SPARC: Emulation of GRLIB APB UART
[qemu.git] / cpu-exec.c
blob8c9fb8b1a2176eb6b8b458d235e248a97b8eb855
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState *env)
55 return cpu_has_work(env);
58 void cpu_loop_exit(void)
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
77 env = env1;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103 unsigned long next_tb;
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
136 tb_invalidated_flag = 0;
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
163 ptb1 = &tb->phys_hash_next;
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
181 static inline TranslationBlock *tb_find_fast(void)
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
196 return tb;
199 static CPUDebugExcpHandler *debug_excp_handler;
201 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
203 CPUDebugExcpHandler *old_handler = debug_excp_handler;
205 debug_excp_handler = handler;
206 return old_handler;
209 static void cpu_handle_debug_exception(CPUState *env)
211 CPUWatchpoint *wp;
213 if (!env->watchpoint_hit)
214 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
215 wp->flags &= ~BP_WATCHPOINT_HIT;
217 if (debug_excp_handler)
218 debug_excp_handler(env);
221 /* main execution loop */
223 volatile sig_atomic_t exit_request;
225 int cpu_exec(CPUState *env1)
227 volatile host_reg_t saved_env_reg;
228 int ret, interrupt_request;
229 TranslationBlock *tb;
230 uint8_t *tc_ptr;
231 unsigned long next_tb;
233 if (cpu_halted(env1) == EXCP_HALTED)
234 return EXCP_HALTED;
236 cpu_single_env = env1;
238 /* the access to env below is actually saving the global register's
239 value, so that files not including target-xyz/exec.h are free to
240 use it. */
241 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
242 saved_env_reg = (host_reg_t) env;
243 barrier();
244 env = env1;
246 if (unlikely(exit_request)) {
247 env->exit_request = 1;
250 #if defined(TARGET_I386)
251 if (!kvm_enabled()) {
252 /* put eflags in CPU temporary format */
253 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
254 DF = 1 - (2 * ((env->eflags >> 10) & 1));
255 CC_OP = CC_OP_EFLAGS;
256 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
258 #elif defined(TARGET_SPARC)
259 #elif defined(TARGET_M68K)
260 env->cc_op = CC_OP_FLAGS;
261 env->cc_dest = env->sr & 0xf;
262 env->cc_x = (env->sr >> 4) & 1;
263 #elif defined(TARGET_ALPHA)
264 #elif defined(TARGET_ARM)
265 #elif defined(TARGET_PPC)
266 #elif defined(TARGET_MICROBLAZE)
267 #elif defined(TARGET_MIPS)
268 #elif defined(TARGET_SH4)
269 #elif defined(TARGET_CRIS)
270 #elif defined(TARGET_S390X)
271 /* XXXXX */
272 #else
273 #error unsupported target CPU
274 #endif
275 env->exception_index = -1;
277 /* prepare setjmp context for exception handling */
278 for(;;) {
279 if (setjmp(env->jmp_env) == 0) {
280 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
281 #undef env
282 env = cpu_single_env;
283 #define env cpu_single_env
284 #endif
285 /* if an exception is pending, we execute it here */
286 if (env->exception_index >= 0) {
287 if (env->exception_index >= EXCP_INTERRUPT) {
288 /* exit request from the cpu execution loop */
289 ret = env->exception_index;
290 if (ret == EXCP_DEBUG)
291 cpu_handle_debug_exception(env);
292 break;
293 } else {
294 #if defined(CONFIG_USER_ONLY)
295 /* if user mode only, we simulate a fake exception
296 which will be handled outside the cpu execution
297 loop */
298 #if defined(TARGET_I386)
299 do_interrupt_user(env->exception_index,
300 env->exception_is_int,
301 env->error_code,
302 env->exception_next_eip);
303 /* successfully delivered */
304 env->old_exception = -1;
305 #endif
306 ret = env->exception_index;
307 break;
308 #else
309 #if defined(TARGET_I386)
310 /* simulate a real cpu exception. On i386, it can
311 trigger new exceptions, but we do not handle
312 double or triple faults yet. */
313 do_interrupt(env->exception_index,
314 env->exception_is_int,
315 env->error_code,
316 env->exception_next_eip, 0);
317 /* successfully delivered */
318 env->old_exception = -1;
319 #elif defined(TARGET_PPC)
320 do_interrupt(env);
321 #elif defined(TARGET_MICROBLAZE)
322 do_interrupt(env);
323 #elif defined(TARGET_MIPS)
324 do_interrupt(env);
325 #elif defined(TARGET_SPARC)
326 do_interrupt(env);
327 #elif defined(TARGET_ARM)
328 do_interrupt(env);
329 #elif defined(TARGET_SH4)
330 do_interrupt(env);
331 #elif defined(TARGET_ALPHA)
332 do_interrupt(env);
333 #elif defined(TARGET_CRIS)
334 do_interrupt(env);
335 #elif defined(TARGET_M68K)
336 do_interrupt(0);
337 #endif
338 env->exception_index = -1;
339 #endif
343 if (kvm_enabled()) {
344 kvm_cpu_exec(env);
345 longjmp(env->jmp_env, 1);
348 next_tb = 0; /* force lookup of first TB */
349 for(;;) {
350 interrupt_request = env->interrupt_request;
351 if (unlikely(interrupt_request)) {
352 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
353 /* Mask out external interrupts for this step. */
354 interrupt_request &= ~(CPU_INTERRUPT_HARD |
355 CPU_INTERRUPT_FIQ |
356 CPU_INTERRUPT_SMI |
357 CPU_INTERRUPT_NMI);
359 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
360 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
361 env->exception_index = EXCP_DEBUG;
362 cpu_loop_exit();
364 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
365 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
366 defined(TARGET_MICROBLAZE)
367 if (interrupt_request & CPU_INTERRUPT_HALT) {
368 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
369 env->halted = 1;
370 env->exception_index = EXCP_HLT;
371 cpu_loop_exit();
373 #endif
374 #if defined(TARGET_I386)
375 if (interrupt_request & CPU_INTERRUPT_INIT) {
376 svm_check_intercept(SVM_EXIT_INIT);
377 do_cpu_init(env);
378 env->exception_index = EXCP_HALTED;
379 cpu_loop_exit();
380 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
381 do_cpu_sipi(env);
382 } else if (env->hflags2 & HF2_GIF_MASK) {
383 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
384 !(env->hflags & HF_SMM_MASK)) {
385 svm_check_intercept(SVM_EXIT_SMI);
386 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
387 do_smm_enter();
388 next_tb = 0;
389 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
390 !(env->hflags2 & HF2_NMI_MASK)) {
391 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
392 env->hflags2 |= HF2_NMI_MASK;
393 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
394 next_tb = 0;
395 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
396 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
397 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
398 next_tb = 0;
399 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
400 (((env->hflags2 & HF2_VINTR_MASK) &&
401 (env->hflags2 & HF2_HIF_MASK)) ||
402 (!(env->hflags2 & HF2_VINTR_MASK) &&
403 (env->eflags & IF_MASK &&
404 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
405 int intno;
406 svm_check_intercept(SVM_EXIT_INTR);
407 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
408 intno = cpu_get_pic_interrupt(env);
409 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
410 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
411 #undef env
412 env = cpu_single_env;
413 #define env cpu_single_env
414 #endif
415 do_interrupt(intno, 0, 0, 0, 1);
416 /* ensure that no TB jump will be modified as
417 the program flow was changed */
418 next_tb = 0;
419 #if !defined(CONFIG_USER_ONLY)
420 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
421 (env->eflags & IF_MASK) &&
422 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
423 int intno;
424 /* FIXME: this should respect TPR */
425 svm_check_intercept(SVM_EXIT_VINTR);
426 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
427 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
428 do_interrupt(intno, 0, 0, 0, 1);
429 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
430 next_tb = 0;
431 #endif
434 #elif defined(TARGET_PPC)
435 #if 0
436 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
437 cpu_reset(env);
439 #endif
440 if (interrupt_request & CPU_INTERRUPT_HARD) {
441 ppc_hw_interrupt(env);
442 if (env->pending_interrupts == 0)
443 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
444 next_tb = 0;
446 #elif defined(TARGET_MICROBLAZE)
447 if ((interrupt_request & CPU_INTERRUPT_HARD)
448 && (env->sregs[SR_MSR] & MSR_IE)
449 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
450 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
451 env->exception_index = EXCP_IRQ;
452 do_interrupt(env);
453 next_tb = 0;
455 #elif defined(TARGET_MIPS)
456 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
457 cpu_mips_hw_interrupts_pending(env)) {
458 /* Raise it */
459 env->exception_index = EXCP_EXT_INTERRUPT;
460 env->error_code = 0;
461 do_interrupt(env);
462 next_tb = 0;
464 #elif defined(TARGET_SPARC)
465 if (interrupt_request & CPU_INTERRUPT_HARD) {
466 if (cpu_interrupts_enabled(env) &&
467 env->interrupt_index > 0) {
468 int pil = env->interrupt_index & 0xf;
469 int type = env->interrupt_index & 0xf0;
471 if (((type == TT_EXTINT) &&
472 cpu_pil_allowed(env, pil)) ||
473 type != TT_EXTINT) {
474 env->exception_index = env->interrupt_index;
475 do_interrupt(env);
476 next_tb = 0;
479 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
480 //do_interrupt(0, 0, 0, 0, 0);
481 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
483 #elif defined(TARGET_ARM)
484 if (interrupt_request & CPU_INTERRUPT_FIQ
485 && !(env->uncached_cpsr & CPSR_F)) {
486 env->exception_index = EXCP_FIQ;
487 do_interrupt(env);
488 next_tb = 0;
490 /* ARMv7-M interrupt return works by loading a magic value
491 into the PC. On real hardware the load causes the
492 return to occur. The qemu implementation performs the
493 jump normally, then does the exception return when the
494 CPU tries to execute code at the magic address.
495 This will cause the magic PC value to be pushed to
496 the stack if an interrupt occured at the wrong time.
497 We avoid this by disabling interrupts when
498 pc contains a magic address. */
499 if (interrupt_request & CPU_INTERRUPT_HARD
500 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
501 || !(env->uncached_cpsr & CPSR_I))) {
502 env->exception_index = EXCP_IRQ;
503 do_interrupt(env);
504 next_tb = 0;
506 #elif defined(TARGET_SH4)
507 if (interrupt_request & CPU_INTERRUPT_HARD) {
508 do_interrupt(env);
509 next_tb = 0;
511 #elif defined(TARGET_ALPHA)
512 if (interrupt_request & CPU_INTERRUPT_HARD) {
513 do_interrupt(env);
514 next_tb = 0;
516 #elif defined(TARGET_CRIS)
517 if (interrupt_request & CPU_INTERRUPT_HARD
518 && (env->pregs[PR_CCS] & I_FLAG)
519 && !env->locked_irq) {
520 env->exception_index = EXCP_IRQ;
521 do_interrupt(env);
522 next_tb = 0;
524 if (interrupt_request & CPU_INTERRUPT_NMI
525 && (env->pregs[PR_CCS] & M_FLAG)) {
526 env->exception_index = EXCP_NMI;
527 do_interrupt(env);
528 next_tb = 0;
530 #elif defined(TARGET_M68K)
531 if (interrupt_request & CPU_INTERRUPT_HARD
532 && ((env->sr & SR_I) >> SR_I_SHIFT)
533 < env->pending_level) {
534 /* Real hardware gets the interrupt vector via an
535 IACK cycle at this point. Current emulated
536 hardware doesn't rely on this, so we
537 provide/save the vector when the interrupt is
538 first signalled. */
539 env->exception_index = env->pending_vector;
540 do_interrupt(1);
541 next_tb = 0;
543 #endif
544 /* Don't use the cached interupt_request value,
545 do_interrupt may have updated the EXITTB flag. */
546 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
547 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
548 /* ensure that no TB jump will be modified as
549 the program flow was changed */
550 next_tb = 0;
553 if (unlikely(env->exit_request)) {
554 env->exit_request = 0;
555 env->exception_index = EXCP_INTERRUPT;
556 cpu_loop_exit();
558 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
559 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
560 /* restore flags in standard format */
561 #if defined(TARGET_I386)
562 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
563 log_cpu_state(env, X86_DUMP_CCOP);
564 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
565 #elif defined(TARGET_M68K)
566 cpu_m68k_flush_flags(env, env->cc_op);
567 env->cc_op = CC_OP_FLAGS;
568 env->sr = (env->sr & 0xffe0)
569 | env->cc_dest | (env->cc_x << 4);
570 log_cpu_state(env, 0);
571 #else
572 log_cpu_state(env, 0);
573 #endif
575 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
576 spin_lock(&tb_lock);
577 tb = tb_find_fast();
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tb_invalidated_flag) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
584 next_tb = 0;
585 tb_invalidated_flag = 0;
587 #ifdef CONFIG_DEBUG_EXEC
588 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
589 (long)tb->tc_ptr, tb->pc,
590 lookup_symbol(tb->pc));
591 #endif
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
594 jump. */
595 if (next_tb != 0 && tb->page_addr[1] == -1) {
596 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
598 spin_unlock(&tb_lock);
600 /* cpu_interrupt might be called while translating the
601 TB, but before it is linked into a potentially
602 infinite loop and becomes env->current_tb. Avoid
603 starting execution if there is a pending interrupt. */
604 env->current_tb = tb;
605 barrier();
606 if (likely(!env->exit_request)) {
607 tc_ptr = tb->tc_ptr;
608 /* execute the generated code */
609 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
610 #undef env
611 env = cpu_single_env;
612 #define env cpu_single_env
613 #endif
614 next_tb = tcg_qemu_tb_exec(tc_ptr);
615 if ((next_tb & 3) == 2) {
616 /* Instruction counter expired. */
617 int insns_left;
618 tb = (TranslationBlock *)(long)(next_tb & ~3);
619 /* Restore PC. */
620 cpu_pc_from_tb(env, tb);
621 insns_left = env->icount_decr.u32;
622 if (env->icount_extra && insns_left >= 0) {
623 /* Refill decrementer and continue execution. */
624 env->icount_extra += insns_left;
625 if (env->icount_extra > 0xffff) {
626 insns_left = 0xffff;
627 } else {
628 insns_left = env->icount_extra;
630 env->icount_extra -= insns_left;
631 env->icount_decr.u16.low = insns_left;
632 } else {
633 if (insns_left > 0) {
634 /* Execute remaining instructions. */
635 cpu_exec_nocache(insns_left, tb);
637 env->exception_index = EXCP_INTERRUPT;
638 next_tb = 0;
639 cpu_loop_exit();
643 env->current_tb = NULL;
644 /* reset soft MMU for next block (it can currently
645 only be set by a memory fault) */
646 } /* for(;;) */
648 } /* for(;;) */
651 #if defined(TARGET_I386)
652 /* restore flags in standard format */
653 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
654 #elif defined(TARGET_ARM)
655 /* XXX: Save/restore host fpu exception state?. */
656 #elif defined(TARGET_SPARC)
657 #elif defined(TARGET_PPC)
658 #elif defined(TARGET_M68K)
659 cpu_m68k_flush_flags(env, env->cc_op);
660 env->cc_op = CC_OP_FLAGS;
661 env->sr = (env->sr & 0xffe0)
662 | env->cc_dest | (env->cc_x << 4);
663 #elif defined(TARGET_MICROBLAZE)
664 #elif defined(TARGET_MIPS)
665 #elif defined(TARGET_SH4)
666 #elif defined(TARGET_ALPHA)
667 #elif defined(TARGET_CRIS)
668 #elif defined(TARGET_S390X)
669 /* XXXXX */
670 #else
671 #error unsupported target CPU
672 #endif
674 /* restore global registers */
675 barrier();
676 env = (void *) saved_env_reg;
678 /* fail safe : never use cpu_single_env outside cpu_exec() */
679 cpu_single_env = NULL;
680 return ret;
683 /* must only be called from the generated code as an exception can be
684 generated */
685 void tb_invalidate_page_range(target_ulong start, target_ulong end)
687 /* XXX: cannot enable it yet because it yields to MMU exception
688 where NIP != read address on PowerPC */
689 #if 0
690 target_ulong phys_addr;
691 phys_addr = get_phys_addr_code(env, start);
692 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
693 #endif
696 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
698 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
700 CPUX86State *saved_env;
702 saved_env = env;
703 env = s;
704 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
705 selector &= 0xffff;
706 cpu_x86_load_seg_cache(env, seg_reg, selector,
707 (selector << 4), 0xffff, 0);
708 } else {
709 helper_load_seg(seg_reg, selector);
711 env = saved_env;
714 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
716 CPUX86State *saved_env;
718 saved_env = env;
719 env = s;
721 helper_fsave(ptr, data32);
723 env = saved_env;
726 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
728 CPUX86State *saved_env;
730 saved_env = env;
731 env = s;
733 helper_frstor(ptr, data32);
735 env = saved_env;
738 #endif /* TARGET_I386 */
740 #if !defined(CONFIG_SOFTMMU)
742 #if defined(TARGET_I386)
743 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
744 #else
745 #define EXCEPTION_ACTION cpu_loop_exit()
746 #endif
748 /* 'pc' is the host PC at which the exception was raised. 'address' is
749 the effective address of the memory exception. 'is_write' is 1 if a
750 write caused the exception and otherwise 0'. 'old_set' is the
751 signal set which should be restored */
752 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
753 int is_write, sigset_t *old_set,
754 void *puc)
756 TranslationBlock *tb;
757 int ret;
759 if (cpu_single_env)
760 env = cpu_single_env; /* XXX: find a correct solution for multithread */
761 #if defined(DEBUG_SIGNAL)
762 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
763 pc, address, is_write, *(unsigned long *)old_set);
764 #endif
765 /* XXX: locking issue */
766 if (is_write && page_unprotect(h2g(address), pc, puc)) {
767 return 1;
770 /* see if it is an MMU fault */
771 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
772 if (ret < 0)
773 return 0; /* not an MMU fault */
774 if (ret == 0)
775 return 1; /* the MMU fault was handled without causing real CPU fault */
776 /* now we have a real cpu fault */
777 tb = tb_find_pc(pc);
778 if (tb) {
779 /* the PC is inside the translated code. It means that we have
780 a virtual CPU fault */
781 cpu_restore_state(tb, env, pc, puc);
784 /* we restore the process signal mask as the sigreturn should
785 do it (XXX: use sigsetjmp) */
786 sigprocmask(SIG_SETMASK, old_set, NULL);
787 EXCEPTION_ACTION;
789 /* never comes here */
790 return 1;
793 #if defined(__i386__)
795 #if defined(__APPLE__)
796 # include <sys/ucontext.h>
798 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
799 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
800 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
801 # define MASK_sig(context) ((context)->uc_sigmask)
802 #elif defined (__NetBSD__)
803 # include <ucontext.h>
805 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
806 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
807 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
808 # define MASK_sig(context) ((context)->uc_sigmask)
809 #elif defined (__FreeBSD__) || defined(__DragonFly__)
810 # include <ucontext.h>
812 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
813 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
814 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
815 # define MASK_sig(context) ((context)->uc_sigmask)
816 #elif defined(__OpenBSD__)
817 # define EIP_sig(context) ((context)->sc_eip)
818 # define TRAP_sig(context) ((context)->sc_trapno)
819 # define ERROR_sig(context) ((context)->sc_err)
820 # define MASK_sig(context) ((context)->sc_mask)
821 #else
822 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
823 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
824 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
825 # define MASK_sig(context) ((context)->uc_sigmask)
826 #endif
828 int cpu_signal_handler(int host_signum, void *pinfo,
829 void *puc)
831 siginfo_t *info = pinfo;
832 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
833 ucontext_t *uc = puc;
834 #elif defined(__OpenBSD__)
835 struct sigcontext *uc = puc;
836 #else
837 struct ucontext *uc = puc;
838 #endif
839 unsigned long pc;
840 int trapno;
842 #ifndef REG_EIP
843 /* for glibc 2.1 */
844 #define REG_EIP EIP
845 #define REG_ERR ERR
846 #define REG_TRAPNO TRAPNO
847 #endif
848 pc = EIP_sig(uc);
849 trapno = TRAP_sig(uc);
850 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
851 trapno == 0xe ?
852 (ERROR_sig(uc) >> 1) & 1 : 0,
853 &MASK_sig(uc), puc);
856 #elif defined(__x86_64__)
858 #ifdef __NetBSD__
859 #define PC_sig(context) _UC_MACHINE_PC(context)
860 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
861 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
862 #define MASK_sig(context) ((context)->uc_sigmask)
863 #elif defined(__OpenBSD__)
864 #define PC_sig(context) ((context)->sc_rip)
865 #define TRAP_sig(context) ((context)->sc_trapno)
866 #define ERROR_sig(context) ((context)->sc_err)
867 #define MASK_sig(context) ((context)->sc_mask)
868 #elif defined (__FreeBSD__) || defined(__DragonFly__)
869 #include <ucontext.h>
871 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
872 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
873 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
874 #define MASK_sig(context) ((context)->uc_sigmask)
875 #else
876 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
877 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
878 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
879 #define MASK_sig(context) ((context)->uc_sigmask)
880 #endif
882 int cpu_signal_handler(int host_signum, void *pinfo,
883 void *puc)
885 siginfo_t *info = pinfo;
886 unsigned long pc;
887 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
888 ucontext_t *uc = puc;
889 #elif defined(__OpenBSD__)
890 struct sigcontext *uc = puc;
891 #else
892 struct ucontext *uc = puc;
893 #endif
895 pc = PC_sig(uc);
896 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
897 TRAP_sig(uc) == 0xe ?
898 (ERROR_sig(uc) >> 1) & 1 : 0,
899 &MASK_sig(uc), puc);
902 #elif defined(_ARCH_PPC)
904 /***********************************************************************
905 * signal context platform-specific definitions
906 * From Wine
908 #ifdef linux
909 /* All Registers access - only for local access */
910 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
911 /* Gpr Registers access */
912 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
913 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
914 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
915 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
916 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
917 # define LR_sig(context) REG_sig(link, context) /* Link register */
918 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
919 /* Float Registers access */
920 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
921 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
922 /* Exception Registers access */
923 # define DAR_sig(context) REG_sig(dar, context)
924 # define DSISR_sig(context) REG_sig(dsisr, context)
925 # define TRAP_sig(context) REG_sig(trap, context)
926 #endif /* linux */
928 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
929 #include <ucontext.h>
930 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
931 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
932 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
933 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
934 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
935 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
936 /* Exception Registers access */
937 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
938 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
939 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
940 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
942 #ifdef __APPLE__
943 # include <sys/ucontext.h>
944 typedef struct ucontext SIGCONTEXT;
945 /* All Registers access - only for local access */
946 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
947 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
948 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
949 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
950 /* Gpr Registers access */
951 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
952 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
953 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
954 # define CTR_sig(context) REG_sig(ctr, context)
955 # define XER_sig(context) REG_sig(xer, context) /* Link register */
956 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
957 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
958 /* Float Registers access */
959 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
960 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
961 /* Exception Registers access */
962 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
963 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
964 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
965 #endif /* __APPLE__ */
967 int cpu_signal_handler(int host_signum, void *pinfo,
968 void *puc)
970 siginfo_t *info = pinfo;
971 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
972 ucontext_t *uc = puc;
973 #else
974 struct ucontext *uc = puc;
975 #endif
976 unsigned long pc;
977 int is_write;
979 pc = IAR_sig(uc);
980 is_write = 0;
981 #if 0
982 /* ppc 4xx case */
983 if (DSISR_sig(uc) & 0x00800000)
984 is_write = 1;
985 #else
986 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
987 is_write = 1;
988 #endif
989 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
990 is_write, &uc->uc_sigmask, puc);
993 #elif defined(__alpha__)
995 int cpu_signal_handler(int host_signum, void *pinfo,
996 void *puc)
998 siginfo_t *info = pinfo;
999 struct ucontext *uc = puc;
1000 uint32_t *pc = uc->uc_mcontext.sc_pc;
1001 uint32_t insn = *pc;
1002 int is_write = 0;
1004 /* XXX: need kernel patch to get write flag faster */
1005 switch (insn >> 26) {
1006 case 0x0d: // stw
1007 case 0x0e: // stb
1008 case 0x0f: // stq_u
1009 case 0x24: // stf
1010 case 0x25: // stg
1011 case 0x26: // sts
1012 case 0x27: // stt
1013 case 0x2c: // stl
1014 case 0x2d: // stq
1015 case 0x2e: // stl_c
1016 case 0x2f: // stq_c
1017 is_write = 1;
1020 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1021 is_write, &uc->uc_sigmask, puc);
1023 #elif defined(__sparc__)
1025 int cpu_signal_handler(int host_signum, void *pinfo,
1026 void *puc)
1028 siginfo_t *info = pinfo;
1029 int is_write;
1030 uint32_t insn;
1031 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1032 uint32_t *regs = (uint32_t *)(info + 1);
1033 void *sigmask = (regs + 20);
1034 /* XXX: is there a standard glibc define ? */
1035 unsigned long pc = regs[1];
1036 #else
1037 #ifdef __linux__
1038 struct sigcontext *sc = puc;
1039 unsigned long pc = sc->sigc_regs.tpc;
1040 void *sigmask = (void *)sc->sigc_mask;
1041 #elif defined(__OpenBSD__)
1042 struct sigcontext *uc = puc;
1043 unsigned long pc = uc->sc_pc;
1044 void *sigmask = (void *)(long)uc->sc_mask;
1045 #endif
1046 #endif
1048 /* XXX: need kernel patch to get write flag faster */
1049 is_write = 0;
1050 insn = *(uint32_t *)pc;
1051 if ((insn >> 30) == 3) {
1052 switch((insn >> 19) & 0x3f) {
1053 case 0x05: // stb
1054 case 0x15: // stba
1055 case 0x06: // sth
1056 case 0x16: // stha
1057 case 0x04: // st
1058 case 0x14: // sta
1059 case 0x07: // std
1060 case 0x17: // stda
1061 case 0x0e: // stx
1062 case 0x1e: // stxa
1063 case 0x24: // stf
1064 case 0x34: // stfa
1065 case 0x27: // stdf
1066 case 0x37: // stdfa
1067 case 0x26: // stqf
1068 case 0x36: // stqfa
1069 case 0x25: // stfsr
1070 case 0x3c: // casa
1071 case 0x3e: // casxa
1072 is_write = 1;
1073 break;
1076 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1077 is_write, sigmask, NULL);
1080 #elif defined(__arm__)
1082 int cpu_signal_handler(int host_signum, void *pinfo,
1083 void *puc)
1085 siginfo_t *info = pinfo;
1086 struct ucontext *uc = puc;
1087 unsigned long pc;
1088 int is_write;
1090 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1091 pc = uc->uc_mcontext.gregs[R15];
1092 #else
1093 pc = uc->uc_mcontext.arm_pc;
1094 #endif
1095 /* XXX: compute is_write */
1096 is_write = 0;
1097 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1098 is_write,
1099 &uc->uc_sigmask, puc);
1102 #elif defined(__mc68000)
1104 int cpu_signal_handler(int host_signum, void *pinfo,
1105 void *puc)
1107 siginfo_t *info = pinfo;
1108 struct ucontext *uc = puc;
1109 unsigned long pc;
1110 int is_write;
1112 pc = uc->uc_mcontext.gregs[16];
1113 /* XXX: compute is_write */
1114 is_write = 0;
1115 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1116 is_write,
1117 &uc->uc_sigmask, puc);
1120 #elif defined(__ia64)
1122 #ifndef __ISR_VALID
1123 /* This ought to be in <bits/siginfo.h>... */
1124 # define __ISR_VALID 1
1125 #endif
1127 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1129 siginfo_t *info = pinfo;
1130 struct ucontext *uc = puc;
1131 unsigned long ip;
1132 int is_write = 0;
1134 ip = uc->uc_mcontext.sc_ip;
1135 switch (host_signum) {
1136 case SIGILL:
1137 case SIGFPE:
1138 case SIGSEGV:
1139 case SIGBUS:
1140 case SIGTRAP:
1141 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1142 /* ISR.W (write-access) is bit 33: */
1143 is_write = (info->si_isr >> 33) & 1;
1144 break;
1146 default:
1147 break;
1149 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1150 is_write,
1151 (sigset_t *)&uc->uc_sigmask, puc);
1154 #elif defined(__s390__)
1156 int cpu_signal_handler(int host_signum, void *pinfo,
1157 void *puc)
1159 siginfo_t *info = pinfo;
1160 struct ucontext *uc = puc;
1161 unsigned long pc;
1162 uint16_t *pinsn;
1163 int is_write = 0;
1165 pc = uc->uc_mcontext.psw.addr;
1167 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1168 of the normal 2 arguments. The 3rd argument contains the "int_code"
1169 from the hardware which does in fact contain the is_write value.
1170 The rt signal handler, as far as I can tell, does not give this value
1171 at all. Not that we could get to it from here even if it were. */
1172 /* ??? This is not even close to complete, since it ignores all
1173 of the read-modify-write instructions. */
1174 pinsn = (uint16_t *)pc;
1175 switch (pinsn[0] >> 8) {
1176 case 0x50: /* ST */
1177 case 0x42: /* STC */
1178 case 0x40: /* STH */
1179 is_write = 1;
1180 break;
1181 case 0xc4: /* RIL format insns */
1182 switch (pinsn[0] & 0xf) {
1183 case 0xf: /* STRL */
1184 case 0xb: /* STGRL */
1185 case 0x7: /* STHRL */
1186 is_write = 1;
1188 break;
1189 case 0xe3: /* RXY format insns */
1190 switch (pinsn[2] & 0xff) {
1191 case 0x50: /* STY */
1192 case 0x24: /* STG */
1193 case 0x72: /* STCY */
1194 case 0x70: /* STHY */
1195 case 0x8e: /* STPQ */
1196 case 0x3f: /* STRVH */
1197 case 0x3e: /* STRV */
1198 case 0x2f: /* STRVG */
1199 is_write = 1;
1201 break;
1203 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1204 is_write, &uc->uc_sigmask, puc);
1207 #elif defined(__mips__)
1209 int cpu_signal_handler(int host_signum, void *pinfo,
1210 void *puc)
1212 siginfo_t *info = pinfo;
1213 struct ucontext *uc = puc;
1214 greg_t pc = uc->uc_mcontext.pc;
1215 int is_write;
1217 /* XXX: compute is_write */
1218 is_write = 0;
1219 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1220 is_write, &uc->uc_sigmask, puc);
1223 #elif defined(__hppa__)
1225 int cpu_signal_handler(int host_signum, void *pinfo,
1226 void *puc)
1228 struct siginfo *info = pinfo;
1229 struct ucontext *uc = puc;
1230 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1231 uint32_t insn = *(uint32_t *)pc;
1232 int is_write = 0;
1234 /* XXX: need kernel patch to get write flag faster. */
1235 switch (insn >> 26) {
1236 case 0x1a: /* STW */
1237 case 0x19: /* STH */
1238 case 0x18: /* STB */
1239 case 0x1b: /* STWM */
1240 is_write = 1;
1241 break;
1243 case 0x09: /* CSTWX, FSTWX, FSTWS */
1244 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1245 /* Distinguish from coprocessor load ... */
1246 is_write = (insn >> 9) & 1;
1247 break;
1249 case 0x03:
1250 switch ((insn >> 6) & 15) {
1251 case 0xa: /* STWS */
1252 case 0x9: /* STHS */
1253 case 0x8: /* STBS */
1254 case 0xe: /* STWAS */
1255 case 0xc: /* STBYS */
1256 is_write = 1;
1258 break;
1261 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1262 is_write, &uc->uc_sigmask, puc);
1265 #else
1267 #error host CPU specific signal handler needed
1269 #endif
1271 #endif /* !defined(CONFIG_SOFTMMU) */