regions_end(data, base, 0);
1826 if (level == 0) {
1827 PageDesc *pd = *lp;
1829 for (i = 0; i < V_L2_SIZE; ++i) {
1830 int prot = pd[i].flags;
1832 pa = base | (i << TARGET_PAGE_BITS);
1833 if (prot != data->prot) {
1834 rc = walk_memory_regions_end(data, pa, prot);
1835 if (rc != 0) {
1836 return rc;
1840 } else {
1841 void **pp = *lp;
1843 for (i = 0; i < V_L2_SIZE; ++i) {
1844 pa = base | ((target_ulong)i <<
1845 (TARGET_PAGE_BITS + V_L2_BITS * level));
1846 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1847 if (rc != 0) {
1848 return rc;
1853 return 0;
1856 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1858 struct walk_memory_regions_data data;
1859 uintptr_t i;
1861 data.fn = fn;
1862 data.priv = priv;
1863 data.start = -1u;
1864 data.prot = 0;
1866 for (i = 0; i < V_L1_SIZE; i++) {
1867 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1868 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1869 if (rc != 0) {
1870 return rc;
1874 return walk_memory_regions_end(&data, 0, 0);
1877 static int dump_region(void *priv, target_ulong start,
1878 target_ulong end, unsigned long prot)
1880 FILE *f = (FILE *)priv;
1882 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1883 " "TARGET_FMT_lx" %c%c%c\n",
1884 start, end, end - start,
1885 ((prot & PAGE_READ) ? 'r' : '-'),
1886 ((prot & PAGE_WRITE) ? 'w' : '-'),
1887 ((prot & PAGE_EXEC) ? 'x' : '-'));
1889 return 0;
1892 /* dump memory mappings */
1893 void page_dump(FILE *f)
1895 const int length = sizeof(target_ulong) * 2;
1896 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1897 length, "start", length, "end", length, "size", "prot");
1898 walk_memory_regions(f, dump_region);
1901 int page_get_flags(target_ulong address)
1903 PageDesc *p;
1905 p = page_find(address >> TARGET_PAGE_BITS);
1906 if (!p) {
1907 return 0;
1909 return p->flags;
1912 /* Modify the flags of a page and invalidate the code if necessary.
1913 The flag PAGE_WRITE_ORG is positioned automatically depending
1914 on PAGE_WRITE. The mmap_lock should already be held. */
1915 void page_set_flags(target_ulong start, target_ulong end, int flags)
1917 target_ulong addr, len;
1919 /* This function should never be called with addresses outside the
1920 guest address space. If this assert fires, it probably indicates
1921 a missing call to h2g_valid. */
1922 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1923 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1924 #endif
1925 assert(start < end);
1927 start = start & TARGET_PAGE_MASK;
1928 end = TARGET_PAGE_ALIGN(end);
1930 if (flags & PAGE_WRITE) {
1931 flags |= PAGE_WRITE_ORG;
1934 for (addr = start, len = end - start;
1935 len != 0;
1936 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1937 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1939 /* If the write protection bit is set, then we invalidate
1940 the code inside. */
1941 if (!(p->flags & PAGE_WRITE) &&
1942 (flags & PAGE_WRITE) &&
1943 p->first_tb) {
1944 tb_invalidate_phys_page(addr, 0);
1946 p->flags = flags;
1950 int page_check_range(target_ulong start, target_ulong len, int flags)
1952 PageDesc *p;
1953 target_ulong end;
1954 target_ulong addr;
1956 /* This function should never be called with addresses outside the
1957 guest address space. If this assert fires, it probably indicates
1958 a missing call to h2g_valid. */
1959 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1960 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1961 #endif
1963 if (len == 0) {
1964 return 0;
1966 if (start + len - 1 < start) {
1967 /* We've wrapped around. */
1968 return -1;
1971 /* must do before we loose bits in the next step */
1972 end = TARGET_PAGE_ALIGN(start + len);
1973 start = start & TARGET_PAGE_MASK;
1975 for (addr = start, len = end - start;
1976 len != 0;
1977 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1978 p = page_find(addr >> TARGET_PAGE_BITS);
1979 if (!p) {
1980 return -1;
1982 if (!(p->flags & PAGE_VALID)) {
1983 return -1;
1986 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1987 return -1;
1989 if (flags & PAGE_WRITE) {
1990 if (!(p->flags & PAGE_WRITE_ORG)) {
1991 return -1;
1993 /* unprotect the page if it was put read-only because it
1994 contains translated code */
1995 if (!(p->flags & PAGE_WRITE)) {
1996 if (!page_unprotect(addr, 0)) {
1997 return -1;
2002 return 0;
2005 /* called from signal handler: invalidate the code and unprotect the
2006 * page. Return 0 if the fault was not handled, 1 if it was handled,
2007 * and 2 if it was handled but the caller must cause the TB to be
2008 * immediately exited. (We can only return 2 if the 'pc' argument is
2009 * non-zero.)
2011 int page_unprotect(target_ulong address, uintptr_t pc)
2013 unsigned int prot;
2014 bool current_tb_invalidated;
2015 PageDesc *p;
2016 target_ulong host_start, host_end, addr;
2018 /* Technically this isn't safe inside a signal handler. However we
2019 know this only ever happens in a synchronous SEGV handler, so in
2020 practice it seems to be ok. */
2021 mmap_lock();
2023 p = page_find(address >> TARGET_PAGE_BITS);
2024 if (!p) {
2025 mmap_unlock();
2026 return 0;
2029 /* if the page was really writable, then we change its
2030 protection back to writable */
2031 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2032 host_start = address & qemu_host_page_mask;
2033 host_end = host_start + qemu_host_page_size;
2035 prot = 0;
2036 current_tb_invalidated = false;
2037 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2038 p = page_find(addr >> TARGET_PAGE_BITS);
2039 p->flags |= PAGE_WRITE;
2040 prot |= p->flags;
2042 /* and since the content will be modified, we must invalidate
2043 the corresponding translated code. */
2044 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2045 #ifdef DEBUG_TB_CHECK
2046 tb_invalidate_check(addr);
2047 #endif
2049 mprotect((void *)g2h(host_start), qemu_host_page_size,
2050 prot & PAGE_BITS);
2052 mmap_unlock();
2053 /* If current TB was invalidated return to main loop */
2054 return current_tb_invalidated ? 2 : 1;
2056 mmap_unlock();
2057 return 0;
2059 #endif /* CONFIG_USER_ONLY */